, Dengue and dengue hemorrhagic fever, WHO Fact sheet, vol.117, 2015.

W. Chikungunya, Fact Sheet N?327, WHO Fact sheet, 2015.

, WHO. Zika Virus Fact Sheet. WHO Fact sheet, 2016.

K. S. Vannice, A. Durbin, and J. Hombach, Status of vaccine research and development of vaccines for dengue, Vaccine, vol.34, issue.26, p.26973072, 2016.

H. Ranson, J. Burhani, N. Lumjuan, and W. C. Black, Insecticide resistance in dengue vectors, TropIKAnet, vol.1, issue.1, pp.1-12, 2010.

I. Dusfour, V. Thalmensy, P. Gaborit, J. Issaly, R. Carinci et al., Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) populations compromises the effectiveness of dengue vector control in French Guiana. Mem I Oswaldo Cruz, vol.106, pp.346-352, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00638832

S. Marcombe, F. Darriet, M. Tolosa, P. Agnew, S. Duchon et al., Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean), PLoS Neg Trop D, vol.5, issue.6, p.1202, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02080545

E. J. Scholte, B. G. Knols, R. A. Samson, and W. Takken, Entomopathogenic fungi for mosquito control: a review, J Insect Sci, vol.4, p.15861235, 2004.

L. A. Lacey, Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J Am Mosquito Contr, vol.23, issue.2, pp.133-163, 2007.

A. A. Hoffmann, B. L. Montgomery, J. Popovici, I. Iturbe-ormaetxe, P. H. Johnson et al., Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature, vol.476, issue.7361, p.21866160, 2011.

T. Walker, P. H. Johnson, L. A. Moreira, I. Iturbe-ormaetxe, F. D. Frentiu et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, vol.476, issue.7361, p.21866159, 2011.

A. F. Harris, A. R. Mckemey, D. Nimmo, Z. Curtis, I. Black et al., Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes, Nat Biotechnol, vol.30, issue.9, p.22965050, 2012.

S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow et al., The global distribution and burden of dengue, Nature, vol.496, issue.7446, p.23563266, 2013.

V. Corbel, F. Nosten, K. Thanispong, C. Luxemburger, M. Kongmee et al., Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia, Trends Parasitol, vol.29, issue.12, p.24215776, 2013.

V. Corbel, N. L. Achee, F. Chandre, M. Coulibaly, I. Dusfour et al., Tracking insecticide resistance in mosquito vectors of arboviruses: The Worldwide Insecticide resistance Network (WIN), PLoS Neg Trop D, 2016.

X. C. Li, M. A. Schuler, and M. R. Berenbaum, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics, Annu Rev Entomol, vol.52, p.16925478, 2007.

J. Hemingway, N. J. Hawkes, L. Mccarroll, and H. Ranson, The molecular basis of insecticide resistance in mosquitoes, Insect Biochem Mol Biol, vol.34, issue.7, p.15242706, 2004.

W. C. Black and J. G. Vontas, Affordable assays for genotyping single nucleotide polymorphisms in insects, Insect Mol Biol, vol.16, issue.4, p.17488301, 2007.

T. E. Nkya, I. Akhouayri, W. Kisinza, and J. P. David, Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects, Insect Biochem Mol Biol, vol.43, issue.4, p.23123179, 2013.

J. P. David, H. M. Ismail, A. Chandor-proust, and M. J. Paine, Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth, Philos T Roy Soc B, vol.368, p.20120429, 1612.

J. P. David, F. Faucon, A. Chandor-proust, R. Poupardin, M. A. Riaz et al., Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing, BMC Genomics, vol.15, p.24593293, 2014.

J. Vontas, E. Kioulos, N. Pavlidi, E. Morou, A. D. Torre et al., Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti, Pestic Biochem Physiol, vol.104, issue.2, pp.126-131, 2012.

B. T. Wilhelm and J. R. Landry, RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing, Methods, vol.48, issue.3, p.19336255, 2009.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat Methods, vol.5, issue.7, p.18516045, 2008.

Y. Lv, W. Wang, S. Hong, Z. Lei, F. Fang et al., Comparative transcriptome analyses of deltamethrin-susceptible and-resistant Culex pipiens pallens by RNA-seq, Mol Genet Genomics, vol.291, issue.1, p.26377942, 2016.

M. Bonizzoni, E. Ochomo, W. A. Dunn, M. Britton, Y. Afrane et al., RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs, Parasite vector, vol.8, p.474, 2015.

L. Despres, R. Stalinski, G. Tetreau, M. Paris, A. Bonin et al., Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins, BMC Genomics, vol.15, issue.1, p.926, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01996612

F. Faucon, I. Dusfour, T. Gaude, V. Navratil, F. Boyer et al., Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

, Genome Res, vol.25, issue.9, p.26206155, 2015.

R. Poupardin, W. Srisukontarat, C. Yunta, and H. Ranson, Identification of carboxylesterase genes implicated in temephos resistance in the dengue vector Aedes aegypti, PLoS Neg Trop D, vol.8, issue.3, p.2743, 2014.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, vol.30, p.24695404, 2014.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley et al., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, issue.4, p.23618408, 2013.

O. Gotoh, Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences, J Biol Chem, vol.267, issue.1, p.1730627, 1992.

C. J. Jackson, J. W. Liu, P. D. Carr, F. Younus, C. Coppin et al., Structure and function of an insect alpha-carboxylesterase (alphaEsterase7) associated with insecticide resistance, Proc Natl Acad Sci USA, vol.110, issue.25, p.23733941, 2013.

J. Wongsantichon, R. C. Robinson, and A. J. Ketterman, Structural contributions of delta class glutathione transferase active-site residues to catalysis, Biochem J, vol.428, issue.1, p.20196771, 2010.

A. Radominska-pandya, S. M. Bratton, M. R. Redinbo, and M. J. Miley, The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families, Drug Metab Rev, vol.42, issue.1, pp.133-144, 2010.

F. A. Kondrashov, Gene duplication as a mechanism of genomic adaptation to a changing environment, Proc Biol Sci, vol.279, p.22977152, 1749.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, issue.14, p.19451168, 2009.

G. Dai, N. Chou, L. He, M. A. Gyamfi, A. J. Mendy et al., Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver, Mol Pharmacol, vol.68, issue.6, p.16157696, 2005.

P. F. Johnson, Transcriptional activators in hepatocytes, Cell Growth Differ, vol.1, issue.1, p.2078499, 1990.

F. J. Gonzalez and Y. H. Lee, Constitutive expression of hepatic cytochrome P450 genes, Faseb J, vol.10, issue.10, p.8751713, 1996.

P. Honkakoski and M. Negishi, Regulation of cytochrome P450 (CYP) genes by nuclear receptors, Biochem J, vol.347, issue.2, p.10749660, 2000.

T. Juven-gershon and J. T. Kadonaga, Regulation of gene expression via the core promoter and the basal transcriptional machinery, Dev Biol, vol.339, issue.2, p.19682982, 2010.

L. Cherbas and P. Cherbas, The arthropod initiator: the capsite consensus plays an important role in transcription, Insect Biochem Mol Biol, vol.23, issue.1, p.8485519, 1993.

Z. Hu, Y. Du, Y. Nomura, and K. Dong, A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids, Insect Biochem Mol Biol, vol.41, issue.1, p.20869441, 2011.

S. Kasai, O. Komagata, K. Itokawa, T. Shono, L. C. Ng et al., Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism, PLoS Neg Trop D, vol.8, issue.6, p.2948, 2014.

B. J. Stevenson, P. Pignatelli, D. Nikou, and M. J. Paine, Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance, PLoS Neg Trop D, vol.6, issue.3, p.1595, 2012.

P. Muller, E. Warr, B. J. Stevenson, P. M. Pignatelli, J. C. Morgan et al., Field-caught permethrinresistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids, PLoS Genet, vol.4, issue.11, p.19043575, 2008.

P. Duangkaew, D. Kaewpa, and P. Rongnoparut, Protective efficacy of Anopheles minimus CYP6P7 and CYP6AA3 against cytotoxicity of pyrethroid insecticides in Spodoptera frugiperda (Sf9) insect cells, Trop Biomed, vol.28, issue.2, p.22041748, 2011.

B. J. Stevenson, J. Bibby, P. Pignatelli, S. Muangnoicharoen, O. Neill et al., Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: Sequential metabolism of deltamethrin revealed, Insect Biochem Mol Biol, vol.41, issue.7, p.21324359, 2011.

J. M. Riveron, H. Irving, M. Ndula, K. G. Barnes, S. S. Ibrahim et al., Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus, Proc Natl Acad Sci USA, vol.110, issue.1, p.23248325, 2013.

I. H. Ishak, J. M. Riveron, S. S. Ibrahim, R. Stott, J. Longbottom et al., The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus, Sci Rep, vol.6, p.27094778, 2016.

I. Dusfour, P. Zorrilla, A. Guidez, J. Issaly, R. Girod et al., Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide, PLoS Neg Trop D, vol.9, issue.11, p.4226, 2015.

V. Bariami, C. M. Jones, R. Poupardin, J. Vontas, and H. Ranson, Gene Amplification, ABC Transporters and Cytochrome P450s: Unraveling the Molecular Basis of Pyrethroid Resistance in the Dengue Vector, Aedes aegypti, PLoS Neg Trop D, vol.6, issue.6, p.1692, 2012.

L. Grigoraki, J. Lagnel, I. Kioulos, A. Kampouraki, E. Morou et al., Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus, PLoS Neg Trop D, vol.9, issue.5, p.3771, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01938133

L. Grigoraki, V. Balabanidou, C. Meristoudis, A. Miridakis, H. Ranson et al., Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. albopictus, Insect Biochem Mol Biol, vol.74, p.27180726, 2016.

H. Ranson and J. Hemingway, Mosquito glutathione transferases. Gluthione Transferases and Gamma-Glutamyl Transpeptidases, p.226, 2005.

N. Lumjuan, S. Rajatileka, D. Changsom, J. Wicheer, P. Leelapat et al., The role of the Aedes aegypti epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides, Insect Biochem Mol Biol, vol.41, issue.3, p.21195177, 2011.

J. M. Riveron, C. Yunta, S. S. Ibrahim, R. Djouaka, H. Irving et al., A single mutation in the GSTe2 gene allows tracking of metabolically-based insecticide resistance in a major malaria vector, Gen Biol, vol.15, issue.2, p.27, 2014.

V. Nene, J. R. Wortman, D. Lawson, B. Haas, C. Kodira et al., Genome sequence of Aedes aegypti, a major arbovirus vector, Science, vol.316, issue.5832, p.17510324, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00156214

R. Feyereisen, W. Dermauw, and T. Van-leeuwen, Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods, Pestic Biochem Physiol, vol.121, p.26047113, 2015.

K. Itokawa, O. Komagata, S. Kasai, and T. Tomita, A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus, Insect Biochem Mol Biol, vol.66, p.26494013, 2015.

R. Jover, M. Moya, and M. J. Gomez-lechon, Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha, Curr Drug Metab, vol.10, issue.5, p.19689247, 2009.

J. M. Pascussi, S. Gerbal-chaloin, C. Duret, M. Daujat-chavanieu, M. J. Vilarem et al., The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences
URL : https://hal.archives-ouvertes.fr/inserm-00162144

, Annu Rev Pharmacol Toxicol, vol.48, p.17608617, 2008.

C. Claudianos, R. J. Russell, and J. G. Oakeshott, The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly, Insect Biochem Mol Biol, vol.29, issue.8, p.10451921, 1999.

R. D. Newcomb, P. M. Campbell, D. L. Ollis, E. Cheah, R. J. Russell et al., A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly, Proc Natl Acad Sci USA, vol.94, issue.14, p.9207114, 1997.

R. Heidari, A. L. Devonshire, B. E. Campbell, S. J. Dorrian, J. G. Oakeshott et al., Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis, Insect Biochem Mol Biol, vol.35, issue.6, p.15857765, 2005.

A. L. Devonshire, R. Heidari, H. Z. Huang, B. D. Hammock, R. J. Russell et al., Hydrolysis of individual isomers of fluorogenic pyrethroid analogs by mutant carboxylesterases from Lucilia cuprina, Insect Biochem Mol Biol, vol.37, issue.9, p.17681228, 2007.

C. W. Coppin, C. J. Jackson, T. Sutherland, P. J. Hart, A. L. Devonshire et al., Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides, Insect Biochem Mol Biol, vol.42, issue.5, p.22300675, 2012.

R. Feyereisen, Insect cytochrome P450, Comprehensive Molecular Insect Science, pp.1-77, 2005.

K. Itokawa, O. Komagata, S. Kasai, K. Ogawa, and T. Tomita, Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies, Sci Rep, vol.6, p.27095599, 2016.