, WHO. World Malaria Report, 2014.

Q. Chen, M. Schlichtherle, and M. Wahlgren, Molecular aspects of severe malaria, Clin Microbiol Rev, vol.13, pp.439-450, 2000.

A. Scherf, J. J. Lopez-rubio, and L. Riviere, Antigenic variation in Plasmodium falciparum, Annu Rev Microbiol, vol.62, pp.445-470, 2008.

R. Dzikowski and K. W. Deitsch, Genetics of antigenic variation in Plasmodium falciparum, Curr Genet, vol.55, pp.103-110, 2009.

J. A. Chan, F. J. Fowkes, and J. G. Beeson, Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates, Cell Mol Life Sci, vol.71, pp.3633-3657, 2014.

N. Y. Jemmely, M. Niang, and P. R. Preiser, Small variant surface antigens and Plasmodium evasion of immunity, Futur. Microbiol, vol.5, pp.663-682, 2010.

C. Lavazec, S. Sanyal, and T. J. Templeton, Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum, Mol Microbiol, vol.64, pp.1621-1634, 2007.

S. B. Mwakalinga, Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes, Malar J, vol.11, p.429, 2012.

M. Niang, STEVOR is a plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting, Cell Host Microbe, vol.16, pp.81-93, 2014.

M. Petter, Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns, Mol Biochem Parasitol, vol.156, pp.51-61, 2007.

J. Weidner, C. Wang, C. Prescianotto-baschong, A. F. Estrada, and A. Spang, The polysome-associated proteins Scp160 and Bfr1 prevent P body formation under normal growth conditions, J. Cell Sci, vol.127, 1992.

C. W. Wang, Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum, Malar J, vol.9, p.147, 2010.

T. D. Otto, Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts, Nat Commun, vol.5, p.4754, 2014.

V. Singh, P. Gupta, and V. Pande, Revisiting the multigene families: Plasmodium var and vir genes, J Vector Borne Dis, vol.51, pp.75-81, 2014.

K. Witmer, Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling, Mol. Microbiol, vol.84, pp.243-259, 2012.

L. Cui and J. Miao, Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum, Eukaryot Cell, vol.9, pp.1138-1149, 2010.

T. S. Voss, Z. Bozdech, and R. Bartfai, Epigenetic memory takes center stage in the survival strategy of malaria parasites, Curr Opin Microbiol, vol.20, pp.88-95, 2014.

S. Balaji, Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains, Nucleic Acids Res, vol.33, pp.3994-4006, 2005.

T. L. Campbell, Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 family of regulators from the malaria parasite, PLoS Pathog, vol.6, p.1001165, 2010.

M. Seki, A. Kamei, K. Yamaguchi-shinozaki, and K. Shinozaki, Molecular responses to drought, salinity and frost: Common and different paths for plant protection, Curr. Opin. Biotechnol, vol.14, pp.194-199, 2003.

N. Gutterson and T. L. Reuber, Regulation of disease resistance pathways by AP2/ERF transcription factors, Curr. Opin. Plant Biol, vol.7, pp.465-471, 2004.

K. J. Dietz, M. O. Vogel, and A. Viehhauser, AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling, Protoplasma, vol.245, pp.3-14, 2010.

T. T. Dinh, The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element, Development, vol.139, pp.1978-1986, 2012.

M. Yuda, S. Iwanaga, S. Shigenobu, T. Kato, and I. Kaneko, Transcription factor AP2-Sp and its target genes in malarial sporozoites, Mol. Microbiol, vol.75, pp.854-863, 2010.

M. Yuda, Identification of a transcription factor in the mosquito-invasive stage of malaria parasites, Mol. Microbiol, vol.71, pp.1402-1414, 2009.

S. Iwanaga, I. Kaneko, T. Kato, and M. Yuda, Identification of an AP2-family Protein That Is Critical for Malaria Liver Stage Development, PLoS One, vol.7, p.47557, 2012.

A. Sinha, A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium, Nature, vol.507, pp.253-257, 2014.

I. Kaneko, S. Iwanaga, T. Kato, I. Kobayashi, and M. Yuda, Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor, PLoS Pathog, vol.11, p.1004905, 2015.

M. Yuda, S. Iwanaga, I. Kaneko, and T. Kato, Global transcriptional repression: An initial and essential step for Plasmodiumsexual development, Proc. Natl. Acad. Sci, p.201504389, 2015.

K. Modrzynska, A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle, Cell Host Microbe, vol.21, pp.11-22, 2017.

C. Flueck, A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology, PLoS Pathog, vol.6, p.1000784, 2010.

Q. Zhang, A Critical role of perinuclear filamentous Actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites, Cell Host Microbe, vol.10, pp.451-463, 2011.

S. T. Han, Q. F. Zhang, and W. Q. Pan, In vivo identification of the interaction between var intron and an ApiAP2 transcription factor in Plasmodium falciparum, Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, vol.32, pp.1-5, 2014.

B. F. Kafsack, A transcriptional switch underlies commitment to sexual development in malaria parasites, Nature, vol.507, pp.248-252, 2014.

D. J. Roberts, Rapid switching to multiple antigenic and adhesive phenotypes in malaria, Nature, vol.357, pp.689-692, 1992.

A. Scherf, Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum, EMBO J, vol.17, pp.5418-5426, 1998.

A. G. Maier, J. A. Braks, A. P. Waters, and A. F. Cowman, Negative selection using yeast cytosine deaminase/uracil phosphoribosyl transferase in Plasmodium falciparum for targeted gene deletion by double crossover recombination, Mol Biochem Parasitol, vol.150, pp.118-121, 2006.

V. Muralidharan, A. Oksman, M. Iwamoto, T. J. Wandless, and D. E. Goldberg, Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag, Proc. Natl. Acad. Sci. USA, vol.108, pp.4411-4416, 2011.

P. Alano, The sound of sexual commitment breaks the silencing of malaria parasites, Trends Parasitol, vol.30, pp.509-510, 2014.

G. A. Josling and M. Llinas, Sexual development in Plasmodium parasites: knowing when it's time to commit, Nat. Rev. Microbiol, vol.13, pp.573-587, 2015.

A. T. Bankier, Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum, Genome Res, vol.13, pp.1787-1799, 2003.

K. Ling, Sequencing and analysis of chromosome 1 of Eimeria tenella reveals a unique segmental organization, Genome Res, vol.17, pp.311-319, 2007.

E. Gomez-diaz, Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae, Sci. Rep, vol.7, p.40655, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02010957

M. Ghorbal, Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system, Nat. Biotechnol, vol.32, pp.819-821, 2014.

N. Rovira-graells, Transcriptional variation in the malaria parasite Plasmodium falciparum, Genome Res, vol.22, pp.925-938, 2012.

L. Yant, Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2, Plant Cell, vol.22, pp.2156-2170, 2010.

S. A. Cobbold, J. M. Santos, A. Ochoa, D. H. Perlman, and M. Llinas, Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite, Sci. Rep, vol.6, p.19722, 2016.

L. S. Qi, Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

, EVIMalar. Methods in Malaria Research, 2013.

Y. Wu, C. D. Sifri, H. H. Lei, X. Z. Su, and T. E. Wellems, Transfection of Plasmodium falciparum within human red blood cells, Proc Natl Acad Sci, vol.92, pp.973-977, 1995.

A. G. Maier, Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes, Cell, vol.134, pp.48-61, 2008.

S. Shastri, Plasmodium CDP-DAG synthase: an atypical gene with an essential N-terminal extension, Int J Parasitol, vol.40, pp.1257-1268, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02281794

T. N. Siegel, Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum, BMC Genomics, vol.15, p.150, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00981322

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-1760, 2009.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.