, WHO (World Health Organization, WHO. WHO | World Malaria Report, 2016.

R. E. Sinden, Progression of Plasmodium berghei through Anopheles stephensi is density-dependent, PLoS Pathog, vol.3, p.195, 2007.

W. J. Stone, The relevance and applicability of oocyst prevalence as a read-out for mosquito feeding assays, Sci. Rep, vol.3, 2013.

T. S. Churcher, Measuring the blockade of malaria transmission-an analysis of the Standard Membrane Feeding Assay, Int. J. Parasitol, vol.42, pp.1037-1081, 2012.

K. Miura, Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay, Vaccine, vol.34, pp.4145-4151, 2016.

A. Lensen, Plasmodium falciparum: Infectivity of Cultured, Synchronized Gametocytes to Mosquitoes, Exp. Parasitol, vol.91, pp.101-103, 1999.

S. E. Nsango, Genetic clonality of Plasmodium falciparum affects the outcome of infection in Anopheles gambiae, Int. J. Parasitol, vol.42, pp.589-595, 2012.

C. J. Drakeley, Parasite infectivity and immunity to Plasmodium falciparum gametocytes in Gambian children, Parasite Immunol, vol.26, pp.159-65, 2004.

R. Price, Risk factors for gametocyte carriage in uncomplicated falciparum malaria, Am. J. Trop. Med. Hyg, vol.60, pp.1019-1042, 1999.

T. Lefèvre, Non-Genetic Determinants of Mosquito Competence for Malaria Parasites, PLoS Pathog, vol.9, p.1003365, 2013.

K. Miura, Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay, Infect. Immun, vol.81, pp.4377-82, 2013.

K. Miura, Transmission-blocking activity induced by malaria vaccine candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer, Malar. J, vol.6, p.107, 2007.

R. W. Sauerwein and T. Bousema, Transmission blocking malaria vaccines: Assays and candidates in clinical development, Vaccine, vol.33, pp.7476-7482, 2015.

D. F. Da, Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions, Exp. Parasitol, vol.149, pp.74-83, 2015.

T. Bousema, T. S. Churcher, I. Morlais, and R. R. Dinglasan, Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions?, Trends Parasitol, vol.29, pp.53-59, 2013.

L. C. Gouagna, F. Yao, B. Yameogo, R. K. Dabiré, and J. Ouédraogo, Comparison of field-based xenodiagnosis and direct membrane feeding assays for evaluating host infectiousness to malaria vector Anopheles gambiae, Acta Trop, vol.130, pp.131-139, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01274587

M. G. Gomes, A Missing Dimension in Measures of Vaccination Impacts, PLoS Pathog, vol.10, p.1003849, 2014.

T. S. Churcher, Measuring the path toward malaria elimination, Science, vol.344, pp.1230-1232, 2014.

J. C. Beier, Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles, Med. Vet. Entomol, vol.5, pp.71-79, 1991.

C. Contreras and J. Beier, Detection of human-antibodies against Plasmodium falciparum antigens in blood meals of anopheline mosquitos, J. Am. Mosq. Control Assoc, vol.8, pp.252-255, 1992.

J. Beier, J. Davis, J. Vaughan, B. Noden, and M. Beier, Quantitation of Plasmodium falciparum sporozoites transmitted invitro by experimentally infected Anopheles gambiae and Anopheles stephensi, Am. J. Trop. Med. Hyg, vol.44, pp.564-570, 1991.

T. S. Churcher, Probability of transmission of malaria from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts, PLoS Pathog, vol.13, p.1006108, 2017.

L. Cheru, The IC50 of anti-Pfs25 antibody in membrane-feeding assay varies among species, Vaccine, vol.28, pp.4423-4429, 2010.

K. R. Talaat, Safety and Immunogenicity of Pfs25-EPA/Alhydrogel ® , a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults, PLoS One, vol.11, p.163144, 2016.

D. F. Da, Anti-Pfs25 Human Plasma Reduces Transmission of Plasmodium falciparum Isolates That Have Diverse Genetic Backgrounds, Infect. Immun, vol.81, 1984.

Y. Wu, Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51, PLoS One, vol.3, p.2636, 2008.

R. Rosenberg, Malaria: some considerations regarding parasite productivity, Trends Parasitol, vol.24, pp.487-491, 2008.

G. Pringle, The effect of social factors in reducing the intensity of malaria transmission in coastal East Africa, Trans. R. Soc. Trop. Med. Hyg, vol.60, pp.549-53, 1966.

J. C. Hogg and H. Hurd, The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania, Parasitology, vol.114, p.0031182096008542, 1997.

P. F. Billingsley, G. F. Medley, D. Charlwood, and R. E. Sinden, Relationship between prevalence and intensity of Plasmodium falciparum infection in natural populations of Anopheles mosquitoes, Am. J. Trop. Med. Hyg, vol.51, pp.260-70, 1994.

T. S. Churcher, Human-to-mosquito transmission efficiency increases as malaria is controlled, Nat. Commun, vol.6, p.6054, 2015.

M. C. Kapulu, Comparative Assessment of Transmission-Blocking Vaccine Candidates against Plasmodium falciparum, Sci. Rep, vol.5, p.11193, 2015.

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van-der-linde, Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B Statistical Methodol, vol.64, pp.583-639, 2002.

D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best, The BUGS project: Evolution, critique and future directions, Stat. Med, vol.28, pp.3049-3067, 2009.