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Abstract

Climatic, sociological and environmental conditions are known to affect the spatial distribu-

tion of malaria vectors and disease transmission. Intensive use of insecticides in the agricul-

tural and public health sectors exerts a strong selective pressure on resistance genes in

malaria vectors. Spatio-temporal models of favorable conditions for Anopheles species’

presence were developed to estimate the probability of presence of malaria vectors and

insecticide resistance in Lao PDR. These models were based on environmental and meteo-

rological conditions, and demographic factors. GIS software was used to build and manage

a spatial database with data collected from various geographic information providers. GIS

was also used to build and run the models. Results showed that potential insecticide use

and therefore the probability of resistance to insecticide is greater in the southwestern part

of the country, specifically in Champasack province and where malaria incidence is already

known to be high. These findings can help national authorities to implement targeted and

effective vector control strategies for malaria prevention and elimination among populations

most at risk. Results can also be used to focus the insecticide resistance surveillance in

Anopheles mosquito populations in more restricted area, reducing the area of surveys, and

making the implementation of surveillance system for Anopheles mosquito insecticide resis-

tance possible.

1. Introduction

Malaria is still an important health issue in the Lao PDR (hereafter Laos). In 2010, 63% of the

Lao population lived in rural areas and many were therefore directly affected by this mainly

rural infectious disease [1]. Although malaria incidence in Laos decreased by 50% between
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2000 and 2010, the case incidence has increased since 2011, with 38,131 malaria confirmed

cases in 2014 by the national authorities (CMPE, the Center for Malariology, Parasitology and

Entomology, Ministry of Health, Lao PDR). Malaria is endemic in Laos, but highly heteroge-

neous, with more intense transmission in remote and forested areas: Malaria incidence is high-

est in southern Laos and lowest in the northern part of the country where transmission is

sporadic and local (Fig 1) [2–3]. Malaria outbreaks have been observed since 2011 in the five

southern provinces: Savannakhet, Saravane, Sekong, Champasack, and Attapeu (CMPE

Malaria Information System, unpublished observations).

Malaria vector control in Laos was first initiated in 1953 with indoor residual spraying

(IRS) of DDT twice a year at 2gm/m2 [4] and carried out along with extensive epidemiological

and entomological surveys. IRS with DDT continued until the revolution in 1975 and was

definitively banned in 1990. In Vientiane province mass drug administration (MDA) took

place between 1969 and 1988, with a break between 1975 and 1977. After the ban of DDT and

termination of the MDA program, insecticide-treated bed-nets (ITNs) and long lasting insecti-

cidal nets (LLINs) were introduced in the 2000’, first in Borikhamxay province, then in Luang

Pra Bang, Saravane, Vientiane and Savannakhet provinces. According to the WHO, about

Fig 1. Malaria positive cases and incidence rate, 2014 (from CMPE Malaria Information System).

https://doi.org/10.1371/journal.pone.0177274.g001
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280,000 LLINs were distributed to populations in 2014 hence representing a net coverage of

20% of the population [2].

Intensive use of insecticides by agricultural pest control and insecticide used in vector con-

trol may exert a strong selection pressure for resistance development in malaria vectors [5–9].

Insecticide resistance arises when the frequency of resistance genes in the mosquito population

increases after being exposed to insecticides. The Asian market represents 22% of the global

market of pesticides [4]. In northern Thailand, it was found that pesticides used for crop pro-

tection was significantly correlated with the presence of insecticide resistance in malaria vec-

tors [10].

The risk of insecticide resistance in malaria vectors in South-East Asia represents a potential

threat for malaria control and the achievements seen during recent years. Insecticide resistance

in major malaria vectors have been detected in neighboring countries such as Cambodia, Viet-

nam, Thailand [11–12] and it is important for National Malaria Control Program to identify

suitable areas for insecticide resistance emergence. This information is essential to implement

national plans for insecticide resistance management.

In practice, it is difficult to assess favorable ecological conditions for malaria vector pres-

ence. The assessment of the spatial distribution of such favorable conditions is also difficult,

especially when a spatial precision consistent with local actions of vector control is needed.

Indeed, entomological surveys to assess mosquito presence cannot reasonably be conducted

over a wide area. The statistical spatial representativeness of a collection point (i.e. the variabil-

ity of the result in the neighborhood of a collection point) is difficult to assess and varies in

space and time, and depends on species and environmental and climatic conditions. The

presence and the abundance of the vector is dependent on many geographical, climatic, envi-

ronmental and anthropogenic variables [13–20]. Results also vary considerably over time

depending on seasonal, annual, and environmental conditions that influence the presence

of these vectors. Most studies assessing mosquito vector presence and abundance do not

exceed the village level [21]. All other studies generally use a model to estimate the probability

of the potential presence or average abundance of the vector according to geographical and/

or environmental variables (land use, temperature, topography, vegetation, habitat, vector

control actions, etc.) [22–25]. For example, the MAP project website shows potential presence

maps for many Anopheles complex species, derived from a Bayesian geostatistical modeling

approach (http://www.map.ox.ac.uk/map/).

The objective of this work was to develop predictive spatial models that estimate with

higher spatial accuracy the probability of presence of malaria vectors and insecticide resistance

in Laos. Here a modeling approach with high spatial accuracy was used to estimates the loca-

tion of favorable conditions for malaria vector presence and insecticide resistance, based on

previous studies, expert knowledge of entomologists and agronomists and taking into account

the vulnerability of people to these hazards [12] [19] [26–37]. The general model uses three

sub-models, one to estimate areas where conditions are favorable for the development of vec-

tors, the second to estimate the likelihood of insecticide resistance, and the third to estimate

the vulnerability of the population to these hazards.

The main expected outcomes are accurate spatial distributions of risk of vulnerable human

hosts being exposed to malaria vectors, risk of malaria vectors being exposed to insecticides

and becoming resistant, and risk of vulnerable human hosts being exposed to potentially resis-

tant malaria vectors. Accurate space-time distributions of favorable conditions for malaria vec-

tors are also a valuable intermediate outcome. The results are expected to help public health

authorities to improve insecticide resistance surveillance by targeting specific and sensitive

areas.
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2. Materials and methods

2.1 Study area

This study comprises the whole Laos, but because land-use data from the northern part of

Laos dates back to 2002 and data from 2014 are still not available, specific focus was put on

seven central and southern provinces (Borikhamxay, Khammuane, Savannakhet, Champasack,

Attapeu, Sekong and Saravane) (Fig 2). As previously mentioned, these provinces are at higher

risk of malaria.

2.2 Data collection and geodatabase

We used environmental and demographical data verified and managed by a geographic infor-

mation system (GIS). Data on administrative borders (provinces, districts), village locations,

demography, poverty, precipitation, temperature, relative humidity, land-use, hydrology,

topography, malaria cases, and bed-net coverage were collected from various sources. Many of

these factors potentially affect the presence of malaria vectors and development of insecticide

resistance in mosquitoes. We only used already available environmental data, from local Lao

administrative sources (for land-use, demography, and epidemiology) or international data

providers (for climate, topography). The following data sets were acquired and used in the

analysis:

Fig 2. Central and southern Lao provinces.

https://doi.org/10.1371/journal.pone.0177274.g002
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• Land-use from 2014 (Fig 3) was acquired from the Department of Land Management and

Development (DALaM, Ministry of Agriculture and Forestry). The land use data were origi-

nally classified from remote sensing images (with a resolution of 5 m). The quality of these

data was verified and any detected errors were corrected.

• Administrative borders and data on demographical characteristics and poverty were

retrieved from the Lao DECIDE project (http://www.decide.la/en/), a follow-up of the “Lao

Poverty Mapping and Socio-economic Atlas of Lao PDR project” (2006–2009). These proj-

ects were developed in the framework of a collaboration between Lao Statistics Bureau, Min-

istry of Natural resources and Environment, Ministry of Agriculture and Forestry, and the

Centre for Development and Environment at the University of Bern in Switzerland [38,39].

• The Lao Ministry of Agriculture and Forestry provided list and geographical coordinates of

villages.

• Climate data such as monthly and annual temperature and rainfall averages were down-

loaded from WorldClim—Global Climate Data (http://worldclim.org). The raster data have

a resolution of 1 km2.

• The Center for Malaria Parasitology and Entomology (CMPE) provided data on malaria

cases and bed-net coverage by district.

Fig 3. Land-use, 2014, central and southern Laos (from DALAM data).

https://doi.org/10.1371/journal.pone.0177274.g003
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• Digital Elevation Models were created with GIS at various scales (100 m, 200 m 400 m per

pixel) from SRTM-4.0 raster data (Shuttle Radar Topographic Mission, NASA, 90 m per

pixel. http://www2.jpl.nasa.gov/srtm/).

Data were integrated into a geodatabase as layers with attributes, each layer with detailed

metadata. The GIS geodatabase contained administrative layers (locations of villages with

information on the presence of health facilities, boundaries of villages with population, bound-

aries of districts and provinces), climate layers (temperature, precipitation, relative humidity),

land-use (2002 and 2014), and epidemiological data on malaria. Bed-net coverage was given by

district as number of people protected, percentage of people protected, number of bed-nets,

and number of bed-net per person. Malaria epidemiological data by district included number

of people tested by RDT, number of malaria confirmed cases, and number of deaths due to

malaria. GIS database can be downloaded at http://doi.org/10.5281/zenodo.570063 [40].

2.3 Data processing and modeling

Risk of Anopheles mosquito presence and insecticide resistance was estimated by cells in a grid

covering the study area. The spatial definition of the grid (the size of the cells) is based on the

objectives of the study (in term of shape and spatial accuracy) and the availability of environ-

mental data needed to characterize the cells of the grid. Thus, to present results with enough

precision to manage local phenomena, we created a 10×10 km cell grid, giving a total of 2,836

cells for the whole country and 1,071 cells for the central and southern region (Fig 4).

We developed models combining variables describing these cells. Mean temperature,

rainfall, altitude, percentage of surface for each land use type, total of malaria cases, total popu-

lation were calculated for each grid cell by GIS process. The vulnerability of the human popula-

tion and its exposure to mosquito presence and potential insecticide resistance in mosquitoes

were also estimated by these geographical units. Results were calculated for each grid cell.

Results were also calculated for administrative units (village boundaries and districts) by spa-

tial integration from cells.

We used maps to show the results of spatial distributions. We present maps using smoothed

trend surface from interpolation rather than results by cells in order to give greater readability.

Three sub-models (Table 1) have been developed and are used for the models for risk evalu-

ation (Table 2: risk of vulnerable human hosts being exposed to malaria vectors, risk of malaria

vectors being exposed to insecticides and becoming resistant, and risk of vulnerable human

hosts being exposed to potentially resistant malaria vectors): 1) a sub-model of Anopheles pres-

ence probability from favorable environmental conditions for Anopheles mosquitoes; 2) a sub-

model of insecticide presence probability, from suitable conditions for insecticide use; 3) a

sub-model to estimate the vulnerability of the human population.

2.3.1 Sub-model 1: Probability of Anopheles presence, from favorable environmental

conditions. This sub-model aims to estimate the space-time distribution of favorable envi-

ronmental conditions for the three primary malaria vectors in Laos: An. dirus s.l., An. minimus
s.1. and An. maculatus s.l. The model is based on the following environmental factors only:

land use, climate (temperature and rainfall), and topography. Knowledge from literature and

experts was used to assess relationships between environmental variables and their suitability

for the development of malaria vectors.

2.3.1.1. Land use: In Southeast Asia, land use is considered as the major environmental fac-

tor influencing Anopheles distribution, followed by temperature and precipitation [13–14].

Tropical forests, forest fringes, and areas around wetlands and water bodies are favorable areas

for Anopheles mosquitoes [30], but Anopheles can also be found close to agricultural lands such

Modeling presence and insecticide resistance for malaria vectors
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as rice paddy fields, wood cultures, and orchards [14][41]. To quantify the suitability of each

land use type i for the presence of each species, a weight ai, from 0 to 10 was given to each land

use type (Table 3, established from literature review and expert knowledge).

A geo-aggregation by cells from the land use layer was performed in GIS to calculate the

proportional cell area, spi, for each land use type i (∑i spi = 1). We gave the cell a value Y1 (vary-

ing from 0 to 1) as a weighted mean (with weights ai) of these spi values. The three species

Fig 4. Grid of 10×10 km cells as geographical units.

https://doi.org/10.1371/journal.pone.0177274.g004

Table 1. Three sub-models have been developed from environmental, climatic and demographic

data.

Sub-models Based on

Y4: Probability of Anopheles mosquito presence Y1: Presence, based on land use

Y2: Presence, based on temperature

Y3: Presence, based on rainfall and topography

Y7: Probability of insecticide use Y5: Insecticide use based on land use

Y6: Density of ITNs

Y10: Vulnerability of the human population Y8: Human population density and poverty

Y9: Inverse density of ITNs

https://doi.org/10.1371/journal.pone.0177274.t001
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(An. dirus, An. maculatus and An. minimus) have slightly different land-use preferences (as

shown in Table 3), so three weighted values were calculated per cell:

Y1½species� ¼
1

10

P
iaispi where ai ¼ weight of land � use type i for the species

spi ¼ ðarea of land � use type iin the cellÞ=ðtotal area of cellÞ

2.3.1.2. Temperature and precipitation: Mosquitoes, as all insects, are ectothermic, i.e.

dependent on external temperatures. At critical minimum temperatures, development stops

and mosquitoes die or become inactive. As temperatures increase, development and survival

increase, until an optimum is reached. As temperatures increase further, insects respond nega-

tively until critical maximum temperatures cause mosquito populations to crash [42]. Optimal

temperatures vary from species to species. An operative range for mosquito larval development

and survival was assessed for An. stephensi in experimental incubators resulting in a critical

minimum temperature of 15˚C and a critical maximum temperature of 36˚C, with optimum

temperatures between 22–33˚C [43]. Since no detailed studies on vector species in Laos or

Southeast Asia could be found, the above critical and optimum temperatures were used.

Monthly temperature and precipitation averages were used to reflect seasonal variations;

results have been produced by month.

Equation Y2 is a probability model for mosquito presence from monthly mean tempera-

tures, TMonth, using a linear piecewise function:

Y2½Month� ¼ 0 if TMonth < u1

Y2 Month½ � ¼
TMonth � u1

u2 � u1

if u1 � TMonth < u2

Y2½Month� ¼ 1 if u2 � TMonth < u3

Y2 Month½ � ¼
u4 � TMonth

u4 � u3

if u3 � TMonth < u4

Y2½Month� ¼ 0 if TMonth � u4

with u1 = 15˚C, u2 = 28˚C, u3 = 33˚C, u4 = 36˚C.

Water is essential for mosquito development. All immature stages of mosquitoes are

aquatic. A minimum amount of rainfall is needed to create breeding habitats, but too heavy

rainfalls will destroy habitats and flush out eggs and larvae. We assumed limited breeding and

mosquito production with precipitation below 40 millimeters of mean rainfall per month, with

Table 2. Risk evaluation models build on the top of the three sub-models Y4, Y7, Y10.

Models for Risk evaluation Components Based

on

Y11: Risk of vulnerable human hosts being exposed to malaria vectors Probability of Anopheles mosquito presence × Vulnerability of the

human population

Y4, Y10

Y12: Risk of malaria vectors being exposed to insecticides and

becoming resistant

Probability of Anopheles mosquito presence × Probability of

insecticide use

Y4, Y7

Y13: Risk of vulnerable human hosts being exposed to potentially

resistant malaria vectors

Resistance risk × Population vulnerability Y12, Y10

https://doi.org/10.1371/journal.pone.0177274.t002
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Table 3. Estimation of likelihood of presence of An. dirus s.l., An. maculatus s.l., and An. minimus s.l. and insecticide use for agriculture, in differ-

ent land-use types. Scores for mosquito presence are from 0 to 10, with 0 the lowest and 10 the highest. Scores for insecticide use is from 1 to 4, with 1 the

lowest and 4 the highest insecticide use. Land use types and codes are taken from the land use classification used by the Ministry of Agriculture.

Code Land use type Mosquito presence Insecticide useb

An. dirus An. maculatus An. minimus Referencesa

11 Evergreen Forest 10 7 8 [13,14,26,33–37] 1

13 Mixed deciduous Forest 10 7 8 [13,14,26,33–37] 1

15 Dry Dipterocarp Forest 10 7 8 [13,14,26,33–37] 1

16 Gallery Forest 3 9 10 [13,14,26,32–37,41] 1

17 Coniferous forest 1 1 1 [26,29–37] 1

18 Mixed Broad-Leaved Forest 10 9 9 [13,14,26,33–37] 1

19 Forest Plantation 6 7 7 [13,14,26,33–37] 1

191 Rubber 8 6 8 [30,36] 2

192 Eucalyptus 5 5 5 2

193 Kathin nalong wood 6 6 6 1

194 Teak wood 6 6 6 2

195 Aquilaria crassna wood 8 6 8 3

21 Bamboo Forest 7 7 7 [13,14,26,33–37] 1

22 Unstocked Forest 1 1 1 [13,14,26,33–37] 1

24 Plateau 2 2 2 1

31 Savannah 1 1 1 1

32 Scrubland 4 4 4 [31] 1

41 Rice Paddy 2 7 7 [13,14,26,33–37,38] 3

411 Irrigated Paddy 1 7 7 [13,14,26,33–37,38] 3

42 Other Agriculture 3 3 3 [13,26] 2

421 Cassava 1 1 4 [37] 1

422 Sugarcane 1 1 4 [37] 1

423 Morinda citrifolia 1 1 1 4

424 Coffee 2 2 2 [37] 2

425 Maize 1 1 1 2

426 Hibiscus sabdariffa 1 1 1 4

427 Bastard Cardamom 1 1 1 2

428 Cotton 1 1 1 2

429 Tea 1 1 1 2

430 Mulberry 2 2 2 [37] 4

431 Job’s Tear 1 1 1 4

432 Coconut 1 1 1 4

434 Banana 1 1 1 4

435 Sweet Potato 1 1 1 2

436 Groundnut 1 1 1 3

437 Citrus 2 3 3 [26,33,37] 4

440 Other Fruit tree 2 3 3 [26,33,37] 4

441 Palm 1 1 1 1

51 Rocked 1 1 1 1

52 Grassland 2 4 2 [29,30] 1

521 Pastures 2 4 2 [29,30] 1

53 Wetlands 4 10 8 [29,30] 1

54 Urban area 0 0 0 1

541 Cemetery 1 1 1 1

542 Industrial 0 0 0 1

(Continued )
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a progressively increasing likelihood of production until 400 millimeters, and decreasing

above.

Equation Y3a is the probability model for mosquito presence from monthly mean rainfall

RMonth. We use again a linear piecewise function:

Y3a½Month� ¼ 0 if RMonth<v1

Y3a Month½ � ¼
RMonth � v1

v2 � v1

if v1 � RMonth < v2

Y3a Month½ � ¼
v3 � RMonth

v3 � v2

if v2 � RMonth < v3

Y3a½Month� ¼ 0 if RMonth � v3

For monthly mean precipitation: v1 = 40 mm, v2 = 400 mm, v3 = 800 mm.

2.3.1.3. Topography: Altitude influences vector density and vector human contact [44].

Altitude is already considered in the model, as temperature is strongly correlated with altitude.

Topography also influences the availability and occurrence of larval habitat with sites found

commonly in foothills where rainwater can accumulate, next to streams or in the beds of

ravines [13]. Using a Digital elevation model (SRTM-4, 90 m resolution), a topographic index

(TOPMODEL, based on the amount of water each cell may receive from upstream [45]) was

used with GIS to characterize these areas (Fig 5). In each cell, Y3 was calculated from Y3 and

this topographic index to consider the capacity of the cell not only to receive but also to accu-

mulate water.

2.3.1.4. Synthesis: Land use is a major factor influencing mosquito presence but tempera-

ture and precipitation are necessary for mosquito development: our model for the favorable

Table 3. (Continued)

Code Land use type Mosquito presence Insecticide useb

An. dirus An. maculatus An. minimus Referencesa

543 Mine 1 1 1 1

544 Airport 1 1 1 1

545 Stadium (Any Sport) 1 1 1 1

546 Waste dump 1 1 1 1

547 National Protection 10 10 10 1

548 Culture Zone 1 1 1 2

55 Island 4 10 8 1

550 Other concession 1 1 1 1

61 Water body 6 10 8 [29,30] 1

611 Reservoir 2 2 2 [29,30] 1

612 Irrigated area 1 7 7 [29,30] 1

613 Flood area 2 2 2 [29,30] 1

2104 Unpaved Road 1 1 1 1

21011 Paved Road 0 0 0 1

21021 Street Town 0 0 0 1

a References were used as support to assess presence likelihood. If no reference given, presence assessed by authors.
b Scoring based on authors’ assessment, mainly based on Table 7 in [12].

https://doi.org/10.1371/journal.pone.0177274.t003
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conditions for the presence of Anopheles mosquitoes need to be a multiplicative relationship

between these three parameters.

The final sub-model for the presence of Anopheles mosquitoes from environmental favor-

able conditions (Y4) is therefore:

Y4½Month; Species� ¼ Y1½Month� � Y2½Month� � Y3½Species�

Depending on the purpose of the study, either the mean or the maximum value over the

months can be used, for each species. In the balance of this article, we will also use the mean of

the probabilities for the three species, but all results can be obtained by month and specie. In

the following equations, Y4 will refer to this value.

2.3.2 Sub-model 2: Probability of insecticide use, from land-use and vector control.

Insecticide resistance development in mosquitoes depends on the level of exposure to insecti-

cides. Mosquitoes are mainly exposed to insecticides from agriculture and/or from vector con-

trol activities, such as insecticide treated nets (ITNs)–including long lasting insecticide treated

nets (LLINs)–or indoor residual spraying (IRS). This sub-model describes the probability of

insecticide presence and the intensity of insecticide use. The same principles as the previous

sub-model were applied. Weights bi are given to land use types according to their potential

Fig 5. Topographic index TOPMODEL derived from DEM SRTM-4 (90 m resolution).

https://doi.org/10.1371/journal.pone.0177274.g005
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insecticide use (Table 3), based on a previous study conducted in Thailand [12] and expert

knowledge. Laos is similar to Thailand in terms of agricultural policies and use, although it

may not be as pesticide-intensive as Thailand [4]. It is assumed that agricultural areas, particu-

larly fruit orchards and other cash crops, will apply higher amounts of pesticides than other

land uses. This is a pattern commonly seen in neighboring Thailand [10] [12]. We also used

expert knowledge from agronomists to develop this sub-model.

First a weighted mean (varying from 0 to 1) was given to each cell:

Y5a ¼ 1=4
P
ðbi � 1Þspi where bi ¼ weight of land use type i

spi ¼ ðarea of land � use type i in the cellÞ=ðtotal area of cellÞ

Leached pesticides are carried downstream following topography and rivers causing accu-

mulation and a higher probability of insecticide presence. In each cell, Y5 was calculated from

Y5a and the topographic index, to take into account the capacity of the cell to accumulate pes-

ticides from upstream.

The number of distributed ITNs was only available by district. There are no data on where

IRS campaigns were carried out. Density of ITN per person and per cell was calculated in pro-

portion to the population of the cell. Population is available by village, and population of the

cell was calculated using integration of villages in cells. Density of ITN per person was then

converted to a value between 0 and 1 to reflect the increasing risk of resistance due to ITNs.

We estimate that there is no risk of resistance if the density of ITN per person is lower than

0.05, linearly increasing from 0 to 1 until the density reach 0.5, and 1 if the density is greater

than 0.5.

Y6 ¼ 0 if D < 0:05

Y6 ¼
D � 0:05

0:45
if 0:05 � D < 0:5

Y6 ¼ 1 if D � 0:5

where D is the number of ITN per person for the cell.

Y5 and Y6 are then combined to obtain the model of insecticide resistance risk (equation

Y7). We assigned a greater impact of agricultural insecticides since the amounts of insecticides

used in agriculture is much larger than what is used in impregnated bed-nets.

Y7 ¼ 0:9Y5þ 0:1Y6

2.3.3 Sub-model 3: Vulnerability of the human population. The last sub-model con-

cerns the vulnerability of the Lao population to the presence of malaria vectors. Vulnerability

is evaluated independently of the threat: it is related to the factors potentially increasing or

reducing susceptibility and local exposure to the threat, even if the threat is not present. Here

we consider the vulnerability of each cell using only population density, population socio-eco-

nomic level and bed net coverage in the cell.

We estimate that the vulnerability of the cell due to population density trend to 1 if popula-

tion in the cell is superior to 10000 (i.e. if density is higher than 100 inhabitant/km2):

Y8a ¼ ð2=pÞ arctanðP=5000Þ where P is the number of inhabitant in the cell

Poor socio-economic conditions are factors of vulnerably, as poor household condition

often implies greater probability of potential exposure to mosquito [46,47]. As indicator of
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poverty for the cell we use the percentage of population below poverty line inside the cell,

derived from the percentage of population below poverty line by village, as calculated by the

Lao DECIDE project from the 2005 Population and Housing Census [39]. The higher the poor

population, the higher the vulnerability of the cell. We estimate that the vulnerability of the cell

due to poor population density trend to 1 if poor population in the cell is superior to 2000:

Y8b ¼ ð2:=pÞ

� arctanðP=1000Þ where P is the number of inhabitant below poverty line in the cell

We take the mean of Y8a and Y8b as final estimation of vulnerability due to both popula-

tion density and poor population density, giving more weight to poverty density:

Y8 ¼ ðY8aþ 3� Y8bÞ=4

ITNs and IRS may reduce population vulnerability since they are able to reduce the contact

between humans and mosquito populations. The number of bed net per person from sub-

model 2 was used but reversing the score, i.e. the more mosquito bed nets per person, the

more people are protected, and the less vulnerable is the cell. We limit the reducing factor Y9

to 0.25, even if bed net coverage is superior to 1 bednet for 2 people: not every people is using

bednet even if they have one.

Y9 ¼ 1 if D < 0:05

Y9 ¼ 1 �
D � 0:05

0:6
if 0:05 � D < 0:5

Y9 ¼ 0:25 if D � 0:5

where D is the number of ITN per person for the cell.

These two values are combined to obtain a final estimation of vulnerability for the cell

(equation Y10):

Y10 ¼ Y8� Y9

2.3.4 Modeling risks–main models. Modeling risks involve combining vulnerable hosts

exposed to the threats, as follows:

1. Risk of vulnerable hosts to be exposed to malaria vectors:
Probability of Anopheles mosquito presence × Population Vulnerability: Y11 = Y4 × Y10

2. Risk of malaria vectors being exposed to insecticide and becoming resistant to insecticide:

Probability of Anopheles mosquito presence × Probability of insecticide use: Y12 = Y4 × Y7

3. Risk of vulnerable hosts to be exposed to potentially resistant malaria vectors:
Risk of malaria vectors being exposed to insecticide and becoming resistant to

insecticide × Population Vulnerability: Y13 = Y12 × Y10

2.4. Software

Data verification and editing, data management, GIS data analysis and modeling have been

performed with SavGIS software. GIS Software, GIS database used in this work is available on

SavGIS website (www.savgis.org). SavGIS macro-command recording all GIS commands used

in this work is available as S1 Macro.
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3. Results

Only results related to variables used in the sub-models (land use, temperature, rainfall), to the

sub-models themselves, and to the risk models are presented here. Other results, such as results

by district (S1 Table), and maps showing monthly precipitation, monthly temperature, monthly

mosquito species presence estimation (S1 Fig) are available as Supporting Information.

Data collected on temperature (Fig 6, left panel) and precipitation (Fig 6, right panel) shows

that the hottest and wettest areas are in southern Laos.

The probability of vector presence based on land use only (Y3, Fig 7) shows similarities in

spatial distribution. Anopheles dirus seems to have a stronger signal than the other species. The

Fig 6. Annual mean temperatures (left panel) and annual mean rainfall (right panel) in Laos from 1950–2000 (from

WorldClim—Global Climate Data).

https://doi.org/10.1371/journal.pone.0177274.g006

Fig 7. Probability of presence of An. maculatus s.l. (left panel), An. dirus s.l. (middle panel), and An. minimus s.l. (right panel) in central-southern Laos,

based on land use favorable conditions only (Y3). Red color indicates higher probability.

https://doi.org/10.1371/journal.pone.0177274.g007
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results show that probabilities of the presence of these species are highest in the southern part

of the country.

When adding temperature, rainfall, and topography, the combined vector presence (all

three species together) show slightly different patterns (Fig 8). The highest probabilities of vec-

tor presence are in Attapeu and Champasack provinces, as well as borders areas between Sara-

vane and Sekong provinces. In addition, hilly and forested areas in the central provinces of

Khammuane and Borikhamxay show higher probabilities of vector presence.

The probability of insecticide use (Y7) was based on potentially insecticide-intensive land

use and density of ITNs. The highest probabilities were found in the south of the country, spe-

cifically in several areas of Champasack, but also Savannakhet (Fig 9, left panel). The risk of

malaria vectors becoming resistant to insecticides (Y12, Fig 9, right panel) also shows the high-

est probabilities in the south of the country, especially in the Champasack and Savannakhet

provinces, near Thailand border.

The human population vulnerability was assessed by combining human density, human

poverty, and the number of ITNs per person. The spatial distribution shows higher vulnerabil-

ity in populated urban or semi-urban areas, especially near Vientiane and in the south near the

border to Thailand (Pakse, Savannakhet, Takhet, Fig 10).

Fig 8. Probability of Anopheles mosquito presence (An. maculatus s.l., An. dirus s.l., and An.

minimus s.l. combined) (Y4) based on land use (Y1), temperature (Y2), rainfall/topography (Y3), in

central-southern Laos. Red color indicates higher probability.

https://doi.org/10.1371/journal.pone.0177274.g008
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The risk of human exposure to Anopheles mosquitoes (Y11) and the risk of human expo-

sure to Anopheles mosquito potentially resistant to insecticide (Y13) are shown in Fig 11.

Overall, the risks are generally low (maximum is 0.13 for Y11, and 0.10 for Y13); the highest

probabilities were found in the western areas of southern Laos, around populated centers

such as Pakse, Savannakhet, and Takhek. Areas with especially low probabilities were found

in the southeastern areas, e.g. in Attapeu to the border of Cambodia and Sekong to the bor-

der of Vietnam.

The maps show that most of the risk to be exposed to the main malaria vectors is concen-

trated in the southern part of Laos where malaria is the most active. We found that the correla-

tion between Anopheles presence estimation and malaria incidence (2014), calculated by

district over the central-southern part of the country is 0.51 (Bravais-Pearson’s correlation

coefficient).

As shown in the maps of Fig 9, potential insecticide presence and therefore the probability

of resistance to insecticide is also greater in the southern part of the country, especially where

malaria incidence is the highest (Champasack province). Due to favorable climatic conditions

and high potential for insecticide-intensive land-uses, more areas were identified in the south-

ern part of the country than other regions to have a higher risk of resistance selection.

The locations with the highest risk of human exposure to malaria vectors are quite similar

to locations with a high risk of human exposure to potentially resistant malaria vectors. In fact,

both of these models have overlapping sub-models, the main difference being that the latter

includes a major component of land use adjusted by an insecticide weighted factor and a

minor component of number of ITNs per person (sub-model 2). The highest risks for insecti-

cide resistance development in Laos are in southwestern Laos, specifically in rice and other

agricultural cropping systems along the Mekong river and other agricultural areas in Cham-

passack (Fig 9).

Fig 9. Left panel: Probability of insecticide presence (Y7), based on land use, topography, and bed net coverage, in

central-southern Laos. Right panel: Risk of Anopheles mosquitoes to be exposed to insecticides and to become resistant

(Y12) in central-southern Laos. Red color indicates higher risk.

https://doi.org/10.1371/journal.pone.0177274.g009
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4. Discussion

Abundant literature has been generated describing and estimating the presence of Anopheles
mosquitoes in South-East Asia (e.g. [25]). With more accurate data (especially on land-use)

and temporal variations (for meteorological data), our model aims to improve the space-time

evaluation and the geographical distribution of favorable conditions for Anopheles mosquito

presence and potential insecticide resistance, with high spatial resolution.

Areas can be potentially favorable to mosquito presence but this is not sufficient to assume

that the vector is actually present in the reality: mosquitoes need to be present in the region for

the model to jump from potential to real. In Laos, Anopheles has been collected almost every-

where, and maps and models in previous studies show their presence everywhere in the coun-

try [25]. A recent study, conducted in 2013 up to 2015, showed that primary vectors can be

found throughout Laos during both the dry and rainy seasons (Marcombe et al. “Insecticide

resistance status of malaria vectors in Lao PDR”). Our model on favorable conditions for

Anopheles can therefore be used as an indication of the abundance of vectors (in time and

space) and not only as a probability of their presence.

Fig 10. Vulnerability of the human population to Anopheles mosquitoes (Y10), combining human

density and poverty (Y8) and number of ITNs per person (Y9).

https://doi.org/10.1371/journal.pone.0177274.g010
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Some densely-populated areas (especially urban centers) appear vulnerable whereas Anoph-
eles mosquitoes have limited or no presence reported in these urban areas [25]. These results

should not be surprising because vulnerability does not represent the risk, i.e. human popula-

tions may be vulnerable but not exposed to the threat, as is the case in urban areas where

Anopheles have limited presence or may be located around the cities. It should also be noted

that cells of 10x10 km may not represent an adequate aggregation scale to model the risk in

urban areas because cells are too large: 10x10 km cells may aggregate inhabited urban areas

with peri-urban and rural areas, where anopheline presence conditions can be met.

Our models inferring favorable conditions for mosquito presence or insecticide resistance are

built from expert knowledge only: on the relationship between land-use, climate and mosquito

favorable habitats, and between land-use and potential use of pesticides. We used information

from bibliography and knowledge from scientists (entomologists and agronomists). We did not

try to re-validate this knowledge by field surveys: the aim of this work was to transform the expert

knowledge on Anopheles–environment relationships to spatial evaluation of the risk of Anopheles
presence and abundance, insecticide presence and the risk of insecticide resistance in Laos.

The exposure of malaria vectors to insecticides is probably mainly driven by agricultural

insecticides due to the intensity of agricultural pesticide input compared to the use of public

health insecticides. Although, there are few exact figures on pesticide input in Laos. National

registration system for insecticides is lacking in Laos and should be further developed to

ensure sounds management of insecticides. Models would be also significantly improved if

reliable data would be available on pesticide use and types of insecticides used in public health

and crop protection. A limitation of this study was that we do not know exactly which insecti-

cides the mosquitoes are exposed to. This will affect the likelihood of resistance development

and cross-resistance patterns. It is extremely difficult to assess actual pesticide use in the agri-

cultural sector. This is because of specific preferences and practices of individual farmers, type

of crops grown which often vary from year to year, and large spatio-temporal variations in

Fig 11. Left panel: Risk of vulnerable human hosts to be exposed to Anopheles mosquitoes (Y11), based on probability of

vector presence (Y4) and population vulnerability (Y10). Right panel: Risk of vulnerable human hosts to be exposed to

potentially insecticide resistant malaria vectors (Y13).

https://doi.org/10.1371/journal.pone.0177274.g011
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presence of crop pests. Due to these uncertainties, it is generally not possible to specify the clas-

ses of insecticides used, but rather the intensity of use based on prior knowledge of which land

uses are more vulnerable and require protection through pesticide input. In a country like

Laos there is very little data available on pesticide use, therefore the model is based on data

from Thailand [12].

Our models take into account only environmental variables; in fact, mosquito presence and

abundance can be related to many other variables, especially anthropogenic variables, so here

“risk” needs to be understood as “environmental risk”. The model gives only a part of the actual

risk. In this context, the correlation between malaria cases and favorable conditions for the vec-

tor presence (Bravais-Pearson’s coef. = 0.48) is high, because only environmental factors related

to the presence of the mosquito are taken into account, excluding parameters regarding the

presence of the parasite or anthropogenic parameters that may influence the spread of malaria.

As mentioned in the introduction, these models for mosquito abundance and resistance are

difficult to validate on the field. Their main interest consists, on the one hand, in directing the

entomological surveys towards zones and times when the probability of presence and abun-

dance of the Anopheles is the highest and on the other hand to direct preventive vector control,

public health actions and surveillance systems to these zones. Contrasting with entomological

collection and evaluation on the field, these methods are rapid, at low cost, easy to implement,

and results may cover large territories with high spatial resolution.

5. Conclusion

The mapping and statistical results of this work highlighted the space-time distribution of the

environmental risk of Anopheles presence, potential insecticide emergence, insecticide resistance,

and risk of exposure to these threats for the human population in Laos. These results are based on

expert knowledge, and on practices observed in Thailand concerning agricultural policies and

insecticide use. We found several areas of higher risk for the development of resistance, especially

in agricultural areas located in the southern part of the country close to the Thailand border.

The results of this work can be used to help develop public health policies and to implement

targeted vector control strategies for malaria prevention and elimination. Furthermore, they

may be used to focus the search for insecticide resistance among mosquito populations in

Laos, reducing considerably the area of the surveys, and making possible the implementation

of a surveillance system for Anopheles resistance to insecticide.
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