M. A. Anderson, J. E. Burda, Y. Ren, Y. Ao, T. M. O'shea et al., Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.532, pp.195-200, 2016.

M. Antri, J. Y. Barthe, C. Mouffle, and D. Orsal, Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine, Neurosci. Lett, vol.384, pp.162-167, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00110200

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection, Exp. Neurol, vol.139, pp.244-256, 1996.

D. M. Basso, M. S. Beattie, J. C. Bresnahan, D. K. Anderson, A. I. Faden et al., MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study, J. Neurotrauma, vol.13, pp.343-359, 1996.

D. M. Basso, L. C. Fisher, A. J. Anderson, L. B. Jakeman, D. M. Mctigue et al., Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains, J. Neurotrauma, vol.23, pp.635-659, 2006.

J. R. Bethea, H. Nagashima, M. C. Acosta, C. Briceno, F. Gomez et al., Systemically administered interleukin-10 reduces tumor necrosis factor-? production and significantly improves functional recovery following traumatic spinal cord injury in rats, J. Neurotrauma, vol.16, pp.851-863, 1999.

K. L. Brewer, J. R. Bethea, Y. , and R. P. , Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury, Exp. Neurol, vol.159, pp.484-493, 1999.

J. D. Cahoy, B. Emery, A. Kaushal, L. C. Foo, J. L. Zamanian et al., A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function, J. Neurosci, vol.28, pp.264-278, 2008.

S. David and A. Kroner, Repertoire of microglial and macrophage responses after spinal cord injury, Nat. Rev. Neurosci, vol.12, pp.388-399, 2011.

M. Desclaux, F. E. Perrin, A. Do-thi, M. Prieto-cappellini, M. Gimenez-y-ribotta et al., Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury, J. Neurosci. Res, vol.93, pp.43-55, 2015.

K. J. Dixon, K. M. Munro, A. W. Boyd, P. F. Bartlett, and A. M. Turnley, Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury, Neurosci. Lett, vol.525, pp.66-71, 2012.

N. A. Do-thi, P. Saillour, L. Ferrero, J. F. Dedieu, J. Mallet et al., Delivery of GDNF by an E1,E3/E4 deleted adenoviral vector and driven by a GFAP promoter prevents dopaminergic neuron degeneration in a rat model of Parkinson's disease, Gene Ther, vol.11, pp.746-756, 2004.

J. R. Faulkner, J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan et al., Reactive astrocytes protect tissue and preserve function after spinal cord injury, J. Neurosci, vol.24, pp.2143-2155, 2004.

S. P. Gadani, J. T. Walsh, I. Smirnov, J. Zheng, and J. Kipnis, The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury, Neuron, vol.85, pp.703-709, 2015.

V. R. Gazula, M. Roberts, C. Luzzio, A. F. Jawad, and R. G. Kalb, Effects of limb exercise after spinal cord injury on motor neuron dendrite structure, J. Comp. Neurol, vol.476, pp.130-145, 2004.

Y. N. Gerber, J. C. Sabourin, M. Rabano, M. Vivanco, and F. E. Perrin, Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis, PLoS One, vol.7, p.36000, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02156234

L. Guth, Z. Zhang, N. A. Diprospero, K. Joubin, and M. T. Fitch, Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function, Exp. Neurol, vol.126, pp.76-87, 1994.

M. Hara, K. Kobayakawa, Y. Ohkawa, H. Kumamaru, K. Yokota et al., Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury, Nat. Med, vol.23, pp.818-828, 2017.

M. Hashimoto, A. Nitta, H. Fukumitsu, H. Nomoto, L. Shen et al., Inflammation-induced GDNF improves locomotor function after spinal cord injury, Neuroreport, vol.16, pp.99-102, 2005.

O. N. Hausmann, Post-traumatic inflammation following spinal cord injury, Spinal Cord, vol.41, pp.369-378, 2003.

K. Hayakawa, R. Okazaki, K. Morioka, K. Nakamura, S. Tanaka et al., Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury, J. Neurosci. Res, vol.92, pp.1647-1658, 2014.

T. Hirasawa, K. Ohsawa, Y. Imai, Y. Ondo, C. Akazawa et al., Visualization of microglia in living tissues using Iba1-EGFP transgenic mice, J. Neurosci. Res, vol.81, pp.357-362, 2005.

H. Hirbec, C. Marmai, I. Duroux-richard, C. Roubert, A. Esclangon et al., The microglial reaction signature revealed by RNAseq from individual mice, Glia, vol.66, pp.971-986, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01870366

B. J. Kerr, D. , and S. , Pain behaviors after spinal cord contusion injury in two commonly used mouse strains, Exp. Neurol, vol.206, pp.240-247, 2007.

K. A. Kigerl, V. M. Mcgaughy, and P. G. Popovich, Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury, J. Comp. Neurol, vol.494, pp.578-594, 2006.

M. Lalancette-hébert, G. Gowing, A. Simard, Y. C. Weng, and J. Kriz, Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain, J. Neurosci, vol.27, pp.2596-2605, 2007.

K. L. Lambertsen, B. H. Clausen, A. A. Babcock, R. Gregersen, C. Fenger et al., Microglia protect neurons against ischemia by synthesis of tumor necrosis factor, J. Neurosci, vol.29, 2009.

N. P. Lapointe, R. V. Ung, M. Bergeron, M. Cote, and P. A. Guertin, Strain-dependent recovery of spontaneous hindlimb movement in spinal cord transected mice (CD1, C57BL/6, BALB/c), Behav. Neurosci, vol.120, pp.826-834, 2006.

D. H. Lee and J. K. Lee, Animal models of axon regeneration after spinal cord injury, Neurosci. Bull, vol.29, pp.436-444, 2013.

M. Ma, P. Wei, T. Wei, R. M. Ransohoff, J. et al., Enhanced axonal growth into a spinal cord contusion injury site in a strain of mouse (129X1/SvJ) with a diminished inflammatory response, J. Comp. Neurol, vol.474, pp.469-486, 2004.

M. 'dahoma, S. Bourgoin, S. Kayser, V. Barthélémy, S. Chevarin et al., Spinal cord transection-induced allodynia in rats-behavioral, physiopathological and pharmacological characterization, PLoS One, vol.9, 2014.

V. Menet, M. Prieto, A. Privat, and M. Ribotta, Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes, Proc. Natl. Acad. Sci. U S A, vol.100, pp.8999-9004, 2003.

M. Mukaino, M. Nakamura, O. Yamada, S. Okada, S. Morikawa et al., Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation, Exp. Neurol, vol.224, pp.403-414, 2010.

S. Nelissen, T. Vangansewinkel, N. Geurts, L. Geboes, E. Lemmens et al., Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4, Neurobiol. Dis, vol.62, pp.260-272, 2014.

H. N. Noristani, H. Boukhaddaoui, G. Saint-martin, P. Auzer, R. Sidiboulenouar et al., A combination of Ex vivo diffusion MRI and multiphoton to study microglia/monocytes alterations after spinal cord injury, Front. Aging Neurosci, vol.9, p.230, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01624394

H. N. Noristani, Y. N. Gerber, J. Sabourin, M. Le-corre, N. Lonjon et al., RNA-seq analysis of microglia reveals time-dependent activation of specific genetic programs following spinal cord injury, Front. Mol. Neurosci, vol.10, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762560

H. N. Noristani, N. Lonjon, M. Cardoso, M. Le-corre, E. Chan-seng et al., Correlation of in vivo and ex vivo 1 H-MRI with histology in two severities of mouse spinal cord injury, Front. Neuroanat, vol.9, p.24, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157712

H. N. Noristani and F. E. Perrin, Astrocyte-to-neuron conversion induced by spinal cord injury, Oncotarget, vol.7, pp.83831-83832, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000257

H. N. Noristani, J. C. Sabourin, H. Boukhaddaoui, E. Chan-seng, Y. N. Gerber et al., Spinal cord injury induces astroglial conversion towards neuronal lineage, Mol. Neurodegener, vol.11, p.68, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01376950

S. M. Onifer, A. G. Rabchevsky, and S. W. Scheff, Rat models of traumatic spinal cord injury to assess motor recovery, ILAR J, vol.48, pp.385-395, 2007.

W. Pan and A. J. Kastin, Increase in TNF? transport after SCI is specific for time, region, and type of lesion, Exp. Neurol, vol.170, pp.357-363, 2001.

C. M. Prewitt, I. R. Niesman, C. J. Kane, and J. D. Houlé, Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord, Exp. Neurol, vol.148, pp.433-443, 1997.

A. G. Rabchevsky and W. J. Streit, Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth, J. Neurosci. Res, vol.47, pp.34-48, 1997.

O. Rapalino, O. Lazarov-spiegler, E. Agranov, G. J. Velan, E. Yoles et al., Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, Nat. Med, vol.4, pp.814-821, 1998.

A. C. Solga, W. W. Pong, J. Walker, T. Wylie, V. Magrini et al., RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease, Glia, vol.63, pp.531-548, 2015.

T. Takami, M. Oudega, J. R. Bethea, P. M. Wood, N. Kleitman et al., Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome, J. Neurotrauma, vol.19, pp.653-666, 2002.

S. Thuret, M. Thallmair, L. L. Horky, and F. H. Gage, Enhanced functional recovery in MRL/MpJ mice after spinal cord dorsal hemisection, PLoS One, vol.7, p.30904, 2012.

D. S. Tian, Q. Dong, D. J. Pan, Y. He, Z. Y. Yu et al., Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model, van den Berg, vol.1154, pp.184-192, 2007.

I. B. Wanner, M. A. Anderson, B. Song, J. Levine, A. Fernandez et al., Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury, J. Neurosci, vol.33, pp.12870-12886, 2013.

C. Wetzel, J. Hu, D. Riethmacher, A. Benckendorff, L. Harder et al., A stomatin-domain protein essential for touch sensation in the mouse, Nature, vol.445, pp.206-209, 2007.

W. D. Whetstone, J. Y. Hsu, M. Eisenberg, Z. Werb, and L. J. Noblehaeusslein, Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing, J. Neurosci. Res, vol.74, pp.227-239, 2003.