S. Bhatt, D. J. Weiss, C. E. Bisanzio, D. Mappin, B. Dalrymple et al., The effect of malaria control on Plasmodium falciparum in Africa between, Nature, vol.526, issue.7572, pp.207-218, 2000.

J. T. Griffin, T. D. Hollingsworth, L. C. Okell, T. S. Churcher, M. White et al., Reducing Plasmodium falciparum malaria transmission in Africa: a modelbased evaluation of intervention strategies, PLoS Med, vol.7, issue.8, p.20711482, 2010.

P. L. Alonso, G. Brown, M. Arevalo-herrera, F. Binka, C. Chitnis et al., A research agenda to underpin malaria eradication, PLoS Med, vol.8, issue.1, p.1000406, 2011.
URL : https://hal.archives-ouvertes.fr/halshs-00681191

, The malERA Consultative Group on Vaccines. A research agenda for malaria eradication: vaccines, PLoS Med, vol.8, issue.1, p.1000398, 2011.

R. W. Sauerwein and T. Bousema, Transmission blocking malaria vaccines: Assays and candidates in clinical development, Vaccine, vol.33, issue.52, pp.7476-82, 2015.

D. Nikolaeva, S. J. Draper, and S. Biswas, Toward the development of effective transmission-blocking vaccines for malaria, Expert Rev Vaccines, vol.14, issue.5, pp.653-80, 2015.

Y. Wu, R. E. Sinden, T. S. Churcher, T. Tsuboi, and V. Yusibov, Development of malaria transmission-blocking vaccines: from concept to product, Adv Parasitol, vol.89, pp.109-52, 2015.

J. A. Vaughan, B. H. Noden, and J. C. Beier, Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae, J Parasitol, vol.78, issue.4, pp.716-740, 1992.

W. J. Stone, K. W. Dantzler, S. K. Nilsson, C. J. Drakeley, M. Marti et al., Naturally acquired immunity to sexual stage P. falciparum parasites, Parasitology, vol.143, issue.2, pp.187-98, 2016.

M. R. Van-dijk, C. J. Janse, J. Thompson, A. P. Waters, J. A. Braks et al., A central role for P48/45 in malaria parasite male gamete fertility, Cell, vol.104, issue.1, pp.153-64, 2001.

I. A. Quakyi, R. Carter, J. Rener, N. Kumar, M. F. Good et al., The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies, J Immunol, vol.139, issue.12, pp.4213-4220, 1987.

J. Rener, P. M. Graves, R. Carter, J. L. Williams, and T. R. Burkot, Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum, J Exp Med, vol.158, issue.3, pp.976-81, 1983.

A. N. Vermeulen, T. Ponnudurai, P. J. Beckers, J. P. Verhave, M. A. Smits et al., Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito, J Exp Med, vol.162, issue.5, pp.1460-76, 1985.

D. C. Kaslow, I. A. Quakyi, C. Syin, M. G. Raum, D. B. Keister et al., A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains, Nature, vol.333, issue.6168, pp.74-80, 1988.

J. S. Armistead, I. Morlais, D. K. Mathias, J. G. Jardim, J. Joy et al., Antibodies to a single, conserved epitope in Anopheles APN1 inhibit universal transmission of Plasmodium falciparum and Plasmodium vivax malaria, Infect Immun, vol.82, issue.2, pp.818-847, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02012289

D. K. Mathias, J. G. Jardim, L. A. Parish, J. S. Armistead, H. V. Trinh et al., Differential roles of an anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion, Inf Genet Evol, vol.28, pp.635-682, 2014.

K. Miura, B. Deng, G. Tullo, A. Diouf, S. E. Moretz et al., Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays, PLoS One, vol.8, issue.3, p.57909, 2013.

W. J. Stone, T. S. Churcher, W. Graumans, G. J. Van-gemert, M. W. Vos et al., A scalable assessment of Plasmodium falciparum transmission in the standard membrane feeding assay using transgenic parasites expressing GFP-luciferase, J Infect Dis, vol.210, issue.9, pp.1456-63, 2014.

M. E. Sinka, M. J. Bangs, S. Manguin, Y. Rubio-palis, T. Chareonviriyaphap et al., A global map of dominant malaria vectors, Parasit Vectors, vol.5, p.69, 2012.

M. Kamali, P. E. Marek, A. Peery, C. Antonio-nkondjio, C. Ndo et al., Multigene phylogenetics reveals temporal diversification of major African malaria vectors, PLoS One, vol.9, issue.4, p.93580, 2014.

W. E. Collins, H. Mcclure, E. Strobert, J. C. Skinner, B. B. Richardson et al., Experimental infection of Anopheles gambiae s.s., Anopheles freeborni and Anopheles stephensi with Plasmodium malariae and Plasmodium brasilianum, J Am Mosq Control Assoc, vol.9, issue.1, pp.68-71, 1993.

J. A. Vaughan, L. Hensley, and J. C. Beier, Sporogonic development of Plasmodium yoelii in five anopheline species, J Parasitol, vol.80, issue.5, pp.674-81, 1994.

J. C. Hume, M. Tunnicliff, L. C. Ranford-cartwright, and K. P. Day, Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum, Malar J, vol.6, p.139, 2007.

G. Jaramillo-gutierrez, J. Rodrigues, G. Ndikuyeze, M. Povelones, A. Molinacruz et al., Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes, BMC Microbiol, vol.9, p.154, 2009.

A. M. Feldmann and T. Ponnudurai, Selection of Anopheles stephensi for refractoriness and susceptibility to Plasmodium falciparum, Med Vet Entomol, vol.3, issue.1, pp.41-52, 1989.

S. Meister, B. Agianian, F. Turlure, A. Relogio, I. Morlais et al., Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites, PLoS Pathog, vol.5, issue.8, p.1000542, 2009.

T. Ponnudurai, A. H. Lensen, A. D. Leeuwenberg, and J. H. Meuwissen, Cultivation of fertile Plasmodium falciparum gametocytes in semi-automated systems. 1. Static cultures, T Roy Soc Trop Med H, vol.76, issue.6, pp.812-820, 1982.

T. Ponnudurai, A. H. Lensen, G. J. Van-gemert, M. P. Bensink, M. Bolmer et al., Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes, Parasitology, vol.98, issue.2, pp.165-73, 1989.

W. Roeffen, K. Teelen, J. Van-as, M. Vd-vegte-bolmer, W. Eling et al., Plasmodium falciparum: production and characterization of rat monoclonal antibodies specific for the sexual-stage Pfs48/45 antigen, Exp Parasitol, vol.97, issue.1, pp.45-54, 2001.

B. Mulder, W. Roeffen, R. Sauerwein, T. Tchuinkam, C. Boudin et al., AntiPfs25 monoclonal antibody 32F81 blocks transmission from Plasmodium falciparum gametocyte carriers in Cameroon, T Roy Soc Trop Med H, vol.90, issue.2, p.195, 1996.

P. J. Barr, K. M. Green, H. L. Gibson, I. C. Bathurst, I. A. Quakyi et al., Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals, J Exp Med, vol.174, issue.5, pp.1203-1211, 1991.

M. Van-der-kolk, D. Vlas, S. J. Saul, A. Van-de-vegte-bolmer, M. Eling et al., Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data, Parasitology, vol.130, pp.13-22, 2005.

C. Harris, I. Morlais, T. S. Churcher, P. Awono-ambene, L. C. Gouagna et al., Plasmodium falciparum produce lower infection intensities in local versus foreign Anopheles gambiae populations, PLoS One, vol.7, issue.1, p.30849, 2012.

N. S. Outchkourov, W. Roeffen, A. Kaan, J. Jansen, A. Luty et al., Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice, Proc Natl Acad Sci USA, vol.105, pp.4301-4306, 2008.

, R Development Core Team R. A language and environment for statistical computing, issue.1, 2006.

D. A. Fournier, H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson et al., AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models, Opti. Meth Softw, vol.27, issue.2, pp.233-282, 2012.

T. S. Churcher, A. M. Blagborough, M. Delves, C. Ramakrishnan, M. C. Kapulu et al., Measuring the blockade of malaria transmission-an analysis of the standard membrane-feeding assay, Int J Parasitol, vol.42, issue.11, pp.1037-1081, 2012.

K. Miura, B. J. Swihart, B. Deng, L. Zhou, T. P. Pham et al., Transmissionblocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membranefeeding assay, Vaccine, vol.34, issue.35, pp.4145-51, 2016.

K. Miura, W. J. Stone, K. M. Koolen, B. Deng, L. Zhou et al., An inter-laboratory comparison of standard membrane-feeding assays for evaluation of malaria transmission-blocking vaccines, Malaria J, vol.15, p.463, 2016.

M. Eldering, I. Morlais, G. J. Van-gemert, M. Van-de-vegte-bolmer, W. Graumans et al., Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes, Sci Rep, vol.6, p.20440, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02016600

A. Molina-cruz, L. S. Garver, A. Alabaster, L. Bangiolo, A. Haile et al., The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system, Science, vol.340, issue.6135, pp.984-991, 2013.

X. G. Chen, G. Mathur, and A. A. James, Gene expression studies in mosquitoes, Adv Ggenet, vol.64, pp.19-50, 2008.

T. Nolan, E. Petris, H. M. Muller, A. Cronin, F. Catteruccia et al., Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes, PLoS One, vol.6, issue.2, p.16471, 2011.

C. B. Pumpuni, J. Demaio, M. Kent, J. R. Davis, and J. C. Beier, Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development, Am J Trop Med Hyg, vol.54, issue.2, pp.214-222, 1996.

S. Meister, S. M. Kanzok, X. L. Zheng, C. Luna, T. R. Li et al., Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae, Proc Natl Acad Sci USA, vol.102, issue.32, pp.11420-11425, 2005.

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathog, vol.5, issue.5, p.1000423, 2009.

B. H. Noden, J. A. Vaughan, C. B. Pumpuni, and J. C. Beier, Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii, Parasitol Int, vol.60, issue.4, pp.440-446, 2011.

M. T. Tchioffo, A. Boissiere, T. S. Churcher, L. Abate, G. Gimonneau et al., Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria, PLoS One, vol.8, issue.12, p.81663, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01546172

D. Vlachou, G. Lycett, I. Siden-kiamos, C. Blass, R. E. Sinden et al., Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes, Mol Biochem Parasitol, vol.112, issue.2, pp.229-266, 2001.

A. M. Tomas, G. Margos, G. Dimopoulos, L. H. Van-lin, D. Koning-ward et al., P25 and P28 proteins of the malaria ookinete surface have multiple and partially redundant functions, EMBO J, vol.20, issue.15, pp.3975-83, 2001.

R. Kumar, E. Angov, and N. Kumar, Potent malaria transmission-blocking antibody responses elicited by Plasmodium falciparum Pfs25 expressed in Escherichia coli after successful protein refolding, Infect Immun, vol.82, issue.4, pp.1453-1462, 2014.

R. R. Dinglasan, D. E. Kalume, S. M. Kanzok, A. K. Ghosh, O. Muratova et al., Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen, Proc Natnl Acad Sci USA, vol.104, issue.33, pp.13461-13467, 2007.

A. M. Blagborough, T. S. Churcher, L. M. Upton, A. C. Ghani, P. W. Gething et al., Transmission-blocking interventions eliminate malaria from laboratory populations, Nat Commun, vol.4, p.1812, 2013.

T. Bousema, T. S. Churcher, I. Morlais, and R. R. Dinglasan, Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions?, Trends Parasitol, vol.29, issue.2, pp.53-62, 2013.