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Abstract

The use of long lasting insecticide nets (LLINs) treated with pyrethroïd is known for its major

contribution in malaria control. However, LLINs are suspected to induce behavioral changes

in malaria vectors, which may in turn drastically affect their efficacy against Plasmodium sp.

transmission. In sub Saharan Africa, where malaria imposes the heaviest burden, the main

malaria vectors are widely resistant to pyrethroïds, the insecticide family used on LLINs,

which also threatens LLIN efficiency. There is therefore a crucial need for deciphering how

insecticide-impregnated materials might affect the host-seeking behavior of malaria vectors

in regards to insecticide resistance. In this study, we explored the impact of permethrin-

impregnated net on the host attractiveness for Anopheles gambiae mosquitoes, either sus-

ceptible to insecticides, or carrying the insecticide resistance conferring allele kdr. Groups

of female mosquitoes were released in a dual-choice olfactometer and their movements

towards an attractive odor source (a rabbit) protected by insecticide-treated (ITN) or

untreated nets (UTN) were monitored. Kdr homozygous mosquitoes, resistant to insecti-

cides, were more attracted by a host behind an ITN than an UTN, while the presence of

insecticide on the net did not affect the choice of susceptible mosquitoes. These results sug-

gest that permethrin-impregnated net is detectable by malaria vectors and that the kdr muta-

tion impacts their response to a LLIN protected host. We discuss the implication of these

results for malaria vector control.

Introduction

Anopheles gambiae is one of the major mosquito vectors of human malaria parasites in sub-

Saharan Africa. Its remarkable vectorial capacity [1] mainly relies on its high degree of anthro-

pophily. Moreover, An. gambiae prefers to bite humans indoors and often rests inside houses

after blood feeding [2–4]. These behavioral preferences led to the development of insecticide-
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based indoor vector control measures, such as insecticide-treated bed nets (ITNs) and indoor

residual spraying (IRS), to limit the human-vector contacts and reduce mosquito survival. To

date, four insecticide families are available for IRS (organochlorides, organophosphates, carba-

mates and pyrethroïds), whereas only pyrethroïds are recommended for mosquito nets

because of their low mammalian toxicity and high insecticidal potency [5].

To kill, insecticide molecules must contact and penetrate through the mosquito cuticle/gut

to then reach and interact with their target before being degraded. Any physiological or behav-

ioral mechanism that may interfere with one of these steps can lead to insecticide resistance.

The widespread use of pyrethroïd (PYR) insecticides in malaria vector control and agriculture

has favored the development of resistance in malaria vector species [6]. One of the most stud-

ied physiological mechanisms involved in PYR resistance is the reduced sensitivity of the

voltage-gated sodium channels to PYR binding caused by non-silent mutations, known as

knockdown resistance (kdr) mutations [7]. Behavioral resistance is another mechanism

involved in PYR resistance. This can be defined as a modification of the mosquito behavior to

avoid contact with a lethal dose of insecticide [8]. To date, behavioral resistance to insecticides

remains poorly documented, despite of its huge potential impact on malaria transmission.

Behavioral adaptations to pesticides can be classified as stimulus-dependent or -indepen-

dent [9]. Stimulus-independent adaptations are not associated with the perception of chemi-

cals, but more probably with modifications of the vector intrinsic behavior, such as changes in

host-seeking behavior preferences (level of anthropophily, endophagy, endophily or hourly

biting activities). Such behavioral modifications have recently been observed in the context of

ITN widespread use: mosquito vectors may postpone their bloodfeeding until the morning,

when human hosts are protected by ITNs anymore [10–12]. These changes may limit the con-

tact between aggressive malaria vectors and treated surfaces, thus threatening the efficiency of

indoor vector control tools. Conversely, stimulus-dependent behavioral adaptations are specif-

ically linked to the detection of chemicals. Stimulus-dependent insecticide avoidance can be

defined as a “fly away” behavior to leave the immediate toxic environment after contact (irri-

tancy) or not (repellence) with the treated surface [13–15]. Avoidance behavior following

contact with PYR has been reported in some cases [16–20], but similar behavior in the absence

of direct contact with the insecticide has been poorly documented. Only indirect observations

suggest a detection and avoidance of ITNs by malaria vectors: mosquito entry rates were

found reduced in experimental huts containing insecticide-treated nets compared to entry

rates in control huts, moreover the observed rates were dependent on the kdr allele presence in

the mosquitoes [21–23]. Although the effects of pyrethroïds on different part of host seeking

behavior has been already studied [20,24–26], their influence on the relative host attractiveness

has been neglected despite its importance in host choice and on malaria transmission. There-

fore, in order to adequately evaluate and use ITNs, it has become urgent to investigate the pos-

sible modulation of the host-seeking behavior in presence of indoor vector control tools in

regards to other insecticide resistance mechanisms.

In this study, we examined the long-range host-seeking behavior of An. gambiae mosqui-

toes to determine whether the attractiveness of a vertebrate host (a rabbit) in a dual-choice

olfactometer was influenced by physical and/or chemical barriers (insecticide-treated and

untreated nets) and by the mosquito kdr (L1014F) genotype.

Methods

Ethics statement

Rabbits were handled and blood drawn in accordance to the protocol approved by National

Comity for Ethic and Research (CNERS) and Health ministry of Benin (N˚023). This study was

Anopheles gambiae behavior
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carried out in strict accordance with the recommendations of Animal Care and Use Committee

named “Comité d’éthique pour l’expérimentation animale; Languedoc Roussillon” and the pro-

tocol was approved by the Committee on the Ethics of Animal Experiments (CEEA-LR-13002

for the rabbits). Rabbits were not subjected to anesthesia, analgesia or sacrifice.

Mosquitoes

Two laboratory reference strains of Anopheles gambiae sensu stricto (formerly called S molecu-

lar form) (20) were used in this study. The Kisumu reference strain, isolated in Kenya in 1975

(VectorBase, http://www.vectorbase.org, KISUMU1), is free of any detectable insecticide resis-

tance mechanism. The kdr-kis strain was obtained by introgression into the Kisumu genome

of the kdr-west allele (L1014F) [27] that originated from a PYR-resistant population collected

in Kou Valley, Burkina Faso, which was used to establish a strain named VKPer. Introgression

was obtained through 19 successive back-crosses between Kisumu and VKPer [28]. VKPer

strain displayed the same expression level of metabolic resistance enzyme as Kisumu [29].

Kisumu and kdr-kis mosquitoes are therefore homozygous susceptible (SS) and homozygous

resistant (RR) at the kdr locus, respectively. The heterozygous genotype RS was obtained by

crossing Kisumu SS females with kdr-kis RR males.

Mosquitoes were reared in insectary conditions (27±3˚C, 60–80% relative humidity and a

12:12 light and dark cycle). Ground cat food was used to feed larvae and 10% sucrose solution

(with rabbit blood twice per week) to feed adult females. For behavioral experiments, 5–12 day

old females, without prior access to a blood meal, were starved for 4h before the assay.

Experimental set-up

The dual-choice olfactometer was adapted from Geier and Boeckh (1999) [30]. It was made of

Plexiglas and was divided in four parts: release zone (RZ), flight chamber (FC) and one collect-

ing zone in each of the two arms (A1 or A2) (Fig 1). Rotating doors made from mesh gauze in

the RZ and in both arms allowed mosquito release or capture. The upwind part of the experi-

mental set-up was composed of a wide chamber where an attractive host (a rabbit) can be

placed, and that was connected to two treatment boxes that contained or not the nets. Each

treatment box was connected to one arm of the olfactometer. In order to avoid any perturba-

tion on the airflow by the treatment, fans were placed on the downwind faces of the experi-

ment boxes and extracted the air from the treatment boxes to the olfactometer, providing the

odor-laden air current. At the beginning of each experiment, the airflow was measured in arm

1 and 2 and in the release zone using a Testo 435–1 multifunctional meter (Testo, Forbach,

France) and thermo-anemometric probe (m.s-1) and adjusted at 0.20 ± 0.03 m.s-1. During the

experiment, a thick black tarpaulin covered the olfactometer to keep all the system in darkness

and avoid visual disturbance.

Fig 1. Experimental set-up. Dual-choice olfactometer (right side) connected to the treatment boxes (middle)

and the wide chamber (left side).

https://doi.org/10.1371/journal.pone.0164518.g001
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Experimental design

Four experiments, summarized in Table 1, were performed using SS, RR and RS mosquitoes.

The treatment boxes and the wide chamber were empty during the first experiment. For the

other experiments, the wide chamber contained a rabbit as odor source. The treatment boxes

contained, depending on the experiment, nothing or 2m2 of untreated (UTN) or insecticide-

treated net (ITN, Olyset1 Net impregnated with 1000mg/m2 of permethrin). Nets were

divided in 50 pieces of 20x20cm and hung on a metallic structure perpendicularly to the air

flow. The same nets were used during all experiment, the Olyset1 was conserved at 4˚C

between each day of experiment. The nets were placed in boxes that could not be visible for

mosquitoes, so that no visual clues were available to mosquitoes during the experiments.

Assays for the four experiments were performed every day for 20 days between 10:00am

and 14:00pm (corresponding to mosquito strain feeding time in laboratory). We always started

with assays of experiment 1, to check possible odor or insecticide contaminations. When possi-

ble (i.e., when the insectary production was sufficient), females of the three genotypes were

tested the same day for the four experiments, otherwise at least two genotypes were tested the

same day (a summary of the assays is presented in supplementary data). Each day, in assays for

experiments 3 and 4, treatments were rotated one time between boxes to prevent any arm

effect. Between rotations, the boxes were carefully cleaned with ethanol to avoid any residual

insecticide effect. Moreover, the olfactometer was cleaned with ethanol every day. The experi-

menter wore latex gloves to avoid contamination. The same rabbit was used as odor source

during all the study. It was a 1-year old female reared in the same conditions as those used in

insectaries to feed mosquitoes. CO2 concentration and relative humidity (RH) were monitored

in each arms with a Testo 435–1 multifunctional meter (Testo, Forbach, France) equipped

with an Indoor Air Quality (IAQ) probe [%RH; range: 0 to +100%RH; accuracy: ±2%RH (+2

to +98%RH)], [CO2; range: 0 to +10000 ppm; accuracy: (±75 ppm CO2 ±3% of mv) (0 to +-

5000 ppm CO2)]. The room was kept at a constant temperature of 25˚C during the study.

For each assay, a batch of 20–23 females was released in the RZ for 5 min for acclimation.

The rotating doors were then opened and females were free to fly in the olfactometer. After 5

minutes, the rotating doors were closed and the numbers of mosquitoes in RZ (NRZ), FC

(NFC), A1 and A2 (NA1 and NA2) were recorded (Fig 1).

Behavioral indicators

The indicators used in this study describe the mosquito progress inside the olfactometer and

the relative attractiveness (RA) of treatments or arms.

Two indicators of the progression inside the olfactometer were calculated. First, upwind

flight (UF) that is the proportion of female that left the release zone (i.e. collected in FC, A1

Table 1. Description of the experimental design.

Experiment no. Experiment name Odor source Treatment box 1 Treatment box 2

1 Empty None Empty Empty

2 Rabbit alone Rabbit Empty Empty

3 Rabbit + UTN Rabbit Empty UTN

UTN Empty

4 Rabbit + ITN Rabbit ITN UTN

UTN ITN

(UTN: untreated net, ITN: insecticide-treated net)

https://doi.org/10.1371/journal.pone.0164518.t001

Anopheles gambiae behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0164518 July 31, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0164518.t001
https://doi.org/10.1371/journal.pone.0164518


and A2) relative to the total number of released mosquitoes (N). Second is the localization (L)

of odor source that is the proportion of female that reached A1 and A2 (NA1 and NA2), relative

to the number of mosquitoes that left the RZ (N—NRZ). These indicators were calculated for

each release and for each odor source (none, rabbit without ITN and rabbit with ITN).

The upwind flight and localization values measured in experiment 1 (empty set-up, clean

air) are baseline indicators of the anemotactic response of the three mosquito genotypes to air

flow. The influence of rabbit odor on mosquito’s progression was determined by comparing

the values of upwind flight and localization recorded in the empty system (experiment 1) with

those recorded in the system without ITN (merged UF and L values of experiments 2 and 3).

The merged upwind flight and localization values recorded in experiments 2 and 3 (rabbit

odor, no ITN) were compared to those recorded in experiment 4 (rabbit odor and ITN) to

determine ITN odor influence on mosquito behavior.

The relative attractiveness (RA) of one arm versus the other was calculated as the propor-

tion of mosquitoes in A1 or A2 (NA1 or NA2) relative to the sum of the mosquitoes collected in

both arms. In order to verify the symmetry of the experimental set-up, we measured RAexp2 in

experiment 2 (rabbit as an odor source, empty boxes) as follow and expected it to not be differ-

ent than 0.5:

RAexp2 ¼
NA1=ðNA1

þNA2
Þ

Relative attractiveness of UTN versus empty box (RA exp3) and ITN versus UTN (RA exp4)

were also calculated from experiments 3 and 4, respectively, using the following equations:

RAexp3 ¼
NUTN=ðNEmptyþNUTNÞ

RAexp4 ¼
NITN=ðNUTNþNITNÞ

where NUTN is the number of mosquitoes collected in the arm with the box containing the

UTN (experiment 3 or 4), NEmpty is the number of mosquitoes in the arm with the empty

box (experiment 3) and NITN is the number of mosquitoes collected in the arm with the

box containing the ITN (experiment 4). The measure of RA exp3 allowed us to assess the possi-

ble effect of the UTN as a physical barrier for the diffusion of odor coming from the rabbit to

the olfactometer.

Statistical analysis

All analyses were performed using the R software, version 3.0.2 [31], with the lme4 package

[32]. We analyzed upwind flight and localization using binomial logistic mixed-effect models.

The day of release was set as random intercept because releases performed on a same day

might not be independent and because all three genotypes have not been tested each day. The

kdr genotypes (SS, RS or RR), the different odor sources (none, Rabbit without ITN, and Rab-

bit+ITN) and interactions between them were included in the models as explanatory variables.

Upwind flight (UF) and localization (L) models were written as follow:

logitðUF or LijkÞ ¼ b0 þ b
Genotype
i þ b

Odor
j þ b

Genotype
i � b

Odour
j þ dk

, where UF or Lijk is the proportion UF or L recorded for genotype i with odor source j on day

k, b
Genotype
i denotes the effect on the logit of the classification in category i (SS, RS or RR) of

Genotype; b
Odor
j denotes the effect of the classification in category j of Odor source: Empty

(experiment 1), Rabbit without ITN (experiment 2 and 3), or Rabbit+ITN (experiment 4); and

dk represents the random intercept for day k. Each combination of categories i and j of the

Anopheles gambiae behavior
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explanatory variables was successively used as reference class for multiple comparisons among

genotypes and odor sources. Odds ratios and their 95% confidence intervals (CI) were

computed.

We verified the symmetry of the experimental set-up by modelling the relative attractive-

ness measured in experiment 2 (RAexp2) using a binomial mixed-effect model with the release

day as random effect:

logitðRAexp2;ikÞ ¼ b0 þ b
Genotype
i þ dk

, where RAexp2,ik is the proportion RA in A1 for genotype i in experiment 2 on day k, b
Genotype
i is

the effect on the logit of the classification in category i (SS, RS or RR) of Genotype; and dk, the

random intercept for day k.

Relative attractiveness of UTN vs. empty box and ITN vs. UTN were analyzed using a simi-

lar model that, in addition, allowed for random effects of the box that received the treatment:

logitðRAiklÞ ¼ b0 þ b
Genotype
i þ bl þ dk

, where RAikl is the proportion RAexp3 or RAexp4 for genotype i on day k with the treatment

placed in box l, b
Genotype
i indicates the effect on the logit of the classification in category i (SS, RS

or RR) of Genotype; bl, the effect on the logit of the the box l that received the treatment (UTN

or ITN for RAexp3 and RAexp4, respectively) and dk, the random intercept for day k. Each geno-

type was successively used as reference class for multiple comparisons. Odds ratios and their

95% CI were computed.

CO2 concentrations were compared between arms using the Wilcoxon signed-rank test for

paired data. RH values were compared between arms using the paired T test.

Results

Overall, 6286 mosquitoes were included in the assays (2621 SS, 1268 RS and 2397 RR) during

47, 49, 84 and 98 releases for experiments 1 to 4 respectively (Table 2).

Do An. gambiae females respond to the air flow?

We first investigated the response to the airflow (anemotactic response) by calculating the pro-

portion of upwind flight (UF) females and those located (L) in arms in the empty set-up

(Experiment 1). Overall, the probability to leave RZ (UF) was 0.43 (95%CI [0.38–0.48]; Fig

2A). Among the activated mosquitoes, 10% (95%CI [6–17]) reached A1 or A2 (Fig 2B). In

spite of similar upwind flight proportion among genotypes, the probability of localization (L)

for RS anopheles was higher than those of RR mosquitoes (Fig 2B; ORL = 2.15, 95%CI [1.04,

4.41]).

Table 2. Number of releases performed per genotype and experiment.

Experiment Genotypes

SS RS RR Total

1—Empty 19 9 19 47

2—Rabbit alone 20 10 19 49

3—Rabbit + UTN 34 18 32 84

4—Rabbit + ITN 40 20 38 98

Total 113 57 108 278

(UTN: Untreated net, ITN: Insecticide-treated net)

https://doi.org/10.1371/journal.pone.0164518.t002

Anopheles gambiae behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0164518 July 31, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0164518.t002
https://doi.org/10.1371/journal.pone.0164518


Fig 2. Upwind flight and localization indicators for the three genotypes in relation to treatment (Mean

±95% Confidence Interval). ***p<0.001, **p�0.01, *p�0.05, ns = not significant.

https://doi.org/10.1371/journal.pone.0164518.g002
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Do An. gambiae females respond to an attractive odor source?

The presence of a rabbit as an attractive odor source (experiments 2 and 3) did not change the

proportion of upwind flight mosquitoes compared to the experiments without attractant odor

(experiment 1), independently of their genotype (Table 3). However, the comparison of the

upwind flight probability between genotypes show that for RS mosquitoes, UF probabilities

became significantly higher than for SS and RR individuals (Fig 2A; ORRSvsSS = 1.24 95%CI

[1.01, 1.54]; ORRSvsRR = 1.29 95%CI[1.04, 1.59]). Moreover, the localization probability signifi-

cantly increased for all genotypes in the presence of an odor stimulus compared to no odor

(Table 3), independently of genotypes (Fig 2B). The rabbit odor had an effect on mosquito

behavior only when they were close to arms likely because of the odor concentration that was

more important in arms than in the release zone.

Is mosquito response influenced by insecticide-treated nets?

To test whether the insecticide on net fibers affected mosquito progression, we compared

upwind flight and localization probabilities in the presence (experiment 4) or absence (experi-

ments 2 and 3) of the ITN. The probabilities were similar in presence or absence of the ITN,

regardless of the genotype (Table 3; Fig 2A and 2B). Nevertheless, the comparison between

genotypes showed that upwind flight probabilities for heterozygous RS mosquitoes remained

higher than those of the two other genotypes, both in the presence or absence of insecticide

(Fig 2A; ORRSvsSS = 1.28 95%CI [1.01, 1.62], ORRSvsRR = 1.20 95%CI [0.94, 1.53]).

Is the experimental set up symmetric?

Analysis of the arms’ relative attractiveness data from experiment 2 (Rabbit odor; two empty

boxes) showed no significant differences between the number of mosquitoes collected in A1 vs.

Table 3. Results of the upwind flight (UF) and localization (L) generalized linear models.

Behavioral indicator Odor sources comparisons Genotype for the kdr mutation Odds Ratios [95% Confidence Interval] p-value

Upwind flight (UF) Rabbita vsno odorb SS 1.09 [0.87, 1.37] ns

RS 1.27 [0.91, 1.77] ns

RR 1.08 [0.85, 1.37] ns

Rabbit + ITNc vsRabbita SS 1.02 [0.85, 1.21] ns

RS 1.05 [0.82, 1.34] ns

RR 1.12 [0.94, 1.35] ns

Localization (L) Rabbit vs

no odorb
SS 2.63 [1.67, 4.15] ***

RS 1.96 [1.14, 3.36] *

RR 4.63 [2.67, 8.02] ***

Rabbit + ITNc vs

Rabbita
SS 1.3 [0.99, 1.69] ns

RS 1.01 [0.72, 1.42] ns

RR 1.01 [0.76, 1.33] ns

Comparison of mosquitoes’ progress first when the rabbit was added as an odor source (vs. no odor) and then when ITN was present (vs. rabbit alone).
a experiments 2 and 3
b experiment 1
c experiment 4 (see Table 1)

***p <0.001

**p� 0.01

*p�0.05, ns: not significant. ITN: insecticide-treated net. SS: homozygous for the susceptible allele, RS: heterozygous, RR: homozygous for the resistant

allele.

https://doi.org/10.1371/journal.pone.0164518.t003
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A2, regardless of the genotypes (Fig 3A; RAexp2,SS = 0.58, 95%CI [0.34, 0.79]; RAexp2,RS = 0.62,

95%CI [0.34, 0.83]; RAexp2,RR = 0.54, 95%CI [0.30, 0.76]). No difference in RAexp2 was observed

among genotypes (ORSSvsRS = 1.16 95%CI [0.46, 2.94]; ORSSvsRR = 0.85 95%CI [0.38, 1.94],

ORRSvsRR = 0.73 95%CI [0.28, 1.90]). Moreover, CO2 concentration and RH were not different

between arms (p>0.05; S1 Table). These results demonstrated that the olfactometer was sym-

metrical. Moreover, analyses of RAexp3 and RAexp4, (results described below), showed no effect

relative to the box receiving the treatment (i.e. variable no significant in the model), indicating

that symmetry was maintained during experiments 3 and 4.

Is the attractiveness of the odor source influenced by the UTN?

In experiment 3 (one empty box and one box with 2 m2 of UTN, both in presence of rabbit odor),

the empty box was more attractive for SS and RR mosquitoes but not for RS (RAexp3,SS = 0,31 95%

Fig 3. Relative attractiveness rates. RA: number of mosquitoes found in one arm relative to the total number of mosquitoes found in both arms. (A)

Experiment 2 (rabbit only). (B) Experiment 3 (rabbit + UTN or empty box). (C) Experiment 4 (Rabbit+ UTN or ITN). Asterisks show difference to 0.5, traducing

a choice for one treatment rather than the other. Error bars show the 95% CI; **p�0.01, *p�0.05. UTN: Untreated net, ITN: Insecticide-treated net. SS:

homozygote for the L1014S allele (insecticide-susceptible), RS: heterozygous for the L1014F allele, RR: homozygous for L1014F allele (insecticide-

resistant).

https://doi.org/10.1371/journal.pone.0164518.g003

Anopheles gambiae behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0164518 July 31, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0164518.g003
https://doi.org/10.1371/journal.pone.0164518


CI [0.20,0.46], p-value = 0.013; RAexp3,RR = 0.27, 95%CI [0.17,0.42], p-value = 0.002)(Fig 3B).

No significant difference of mosquito’s proportion in arms was evidenced between genotypes

(ORSSvsRS = 1.24, 95%CI [0.61, 2.50]; ORSSvsRR = 0.83, 95%CI [0.41, 1.66], ORRSvsRR = 0.67, 95%

CI [0.31, 1.47]). CO2 concentration was not different between arms, while a significant 1% differ-

ence in RH was observed (63.9% in the UTN arm and 64.9% in the empty arm, paired T test p-

value = 0.007).

Is the attractiveness of the odor source influenced by the ITN?

Analysis of RAexp4 from experiment 4 (Rabbit odor; one box with 2 m2 of UTN and one with

2 m2 of ITN) showed that RR mosquitoes preferably chose the ITN arm with probability 0.63

(95%CI [0.53–0.73], p-value = 0.01; Fig 3C). This probability was significantly higher than

those observed both for RS (RAexp4,RS = 0.47 95%CI [0.34–0.60]; ORRRvsRS = 1.95, 95%CI

[1.06, 3.57], p-value = 0.03) and SS genotypes (RAexp4,SS = 0.5 95%CI [0.40–0.61]; ORRRvsSS =

1.71, 95%CI [1.03, 2.83], p-value = 0.04). CO2 concentration and RH were not different

between arms.

Discussion

The host-seeking behavior of mosquitoes towards humans sleeping under a bed net is poorly

understood. Particularly, it is not known whether specific volatile chemicals emanating from

treated nets might modulate this behavior. Here, we used a dual-choice olfactometer to assess

whether the presence of permethrin-treated nets may influence the host attractiveness for mos-

quitoes of different kdr genotypes. We found that nets represent both a physical and a chemical

signal that modulate mosquito activation and/or choice. Moreover, the three kdr genotypes

behaved differently in response to host odors in the presence of ITNs or UTNs.

Physical barrier & environmental cues

In experiment 3, mosquitoes preferably chose the arm connected to the empty box rather than

the box with UTNs. No difference in CO2 quantity was noted between arms. However, the

humidity level was slightly higher in the arm connected with the empty box. As humidity is

known to attract mosquitoes [33], the observed preference for the empty box (higher humid-

ity) was not surprising. This difference could have been caused by the physical barrier formed

by UTNs that may absorb humidity coming from the rabbit box. In addition, the net structure

could also have retained volatile chemicals emanating from rabbit which are important in

mosquito orientation and choice [34,35].

Chemical ecology & ITNs

Our results raised the question of the volatile chemicals emanating from nets that may drive a

specific behavior in resistant mosquitoes. Permethrin is not known as a classical volatile com-

pound because of its low vapor pressure (5.18x10-8mm Hg at 25˚c). Nevertheless, Bouvier

et al. [36] recently detected permethrin in indoor air samples (11 and 18.8 ng/m3 for trans-per-

methrin and cis-permethrin respectively) indicated that such pyrethroid might be present in

the air even they are semi-volatile organic compounds. More accurately, a study by Bomann

et al. [37] from the Bayer company measured a mean concentration of cyfluthrin (a pyrethroid

with a molecular structure close to the permethrin) of 0.000021 mg/m3 at 1m away from a

treated net. Such concentration corresponds to 3.46x109 molecules/cm3. Angioy et al. [38]

found that only 6 molecules of a pheromone entered in contact with the olfactory sensillum of
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moth species may induce a physiological response. We therefore hypothesize that mosquito

may detect very low concentration of pyrethroid in the air.

Moreover, some nasal trouble (i.e runny nose) have been recorded when LNs were used for

the first time [39]. Such observations reinforce the hypothesis that LNs emit chemicals in the

air. Regardless these chemicals are insecticide itself, additive chemicals (i.e. fragrances), degra-

dation products, that composed the net, they may be detected by mosquitoes and elicit behav-

ioral modulation.

The behavior of insects, such as mosquitoes, is driven by the perception and integration of

odorant signals in antennae and higher brain center. In our study, we observed that kdr resis-

tant mosquitoes were more attracted by host odors emanating behind a permethrin-treated

net than host odors behind an untreated net (Fig 3C), it indicates that they perceived at dis-

tance a difference between ITN and UTN and behaved differently in response. We then

hypothesize that mosquitoes are able to detect chemicals released by net with olfactory recep-

tors (Ors) tuned to respond to these chemicals. As an example, authors recently identified one

olfactory receptor activated and another inhibited by synthetic pyrethroïd in Aedes aegypti
[40], suggesting that such OR may also exist in Anopheles mosquitoes. The major research per-

spective raised by our results is therefore to study the chemical and behavioral ecology relative

to vector control tools already widespread in endemic country.

Insecticide resistance & host seeking behavior

Our results also indicated that the kdr mutation, or closely linked polymorphisms [41], modu-

lated the host choice of An. gambiae mosquitoes in the presence of a ITN. The strains used in

our study share almost the same genetic background. Except if genes coding for ORs sensitive to

LN-related odorants are located in flanking region of Kdr mutation, only a pleiotropic effect of

the kdr mutation affecting the transmission or integration of the neuronal signal in homozygous

mosquitoes could explain the different behaviors between genotypes. The kdr mutation may

influence the transmission of an odorant signal towards higher brain regions by enhancing the

closed-state inactivation of the voltage-gated sodium channel, which plays a central role in mes-

sage propagation in the nervous system. As a consequence, a reduction of neuronal excitability

could be observed in kdr mutants in comparison to susceptible individuals [42]. All chemical sig-

nals are transduced by spike frequencies in the olfactory sensory neurons [43] and the informa-

tion sent by stimulated or inhibited neurons is treated in the antennal lobe [44]. Therefore, if the

neuronal excitability differs in homozygous kdr genotypes, the response pattern of the olfactory

neurons and subsequently the signal integration and processing in the central nervous system

could be altered, leading to a modified motor response, in this case, a difference in host choice.

The present study suggests the existence of interactions between the physiological mecha-

nisms that allow mosquitoes to survive a contact with insecticide and the behavioral response

to olfactory cues. These interactions may have major implications in malaria control. As an

example, chemicals emanating from the ITNs are strongly related to the presence of human

beings. Should it be integrated as an attractive cue for resistant mosquitoes? This may dramati-

cally affects the personal and community protection given by the massive use of ITNs. Our

study only focused on the Kdr mutation, but the resistance pattern in wild Anopheles popula-

tions is far more complex [45]. It would be interesting to investigate the interaction between

each resistance mechanisms isolated in specific strains before going to study this interaction

between resistance, behavior and ITNs in semi-field and natural conditions. Recent papers

were modeling and questioning the risk conferred by resistance, based on survival to insecti-

cide exposure [46], but the impact of such resistance on behavior is also to be investigated

urgently [47].
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We used rabbit as an odor source because mosquitoes were fed on rabbits at the laboratory,

and were likely “selected” to respond to rabbit’s odor. But in the field, Anopheles gambiae prefers

to bite human when available [48]. Whether the same experiment conducted with humans as

an odor source will provide similar results remain to be experimentally evaluated. If we used a

human instead of the rabbit we change the composition of odor plume (quantity and quality of

semiochemicals). Therefore the interaction between chemicals released by LLIN and human

odor should induce a different behavior. Nevertheless, our experiment highlighted the involve-

ment of LLIN in host seeking behavior and emphasized the need to studying the relation bet-

ween LLIN, host odors and mosquito host seeking behavior.

Kdr genotypes & behavior

Heterozygous RS mosquitoes were more active than SS and RR mosquitoes. The addition of

an attractant did not change the proportion of RS leaving the RZ, suggesting that this behavior

might be related to a better anemotactic response (i.e response to air flow) or spontaneous

flight activity than a better perception of odorants in RS mosquitoes. This hypothesis is stren-

gthened by the absence of difference in the progression towards the olfactometer arms among

genotypes. In other words, heterozygous mosquitoes fly more, but might not smell better. On

the one hand, by flying more they might increase the probability of encountering a host odor-

ant plume which might be advantageous. Such heterozygous advantage for the kdr locus in An.

gambiae s.s. has been recently documented also for another behavioral trait: the ability to find

a hole in a piece of bed net [24] and for male mating [49]. In other hand, it could represent a

cost for mosquitoes if energy spent during flight is no more available for other traits closely

related to fitness as fertility, fecundity and longevity. This trade off must be deeply investigated

as this might have great influence on Plasmodium transmission.

The behavior of kdr heterozygous and homozygous individuals in our study must be inter-

preted with caution because other loci, distinct from the kdr locus, could also influence this

behavioral trait. Introgression and selection the kdr allele to produce the homozygous resistant

strain was indeed likely to also have selected linked polymorphisms [45]. Nevertheless, the var-

iability by backcrosses could be estimated by a formula cited by Berticat et al.,[50]: “If r is the

recombination rate between both genes, then P (1-r)i. This allows the computation of the

genetic distance around the selected gene, which has not been replaced by the Kisumu’s

genome, e.g., around 1 (e(ln(α)/i)), with α being the risk level. This leads to a distance of 15 cM

for 19 backcrossing generations at the 0.05 risk level”. The polymorphisms between the colo-

nies are therefore expected to be restricted in the flanking region of the kdr allele and the

observed phenotypes are therefore expected to be associated to this genetic area.

Conclusion

In conclusion, our study showed that the Anopheles mosquitoes detected the presence of both

physical and chemical barriers of ITNS. Face to this results, it urges to decipher with the inter-

action between host-seeking behavior, insecticide resistance and vector control tools. The

most overlooked part of the puzzle is the chemical ecology in a context of large vector control

measure deployment. This research avenue will be challenging for the vector control commu-

nity but is crucial not to waste forces in wrong directions.

Supporting information

S1 Table. Effect of treatment on environment variables.

(PDF)

Anopheles gambiae behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0164518 July 31, 2017 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164518.s001
https://doi.org/10.1371/journal.pone.0164518


Acknowledgments

We thank Teun Dekker for helpful discussion. We would like to thank the IEMTV staff in

Abomey Calavi (Benin) for technical assistance.

Author Contributions
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