K. Hirata, O. Komagata, K. Itokawa, A. Yamamoto, and T. Tomita, A single crossingover event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides, PLoS Negl Trop Dis, vol.8, p.3085, 2014.

F. Faucon, I. Dusfour, T. Gaude, V. Navratil, and F. Boyer, Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing, Genome Research, vol.25, pp.1347-1359, 2015.

S. Kasai, O. Komagata, K. Itokawa, T. Shono, and L. C. Ng, Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism, PLoS Negl Trop Dis, vol.8, p.2948, 2014.

, Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study, Collaborators, vol.386, p.26063472, 2013.

M. Naghavi, H. Wang, R. Lozano, A. Davis, X. Liang et al., Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.385, issue.14, p.25530442, 2013.

, Disease and Injury Incidence Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study, Lancet, vol.388, p.27733282, 2015.

C. Yen, T. B. Hyde, A. J. Costa, K. Fernandez, J. S. Tam et al., The development of global vaccine stockpiles, Lancet Infectious Diseases, vol.15, p.25661473, 2015.

E. Esu, A. Lenhart, L. Smith, and O. Horstick, Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review, Tropical Medicine & International Health, vol.15, pp.619-650, 2010.

L. George, A. Lenhart, J. Toledo, L. A. Han, W. W. Velayudhan et al., Community-effectiveness of temephos for dengue vector control: a systematic literature review, PLoS Negl Trop Dis, vol.9, p.26371470, 2015.

O. Horstick, S. Runge-ranzinger, M. B. Nathan, and A. Kroeger, Dengue vector-control services: how do they work? A systematic literature review and country case studies, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol.104, p.20400169, 2010.

H. Ranson, J. Burhani, N. Lumjuan, W. C. Black, and . Iv, Insecticide resistance in dengue vectors, TropIKAnet, vol.1, p.1, 2010.

V. Corbel, N. L. Achee, F. Chandre, M. B. Coulibaly, I. Dusfour et al., Tracking insecticide resistance in mosquito vectors of arboviruses: the Worldwide Insecticide resistance Network (WIN), PLoS Negl Trop Dis, vol.10, p.27906961, 2016.

M. Coleman, J. Hemingway, K. Gleave, A. Wiebe, P. W. Gething et al., Developing global maps of insecticide resistance risk to improve vector control, Malaria Journal, vol.16, p.28222727, 2017.

A. Wiebe, J. Longbottom, K. Gleave, F. M. Shearer, M. E. Sinka et al., Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance, Malaria Journal, vol.16, p.28219387, 2017.

J. David, H. M. Ismail, A. Chandor-proust, and M. Paine, Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth, Philosophical Transactions of the Royal Society B-Biological Sciences, vol.368, 2013.

J. Hemingway, N. J. Hawkes, L. Mccarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes, Insect Biochemistry and Molecular Biology, vol.34, p.15242706, 2004.

V. Balabanidou, A. Kampouraki, M. Maclean, G. J. Blomquist, C. Tittiger et al., Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles

P. Garcia, G. Flores, A. E. Fernandez-salas, I. Saavedra-rodriguez, K. Reyes-solis et al., Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in Mexico, PLoS Negl Trop Dis, vol.3, 2009.

I. Dusfour, P. Zorrilla, A. Guidez, J. Issaly, R. Girod et al., Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide, PLoS Negl Trop Dis, vol.9, p.26588076, 2015.

J. Linss, L. P. Brito, G. A. Garcia, A. S. Araki, R. V. Bruno et al., Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasites & Vectors, vol.7, p.25, 2014.

F. Z. Vera-maloof, K. Saavedra-rodriguez, A. E. Elizondo-quiroga, S. Lozano-fuentes, and W. C. Black, Coevolution of the Ile1,016 and Cys1,534 mutations in the voltage gated sodium channel gene of Aedes aegypti in Mexico, PLoS Negl Trop Dis, vol.9, p.26658798, 2015.

Y. Du, Y. Nomura, G. Satar, Z. Hu, R. Nauen et al., Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel, Proceedings of the National Academy of Sciences of the United States of America, vol.110, p.23821746, 2013.

K. Hirata, O. Komagata, K. Itokawa, A. Yamamoto, T. Tomita et al., A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides, PLoS Negl Trop Dis, vol.8, p.25166902, 2014.

S. Plernsub, J. Saingamsook, J. Yanola, N. Lumjuan, P. Tippawangkosol et al., Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids, Acta Tropica, vol.162, p.27325294, 2016.

K. Saavedra-rodriguez, L. Urdaneta-marquez, S. Rajatileka, M. Moulton, A. E. Flores et al., A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti, Insect Molecular Biology, vol.16, p.18093007, 2007.

J. Yanola, P. Somboon, C. Walton, W. Nachaiwieng, and L. A. Prapanthadara, A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance, Pesticide Biochemistry and Physiology, vol.96, pp.127-158, 2010.

S. Plernsub, J. Saingamsook, J. Yanola, N. Lumjuan, P. Tippawangkosol et al., Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand, Parasites & Vectors, vol.9, 2016.

H. Y. Chen, K. L. Li, X. H. Wang, X. Y. Yang, Y. Lin et al., First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Infectious Diseases of Poverty, vol.5, p.27133234, 2016.

J. B. Xu, M. Bonizzoni, D. B. Zhong, G. F. Zhou, S. W. Cai et al., Multi-country survey revealed prevalent and novel F1534S mutation in voltage-gated sodium channel (VGSC) gene in Aedes albopictus, PLoS Negl Trop Dis, vol.10, p.27144981, 2016.

N. N. Liu, Insecticide resistance in mosquitoes: impact, mechanisms, and research directions, Annual Review of Entomology, vol.60, p.25564745, 2015.

X. C. Li, M. A. Schuler, and M. R. Berenbaum, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics, Annual Review of Entomology, vol.52, p.16925478, 2007.

M. Thompson, F. Shotkoski, and R. Ffrench-constant, Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito Aedes aegypti-Conservation of the gene and resistance associated mutation with Drosophila, Febs Letters, vol.325, p.8391473, 1993.

V. L. Low, W. Y. Vinnie-siow, Y. Lim, T. K. Tan, C. S. Leong et al., First molecular genotyping of A302S mutation in the gamma aminobutyric acid (GABA) receptor in Aedes albopictus from Malaysia, Tropical Biomedicine, vol.32, p.26695218, 2015.

M. L. Tantely, P. Tortosa, H. Alout, C. Berticat, A. Berthomieu et al., Insecticide resistance in Culex pipiens quinquefasciatus and Aedes albopictus mosquitoes from La Reunion Island. Insect Biochemistry and Molecular Biology, vol.40, p.20188834, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01274621

R. H. Constant, N. Anthony, K. Aronstein, T. Rocheleau, and G. Stilwell, Cyclodiene insecticide resistance: from molecular to population genetics, Annual Review of Entomology, vol.45, p.10761585, 2000.

J. Taylor-wells, B. D. Brooke, I. Bermudez, and A. K. Jones, The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor, Journal of Neurochemistry, vol.135, p.26296809, 2015.

R. Feyereisen, C. Insect, and . Genes, Insect Molecular Biology and Biochemistry2012, pp.236-316

S. Kasai, O. Komagata, K. Itokawa, T. Shono, L. C. Ng et al., Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism, PLoS Negl Trop Dis, vol.8, p.24945250, 2014.

B. J. Stevenson, P. Pignatelli, D. Nikou, and M. Paine, Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance, PLoS Negl Trop Dis, vol.6, p.22479665, 2012.

N. Pavlidi, M. Monastirioti, P. Daborn, I. Livadaras, T. Van-leeuwen et al., Transgenic expression of the Aedes aegypti CYP9J28 confers pyrethroid resistance in Drosophila melanogaster, Pesticide Biochemistry and Physiology, vol.104, pp.132-137, 2012.

I. H. Ishak, J. M. Riveron, S. S. Ibrahim, R. Stott, J. Longbottom et al., The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus, Scientific Reports, vol.6, p.27094778, 2016.

F. Faucon, I. Dusfour, T. Gaude, V. Navratil, F. Boyer et al., Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

, Genome Research, vol.25, p.26206155, 2015.

K. Saavedra-rodriguez, C. Strode, A. E. Flores, S. Garcia-luna, G. Reyes-solis et al., Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection, Insect Molecular Biology, vol.23, p.24299217, 2014.

J. Hemingway and H. Ranson, Insecticide resistance in insect vectors of human disease, Annual Review of Entomology, vol.45, p.10761582, 2000.

R. Poupardin, W. Srisukontarat, C. Yunta, and H. Ranson, Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes Aegypti, PLoS Negl Trop Dis, vol.8, p.24651719, 2014.

L. Grigoraki, V. Balabanidou, C. Meristoudis, A. Miridakis, H. Ranson et al., Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. albopictus, Insect Biochemistry and Molecular Biology, vol.74, p.27180726, 2016.

A. Chandor-proust, J. Bibby, M. Regent-kloeckner, J. Roux, E. Guittard-crilat et al., The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling, Biochemical Journal, vol.455, p.23844938, 2013.

N. Lumjuan, S. Rajatileka, D. Changsom, J. Wicheer, P. Leelapat et al., The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides, Insect Biochemistry and Molecular Biology, vol.41, p.21195177, 2011.

H. Ranson and J. Hemingway, Mosquito glutathione transferases, Gluthione Transferases and Gamma-Glutamyl Transpeptidases2005, pp.226-267

D. Noort, A. Van-zuylen, A. Fidder, B. Van-ommen, and A. G. Hulst, Protein adduct formation by glucuronide metabolites of permethrin, Chemical Research in Toxicology, vol.21, p.18549292, 2008.

H. M. Ismail, O. Neill, P. M. Hong, D. W. Finn, R. D. Henderson et al., Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions, Proceedings of the National Academy of Sciences of the United States of America, vol.110, p.24248381, 2013.

M. Paris, G. Tetreau, F. Laurent, M. Lelu, L. Despres et al., Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Management Science, vol.67, p.21162152, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01988231

A. Melo, V. T. Soccol, and C. R. Soccol, Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review, Critical Reviews in Biotechnology, vol.36, p.25264571, 2016.

A. P. Araujo, D. Diniz, E. Helvecio, R. A. De-barros, C. Oliveira et al., The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management, Parasites & Vectors, vol.6, p.297, 2013.

S. Marcombe, F. Darriet, P. Agnew, M. Etienne, M. Tcha et al., Field efficacy of new larvicide products for control of multi-resistant Aedes aegypti populations in Martinique (French West Indies), American Journal of Tropical Medicine and Hygiene, vol.84, p.21212213, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02080531

S. R. Loke, A. Wa, S. Benjamin, H. L. Lee, and M. Sofian-azirun, Susceptibility of field-collected Aedes aegypti (L.) (Diptera: Culicidae) to Bacillus thuringiensis israelensis and temephos, Tropical Biomedicine, vol.27, p.21399591, 2010.

B. Kamgang, S. Marcombe, F. Chandre, E. Nchoutpouen, P. Nwane et al., Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa, Parasites & Vectors, vol.4, p.79, 2011.

D. F. Bellinato, P. F. Viana-medeiros, S. C. Araujo, A. J. Martins, J. Lima et al., Resistance status to the insecticides temephos, deltamethrin, and diflubenzuron in Brazilian Aedes aegypti populations, Biomed Research International, p.27419140, 2016.

N. Pocquet, F. Darriet, B. Zumbo, P. Milesi, J. Thiria et al., Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management, Parasites & Vectors, vol.7, p.299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01938113

S. Marcombe, A. Farajollahi, S. P. Healy, G. G. Clark, and D. M. Fonseca, Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved, PLoS ONE, vol.9, p.25013910, 2014.

K. W. Lau, C. D. Chen, H. L. Lee, Y. Norma-rashid, and M. Sofian-azirun, Evaluation of insect growth regulators against field-collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia, Journal of Medical Entomology, vol.52, pp.199-206, 2015.

G. I. Giraldo-calderon, S. J. Emrich, R. M. Maccallum, G. Maslen, E. Dialynas et al., VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases, Nucleic Acids Research, vol.43, p.25510499, 2015.

C. L. Moyes, W. H. Temperley, A. J. Henry, C. R. Burgert, and S. I. Hay, Providing open access data online to advance malaria research and control, Malaria Journal, vol.12, p.23680401, 2013.

T. B. Knox, E. O. Juma, E. O. Ochomo, H. P. Jamet, L. Ndungo et al., An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region, Parasites & Vectors, vol.7, p.76, 2014.