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Abstract

One of the striking features of many eukaryotes is the apparent amount of redundancy in coding and non-coding elements of their

genomes. Despite the possible evolutionary advantages, there are fewer examples of redundant sequences in viral genomes,

particularly those with RNA genomes. The factors constraining the maintenance of redundant sequences in present-day RNA

virus genomes are not well known. Here, we use Tobacco etch virus, a plant RNA virus, to investigate the stability of genetically

redundant sequences by generating viruses with potentially beneficial gene duplications. Subsequently, we tested the viability of

these viruses and performed experimental evolution. We found that all gene duplication events resulted in a loss of viability or in a

significant reduction inviralfitness.Moreover,uponanalyzingthegenomesof theevolvedviruses,wealwaysobservedthedeletionof

the duplicated gene copy and maintenance of the ancestral copy. Interestingly, there were clear differences in the deletion dynamics

of the duplicated gene associated with the passage duration and the size and position of the duplicated copy. Based on the exper-

imental data, we developed a mathematical model to characterize the stability of genetically redundant sequences, and showed that

fitness effects are not enough to predict genomic stability. A context-dependent recombination rate is also required, with the context

being the duplicated gene and its position. Our results therefore demonstrate experimentally the deleterious nature of gene dupli-

cations in RNA viruses. Beside previously described constraints on genome size, we identified additional factors that reduce the

likelihood of the maintenance of duplicated genes.

Key words: gene duplication, genome stability, experimental evolution, virus evolution.

Introduction

Gene duplication results in genetic redundancy; in other

words, the existence of genetic elements that encode for

the same function. It is a powerful process that can regulate

gene expression, increase the genetic and environmental ro-

bustness of organisms, and act as a stepping stone to the

evolution of new biological functions. Therefore, it is not sur-

prising that gene duplication is a frequent phenomenon in

many organisms (Zhang 2003; Andersson and Hughes

2009). Despite these clear advantages, there are few examples

of genetic redundancy in viral genomes. In general, viral ge-

nomes tend to be highly streamlined, with limited intergenic

sequences and in many cases overlapping open reading
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frames (ORFs), suggesting that genome size is under strong

selection (Lynch 2006). Therefore, it is not surprising that gene

duplications appear to be relatively frequent only in the large

DNA viruses (Shackelton and Holmes 2004; Suhre 2005). RNA

viruses typically have smaller genomes (ranging from ~2 kb to

~33 kb) than DNA viruses (ranging from the ~1.7 kb of circo-

viruses to the ~2.5 Mb of the giant pandoraviruses) (Campillo-

Balderas et al. 2015), and consequently there is an extremely

low prevalence of gene duplication in RNA viruses (Belshaw

et al. 2007, 2008; Simon-Loriere and Holmes 2013). For the

reverse-transcribing viruses, three different gene duplication

events have been reported within the Retroviridae family

(Tristem et al. 1990; LaPierre et al. 1999; Kambol et al.

2003). This low prevalence of gene duplication in retroviruses

is surprising, because repeated sequence elements of endog-

enous retroviruses are thought to mediate genomic rearran-

gements, including gene duplication (Hughes and Coffin

2001). For the ss(-)RNA viruses, two different tandem gene

duplications have been reported (Walker et al. 1992; Gubala

et al. 2010; Blasdell et al. 2012; Simon-Loriere and Holmes

2013) within the Rhabdoviridae (infecting vertebrates, inver-

tebrates, and plants). For the ss(+)RNA viruses, single duplica-

tion events have been reported for four different domains: (i) a

tandem duplication of the coat protein gene (CP) within the

Closteroviridae (infecting plants) (Boyko et al. 1992; Fazeli and

Rezaian 2000; Kreuze et al. 2002; Tzanetakis et al. 2005;

Tzanetakis and Martin 2007; Simon-Loriere and Holmes

2013); (ii) a tandem duplication of the genome-linked protein

gene (VPg) in Foot-and-mouth disease virus from the

Picornaviridae (infecting vertebrates) (Forss and Schaller

1982); (iii) a duplication of the third segment, generating an

additional one, in Beet necrotic yellow vein virus from the

Benyviridae (infecting plants) (Simon-Loriere and Holmes

2013); and (iv) a tandem duplication of the P1 gene in

Cucumber vein yellowing virus from the Potyviridae (infecting

plants) (Valli et al. 2007). In the latter case, the two P1 copies

resemble two different genera types within the family, sug-

gesting that both recombination and gene duplication have

contributed to P1 evolution. To date, no cases of gene dupli-

cation in dsRNA viruses have been reported.

The variation in genome size and structure indicates that

gene duplication must have played a role in the early diversi-

fication of viral genomes. However, the rapid evolution of

RNA viruses and the potential fitness costs associated with

harboring additional genetic material probably makes it un-

likely to detect viruses with duplications, or even the signa-

tures of recent duplication events. Strong selective constraints

against increasing genome sizes are thought to play a role in

the lack of gene duplications that we nowadays observe in

RNA viruses (Holmes 2003; Belshaw et al. 2007, 2008). One of

these constraints is the high mutation rates of RNA viruses,

which is approximately one mutation per genome and per

replication event (Sanjuán et al. 2010). Another constraint is

the need for fast replication due to strong within-cell and

within-host competition (Turner and Chao 1998). On the

other hand, the small and streamlined RNA virus genomes

also limit sequence space for the evolution of novel functions,

and in turn adaptation to environmental changes.

Here, we therefore consider experimentally the evolution-

ary fate of gene duplications in viral genomes, in terms of their

effects on fitness, the stability of the duplicated gene and the

evolvability of these viruses. We choose to work with Tobacco

etch virus (TEV; genus Potyvirus, family Potyviridae). This plant

pathogen has a monopartite ss(+)RNA genome, of about

9.5 kb in length (Revers and Garcı́a 2015). It codes for a

single ORF (i.e., polyprotein) that is further processed after

translation into ten mature peptides, in addition the P3N-

PIPO ORF is translated at a +2 frameshift within the P3 cistron

(fig. 1A). We experimentally explore four cases of homologous

duplication of genes within the TEV genome: (i) the multi-

functional protein (HC-Pro) involved in aphid transmission,

polyprotein cleavage, genome amplification, and suppression

of RNA silencing, (ii) the main viral protease (NIa-Pro), (iii) the

viral RNA-dependent RNA polymerase (NIb), and (iv) the coat

protein (CP). Potyviruses are a particularly interesting system

for studying the evolution of gene duplications, as for each

complete ss(+)RNA there will be isostoichiometric expression

of all genes. Assuming there are no unknown mechanisms

that regulate gene expression, the scope for the regulation of

gene expression in potyviruses could therefore be very limited.

Gene duplication may represent a way to bypass these con-

straints and achieve higher expression of specific genes.

We speculated that the duplication of these four proteins

might have widely different impacts on TEV fitness. As HC-Pro

is a multifunctional protein, two copies of HC-Pro could lead

to specific improvement of one or more of its functions. This

potential improvement could possibly be caused by two

mechanisms. First, by simply producing more protein there

could be an immediate benefit for one of HC-Pro’s functions.

Second, there could be improvement of protein function

when the duplicated virus is evolved, because the two gene

copies can diverge and specialize on different functions.

Higher levels of NIa-Pro may result in a more efficient process-

ing of the polyprotein, making more mature viral proteins

available faster for the replication process. As potyviruses

have only a limited number of post-translational mechanisms

for regulating gene expression levels, we predicted that the

overproduction of NIa-Pro will alter the equilibrium concentra-

tions of all the different mature peptides and thus have a

major impact in TEV fitness. Higher levels of NIb may result

in higher levels of transcription and faster replication of the

virus and this could lead to higher levels of genome accumu-

lation and potentially the within-host spread of infection by a

greater number of virions. The cellular multiplicity of infection

(MOI), which has been estimated to be as low as 1.14 virions

per infected cell for TEV (Tromas, Zwart, Lafforgue, et al.

2014), might even increase. Higher levels of CP expression

could allow for the encapsidation of more genomic RNA
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molecules without affecting the accumulation of all other

mature peptides. However, in all these cases completion of

the infectious cycle would still depend on the cytoplasmic

amount of other limiting viral (e.g., P1, P3, CI, and VPg) or

host proteins.

The duplication events that we explore here could there-

fore conceivably have beneficial effects on TEV replication,

perhaps offsetting the costs inherent to a larger genome

and thereby increasing overall fitness. Moreover, especially

in the case of HC-Pro, they could perhaps lead to the evolution

of greatly improved or novel functions. However, given the

scarcity of gene duplications in RNA viruses, we expected that

the fitness costs of duplication are likely to be high, and that

one of the two gene copies would be rapidly lost. If further

mutations could potentially help accommodate the duplicated

gene, then this could lead to interesting evolutionary dynam-

ics: will the duplicated gene be lost or will beneficial mutations

that lead to stable maintenance of the gene occur first? (Zwart

et al. 2014). Moreover, as they could potentially disrupt cor-

rect processing of the polyprotein, the possibility that some of

the duplications would not be viable in the first place could

also not be discounted (Majer et al. 2014). To address these

issues we have constructed four viruses with gene duplications

and tested their viability. We subsequently evolved these vi-

ruses and determined the stability of the duplicated gene, as

well as looking for signals of accommodation of the dupli-

cated gene. Finally, we built a mathematical model to estimate

key parameters from the experimental data, such as the re-

combination rates responsible for the deletion of duplicated

genes, and to explore the evolutionary dynamics and stability

conditions of the system.

Materials and Methods

Viral Constructs, Virus Stocks and Plant Infections

The TEV genome used to generate the virus constructs, was

originally isolated from Nicotiana tabacum plants (Carrington

et al. 1993). In this study five different variants of TEV were

used containing single gene duplications. Two of these virus

variants, TEV-NIb1-NIb9 and TEV-NIb2-NIb9 were generated in

a previous study (Willemsen et al. 2016). The other three

variants were generated in this study: TEV-HCPro2-HCPro3,

TEV-NIaPro2-NIaPro8, and TEV-CP10-CP11. The TEV-HCPro2-

HCPro3 and TEV-CP10-CP11 viruses contain gene duplications

in tandem.

TEV-HCPro2-HCPro3, TEV-NIaPro2-NIaPro8, and TEV-CP10-

CP11 were generated from cDNA clones constructed using

plasmid pMTEVa, which consists of a TEV infectious cDNA

(accession: DQ986288, including two silent mutations,

G273A and A1119G) flanked by SP6 phage RNA promoter

derived from pTEV7DA (GenBank: DQ986288). pMTEVa con-

tains a minimal transcription cassette to ensure a high plasmid

stability (Bedoya and Daròs 2010). The clones were con-

structed using standard molecular biology techniques, includ-

ing PCR amplification of cDNAs with the high-fidelity Phusion

DNA polymerase (Thermo Scientific), DNA digestion with

Eco31I (Thermo Scientific) for assembly of DNA fragments

(Engler et al. 2009), DNA ligation with T4 DNA ligase

(Thermo Scientific) and transformation of Escherichia coli

DH5a by electroporation. Sanger sequencing confirmed the

sequences of the resulting plasmids.

The plasmids of TEV-HCPro2-HCPro3, TEV-NIaPro2-NIaPro8

and TEV-CP10-CP11 were linearized by digestion with BglII

prior to in vitro RNA synthesis using the mMESSAGE

mMACHINE
�

SP6 Transciption Kit (Ambion), as described in

Carrasco et al. (2007). The third true leaf of 4-week-old N.

tabacum L. cv Xanthi NN plants was mechanically inoculated

with varying amounts (5–30mg) of transcribed RNA. All symp-

tomatic tissue was collected 7 dpi (days post inoculation) and

stored at �80 �C as stock tissue.

Serial Passages

For the serial passage experiments, 500 mg homogenized

stock tissue was ground into fine powder using liquid nitrogen

and a mortar, and resuspended in 500ml phosphate buffer

(50 mM KH2PO4, pH 7.0, 3% polyethylene glycol 6000). From

FIG. 1.—Schematic representation of the different TEV genotypes

containing gene duplications. The wild-type TEV (A) codes for 11

mature peptides, including P3N-PIPO embedded within the P3 protein at

a+2 frameshift. Five different viral genotypes containing a single gene

duplication were constructed. Second copies of HC-Pro (B), NIa-Pro

(C), and NIb (D) were introduced between P1 and HC-Pro. A second

copy of NIb was also introduced before P1 (D). And a second copy of

CP was introduced between NIb and CP (E). For simplification P3N-PIPO is

only drawn at the wild-type TEV.
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this mixture, 20ml were then mechanically inoculated on the

third true leaf of 4-week old N. tabacum plants. At least five

independent replicates were performed for each virus variant.

At the end of the designated passage duration (3 or 9 weeks)

all leaves above the inoculated leaf were collected and stored

at�80 �C. For subsequent passages, the frozen tissue was

homogenized and a sample of the homogenized tissue was

ground and resuspended with an equal amount of phosphate

buffer (Zwart et al. 2014). Then, new N. tabacum plants were

mechanically inoculated as described above. The plants were

kept in a BSL-2 greenhouse at 24 �C with 16 h light.

Reverse Transcription Polymerase Chain Reaction
(RT-PCR)

The wild-type TEV produces characteristic symptoms in the

host plant. However, some of the altered genotypes show

few or no symptoms and virus infection had to be confirmed

by RT-PCR. To confirm infection and to determine the stability

of the duplicated genes, RNA was extracted from 100 mg

homogenized infected tissue using the InviTrap Spin Plant

RNA Mini Kit (Stratec Molecular). Reverse transcription (RT)

was performed using MMuLV reverse transcriptase (Thermo

Scientific) and the reverse primer 50-CGCACTACATAGGAGAA

TTAG-30 located in the 30UTR of the TEV genome. PCR was

then performed with Taq DNA polymerase (Roche) and pri-

mers flanking the region containing the duplicated gene copy

(supplementary table S1, Supplementary Material online). To

test whether the ancestral gene copy was intact this region

was also amplified for TEV-NIaPro2-NIaPro8, TEV-NIb1-NIb9,

and TEV-NIb2-NIb9 viruses, where the duplicated genes are

not located in tandem (supplementary table S1,

Supplementary Material online). PCR products were resolved

by electrophoresis on 1% agarose gels. For those virus popu-

lations in which we detected deletions during the evolution

experiment, we estimated the genome size based on the

amplicon size and the genome size of the ancestral viruses.

Fitness Assays

The genome equivalents per 100 mg of tissue of the ancestral

virus stocks and all evolved lineages were determined for sub-

sequent fitness assays. The InviTrap Spin Plant RNA Mini Kit

(Stratec Molecular) was used to isolate total RNA from 100 mg

homogenized infected tissue. Real-time quantitative RT-PCR

(RT-qPCR) was performed using the One Step SYBR

PrimeScript RT-PCR Kit II (Takara), in accordance with manu-

facturer instructions, in a StepOnePlus Real-Time PCR System

(Applied Biosystems). Specific primers for the CP gene were

used; forward 50-TTGGTCTTGATGGCAACGTG-30 and reverse

50-TGTGCCGTTCAGTGTCTTCCT-30. The StepOne Software

v.2.2.2 (Applied Biosystems) was used to analyze the data.

The concentration of genome equivalents per 100 mg of

tissue was then normalized to that of the sample with the

lowest concentration, using phosphate buffer.

For the accumulation assays, 4-week-old N. tabacum plants

were inoculated with 50ml of the normalized dilutions of

ground tissue. For each ancestral and evolved lineage, at

least three independent plant replicates were used. Leaf

tissue was harvested 7 dpi. Total RNA was extracted from

100 mg of homogenized tissue. Virus accumulation was

then determined by means of RT-qPCR for the CP gene of

the ancestral and the evolved lineages. For each of the har-

vested plants, at least three technical replicates were used in

the RT-qPCR.

To measure within-host competitive fitness, we used TEV

carrying an enhanced green fluorescent protein (TEV-eGFP)

(Bedoya and Daròs 2010) as a common competitor. TEV-

eGFP has proven to be stable up to 6 weeks (using 1- and

3-week serial passages) in N. tabacum (Zwart et al. 2014),

and is therefore not subjected to appreciable eGFP loss

during our 1-week long competition experiments. All ances-

tral and evolved viral lineages were again normalized to the

sample with the lowest concentration, and 1:1 mixtures of

viral genome equivalents were made with TEV-eGFP. The

mixture was mechanically inoculated on the same species

of host plant on which it had been evolved, using three in-

dependent plant replicates per viral lineage. The plant leaves

were collected at 7 dpi, and stored at�80 �C. Total RNA was

extracted from 100 mg homogenized tissue. RT-qPCR for the

CP gene was used to determine total viral accumulation, and

independent RT-qPCR reactions were also performed for the

eGFP sequence using primers forward 50-CGACAACCACTAC

CTGAGCA-30 and reverse 50-GAACTCCAGCAGGACCATGT-

30. The ratio (R) of the evolved and ancestral lineages to TEV-

eGFP is then R ¼ nCP � neGFPð Þ=neGFP, where nCP and neGFP

are the RT-qPCR measured copy numbers of CP and eGFP,

respectively. Within-host competitive fitness can then be es-

timated as W ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Rt=R0

t
p

, where R0 is the ratio at the start of

the experiment and Rt the ratio after t days of competition

(Carrasco et al. 2007). Note that the method for determining

R only works well when the frequency of the common is

below ~0.75. This limitation was not problematic though,

because in these experiments the fitness of the evolved

virus populations remained the same or increased. The sta-

tistical analyses comparing the fitness between lineages were

performed using R v.3.2.2 (R Core Team 2014) and IBM SPSS

Statistics version 23.

Sanger Sequencing

For those evolved virus populations in which deletions were

detected by RT-PCR, the exact positions of these deletions

were determined. The genomes were partly sequenced by

the Sanger method. RT was performed using AccuScript Hi-

Fi (Agilent Technologies) reverse transcriptase and a reverse

primer outside the region to be PCR-amplified for sequencing

(supplementary table S2, Supplementary Material online). PCR

was then performed with Phusion DNA polymerase (Thermo

A. Willemsen et al. GBE
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Scientific) and primers flanking the deletions (supplementary

table S1, Supplementary Material online). Sanger sequencing

was performed at GenoScreen (Lille, France: www.genosc-

reen.com; last accessed April 10, 2016) with an ABI3730XL

DNA analyzer. For TEV-HCPro2-HCPro3, six sequencing reac-

tions were done per lineage using the same outer reverse

primer as used for PCR amplification plus five inner primers

(supplementary table S2, Supplementary Material online). For

TEV-NIaPro2-NIaPro8, three sequencing reactions were done

per lineage using three inner primers (supplementary table S2,

Supplementary Material online). For TEV-NIb1-NIb9 and TEV-

NIb2-NIb9, six sequencing reactions were done per lineage

using the same two outer primers as used for PCR amplifica-

tion plus four inner primers (supplementary table S2,

Supplementary Material online). For TEV-CP10-CP11, two se-

quencing reactions were done per lineage using the same two

outer primers as used for PCR amplification (supplementary

table S2, Supplementary Material online). Sequences were as-

sembled using Geneious v.8.0.3 (www.geneious.com; last ac-

cessed April 10, 2016) and the start and end positions of the

deletions were determined. Based on the ancestral reference

sequences, new reference sequences were constructed con-

taining the majority deletion variant for each of the evolved

lineages.

Illumina Sequencing, Variants, and SNP Calling

For Illumina next-generation sequencing (NGS) of the evolved

and ancestral lineages, the viral genomes were amplified by RT-

PCR using AccuScript Hi-Fi (Agilent Technologies) reverse tran-

scriptase and Phusion DNA polymerase (Thermo Scientific),

with six independent replicates that were pooled. Each virus

was amplified using three primer sets generating three ampli-

cons of similar size (set 1: 50-GCAATCAAGCATTCTACTTCTATTG

CAGC-30 and 50-TATGGAAGTCCTGTGGATTTTCCAGATCC-30;

set 2: 50-TTGACGCTGAGCGGAGTGATGG-30 and 50-AATGCTT

CCAGAATATGCC-30; set 3: 50-TCATTACAAACAAGCACTTG-30,

and 50-CGCACTACATAGGAGAATTAG-30). Equimolar mixtures

of the three PCR products were made. Sequencing was per-

formed at GenoScreen. Illumina HiSeq2500 2� 100 bp paired-

end libraries with dual-index adaptors were prepared along

with an internal PhiX control. Libraries were prepared using

the Nextera XT DNA Library Preparation Kit (Illumina Inc.).

Sequencing quality control was performed by GenoScreen,

based on PhiX error rate and Q30 values.

Read artifact filtering and quality trimming (30 minimum

Q28 and minimum read length of 50 bp) was done using

FASTX-Toolkit v.0.0.14 (http://hannonlab.cshl.edu/fastx_

toolkit/index.html, last accessed April 10, 2016). De-replica-

tion of the reads and 50 quality trimming requiring a minimum

of Q28 was done using PRINSEQ-lite v.0.20.4 (Schmieder and

Edwards 2011). Reads containing undefined nucleotides (N)

were discarded. As an initial mapping step, the evolved se-

quences were mapped using Bowtie v.2.2.6 (Langmead and

Salzberg 2012) against their corresponding ancestral se-

quence: TEV (GenBank accession number KX137149), TEV-

HCPro2-HCPro3 ancestral (GenBank accession number

KX137150), TEV-NIaPro2-NIaPro8 ancestral (GenBank acces-

sion number KX137151), TEV-NIb1-NIb9 ancestral (GenBank

accession number KT203712), TEV-NIb2-NIb9 ancestral

(GenBank accession number KT203713), and against the

evolved lineages including the corresponding deletions in

the lineages where they are present. Subsequently, mutations

were detected using SAMtools’ mpileup (Li et al. 2009) in the

evolved lineages as compared with their ancestral lineage. At

this point, we were only interested in mutations at a frequency

>10%. Therefore, we present frequencies as reported by

SAMtools, which has a low sensitivity for detecting low-fre-

quency variants (Spencer et al. 2014).

After the initial pre-mapping step, error correction was

done using Polisher v2.0.8 (available for academic use from

the Joint Genome Institute) and consensus sequences were

defined for every lineage. Subsequently, the cleaned reads

were remapped using Bowtie v.2.2.6 against the correspond-

ing consensus sequence for every lineage. For each new con-

sensus, Single nucleotide polymorphisms (SNPs) within each

virus population were identified using SAMtools’ mpileup and

VarScan v.2.3.9 (Koboldt et al. 2012). For SNP calling maxi-

mum coverage was set to 40000 and SNPs with a frequency

<1% were discarded.

Modeling the Stability of Gene Insertions

We developed a mathematical model to fit with the experi-

mental data for the 3-week and 9-week passages. We were

particularly interested in better understanding the evolution of

a viral population composed by two different viral types, the

wild-type and one containing a duplication. The model con-

sists of two coupled ordinary differential equations:

dA

dt
¼ aA 1�

Aþ bB

k

� �
� dA ð1Þ

dB

dt
¼ bB 1�

aAþ B

k

� �
þ dA ð2Þ

where A is the number of viruses containing a gene duplica-

tion, B is the number of viruses that had reverted to the wild-

type with a single copy, a is the initial growth rate of type A

virus, b is the initial growth rate of the type B, �= b/a is a

constant for determining the effect of the presence of B on

replication of A (Solé et al. 1998), �= 1/� is a constant for

determining the opposing effect of A on B, � is the time-de-

pendent carrying capacity of the host plant, and � is the re-

combination rate per genome and replication at which the

extra copy of the gene is removed from A to produce B. We

assume that � increases linearly over time, being proportional

to the estimated weight of collected plant tissue (2 g for the
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whole plant at inoculation, 200 g for the collected leaves at 9

weeks). At the start of each round of infection, there is a fixed

bottleneck size of l. The number of infecting virions of A is

determined by a random draw from a Binomial distribution

with a probability of success lA/(A + B) and a size l, and the

number of infecting virions of B is then l minus this realization

from the Binomial distribution.

Estimates of most model parameters could be obtained

from previous studies (table 1). An estimate of b has been

made (Zwart et al. 2012), whilst a can be determined knowing

the competitive fitness of the virus with duplication relative to

the wild-type virus. The value of b used is 1.344, and a values

are 1.175, 1.234, 1.185, and 1.134 for TEV-HCPro2-HCPro3,

TEV-NIaPro2-NIaPro8, TEV-NIb1-NIb9, and TEV-NIb2-NIb9, re-

spectively. The only model parameter that needed to be esti-

mated from the data is �. To obtain an estimate of this

parameter, we implemented the model as described in equa-

tions (1) and (2) in R 3.1.0. For each dataset to which we

wanted to fit the model, we first simply ran the model for a

wide range of recombination rates: considering all values of

log(�) between�20 and�0.1, with intervals of 0.1. One-

thousand simulations were run for each parameter value.

To fit the model to the data, we considered model predic-

tions of the frequency of three kinds of virus populations over

time: (i) those populations containing only the full-length an-

cestral virus with a gene duplication (X1), (ii) those populations

containing only variants with a genomic deletion removing the

artificially introduced second gene copy (X2), and (iii) those

populations containing a mixture of both variants (X3).

Recombination and selection are modeled as deterministic pro-

cesses, and therefore in every population recombinants will

occur and be under selection. However, in order to reach ap-

preciable frequencies and eventually be fixed, recombinants

must reach a high enough frequency so that they will be sam-

pled during the genetic bottleneck at the start of infection.

Moreover, we used a PCR-based method with inherent limits

to its sensitivity to characterize experimental populations. For

these two reasons, we assumed that the predicted frequency

of A must be greater than 0.1 and less than 0.9 to be consid-

ered a mixture. We then compared model predictions for the

frequency of the three different kinds of virus populations with

the data by means of multinomial likelihoods. The likelihood of

the number of occurrences of these three stochastic variables

denoting observations of a particular kind of population (X1,

X2, and X3) follows a Multinomial distribution with probabilities

p1, p2, and p3 (
P3

i¼1 pi ¼ 1). The multinomial probability of a

particular realization (x1, x2, and x3) is given by:

P X1 ¼ x1;X2 ¼ x2;X3 ¼ x3ð Þ ¼

P3
i¼1 xi

� �
!

�3
i¼1xi !

�
3

i¼1
pxi

i :

The estimate of � is then simply the value that corresponds

to the lowest negative log-likelihood (NLL), for the entire

range of � values tested. We first fitted the model with a

single value of � to all the data (Model 1; 1 parameter).

Next, we fitted the model with a virus-dependent value of

�, but one which is independent of passage duration (Model

2; 4 parameters). We then fitted the model with � value de-

pendent on passage duration, but the same for each virus

(Model 3; 2 parameters). Finally, we fit the model to each

experimental treatment separately (Model 4; 8 parameters).

For all these different model fittings, 95% fiducial estimates of

� were obtained by fitting the model to 1000 bootstrapped

datasets.

The numerical solutions of the differential equations (1) and

(2) used to characterize the dynamical properties, build the

phase portraits and to obtain the transient times (supplemen-

tary text S2, Supplementary Material online) have been ob-

tained using a fourth-order Runge–Kutta method with a time

step size 0.1.

Results

Genetic Redundant Constructs and the Viability of the
Resulting Viruses

To simulate the occurrence of duplication events within the

TEV genome (fig. 1A), different TEV genotypes were con-

structed using four genes of interest (fig. 1). Each of these

genotypes therefore represents a single gene duplication

event. Where necessary, the termini of the duplicated gene

copies were adjusted, such that the proteins can be properly

translated and processed. Cleavage sites are provided, similar

to the original proteolytic cleavage sites at the corresponding

positions. A description of every duplication event will be given

in the same order as these genes occur within the TEV

genome.

First, for duplication of the multifunctional HC-Pro gene, a

second copy of HC-Pro was inserted in the second position

within the TEV genome, between the P1 serine protease gene

and the original HC-Pro copy, generating a tandem duplica-

tion (fig. 1B). This position is a common site for the cloning of

heterologous genes (Zwart et al. 2011). Second, a copy of the

NIa-Pro main viral protease gene was introduced between P1

and HC-Pro (fig. 1C). Third, two genotypes containing a du-

plication of the NIb replicase gene were generated (Willemsen

et al. 2016), where a copy of the NIb gene was inserted at the

first position (before P1) and the second position in the TEV

genome (fig. 1D). Fourth, for duplication of the CP we intro-

duced a second copy at the tenth position between NIb and

CP, generating a tandem duplication (fig. 1E). Henceforth we

refer to these five genetic redundant viruses as TEV-HCPro2-

HCPro3, TEV-NIaPro2-NIaPro8, TEV-NIb1-NIb9, TEV-NIb2-NIb9,

and TEV-CP10-CP11, respectively, with subscripts denoting the

intergenic positions of the duplicated gene in question.

The viability of the genetic redundant viruses was tested in

N. tabacum by inoculating plants with approximately 5mg of

A. Willemsen et al. GBE
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in vitro generated transcripts (“Materials and Methods” sec-

tion). The TEV-HCPro2-HCPro3, TEV-NIaPro2-NIaPro8, TEV-

NIb1-NIb9, and TEV-NIb2-NIb9 viruses were found to infect

N. tabacum plants, as determined by RT-PCR of total RNA

extracted from these plants. Multiple viability tests showed

that the TEV-CP10-CP11 virus had a very low infectivity and

that large amounts of RNA (>20 mg) were needed for a suc-

cessful infection. When performing RT-PCR of the region con-

taining the two CP copies, we detected either (i) a band

corresponding to the wild-type virus, indicating that upon in-

fection with RNA the second CP copy is deleted immediately,

or (ii) a band that indicates the two CP copies are present.

When taking the virus with the two CP copies as a starting

population for experimental evolution, we found that this

virus was highly unstable. Within the first 3-week passage,

we detect a band corresponding to the wild-type virus, in six

out of eight lineages, and we did not detect any infection in

the remaining two lineages. When sequencing the region con-

taining the deletions in the different lineages, using Sanger

technology, exact deletions of the second CP copy were ob-

served. We discontinued further experiments on this virus due

to the extreme instability of the second CP copy.

Evolution of Genetically Redundant Viruses

After reconstitution of TEV-HCPro2-HCPro3, TEV-NIaPro2-

NIaPro8, TEV-NIb1-NIb9, and TEV-NIb2-NIb9 from infectious

clones, these viruses were evolved in N. tabacum plants for

a total of 27 weeks, using nine 3-week passages and three

9-week passages with at least five independent lineages for

each passage duration. In the starting population of TEV-

HCPro2-HCPro3 we observed mild symptoms. However, in

lineages from the first 3- and 9-week passages, the plants

rapidly became as symptomatic as those infected by the

wild-type virus. At the start of the evolution experiment,

TEV-NIaPro2-NIaPro8 also displayed only mild symptoms and

infection appeared to expand slower than for the wild-type

TEV. However, in the first 9-week passage symptoms became

stronger, similar to the wild-type virus, as the virus expanded

through the plant. These stronger symptoms were also

observed in the subsequent 9-week passages. Increases in

symptom severity were also observed for the TEV-NIb1-NIb9

and TEV-NIb2-NIb9 viruses (Willemsen et al. 2016).

Partial and complete deletions of the duplicated gene copy

were detected by RT-PCR (fig. 2), but never in the ancestral

gene. Rapid complete deletions were detected in all TEV-

HCPro2-HCPro3 lineages (fig. 2A). Note that no deletions

were detected in the TEV-NIaPro2-NIaPro8 lineages using the

shorter 3-week passages, whereas in the longer 9-week pas-

sages partial or complete deletions did occur in passage 2

(fig. 2B). Mixed populations that contain viral genomes with

a deletion together with genomes that have maintained the in-

tact duplicated copy, are mainly present in the TEV-NIb1-NIb9

and TEV-NIb2-NIb9 lineages (fig. 2C and D). Based on the

majority deletion variants observed by RT-PCR, the genome

size was estimated for every passage (fig. 3). Comparing the

genome size of the different viral genotypes in figure 3, there

are clear differences in the time until the duplicated gene copy

is deleted. The duplicated HC-Pro appears the least stable,

whereas the duplicated NIa-Pro appears to be the most

stable. For TEV-NIaPro2-NIaPro8, TEV-NIb1-NIb9, and TEV-

NIb2-NIb9, there are lineages that contain deletions that lead

to a genome size smaller than that of the wild-type TEV.

Viruses with a Gene Duplication Have Reduced Fitness
Which Cannot Always Be Fully Restored after Deletion

For both the ancestral and evolved virus populations, we mea-

sured within-host competitive fitness (fig. 4) and viral accu-

mulation (fig. 5). Comparing the ancestral viruses containing a

gene duplication to the ancestral wild-type virus (solid circles in

figs. 4 and 5), we observed statistically significant decreases in

competitive fitness (fig. 4A: TEV-HCPro2-HCPro3: t4=8.398,

P = 0.001; fig. 4B: TEV-NIaPro2-NIaPro8: t4=12.776,

P<0.001; fig. 4C: TEV-NIb1-NIb9: t4=6.379, P = 0.003; TEV-

NIb2-NIb9: t4=8.348, P = 0.001). Statistically significant

decreases in accumulation levels were also observed for

TEV-HCPro2-HCPro3, TEV-NIb1-NIb9, and TEV-NIb2-NIb9

(fig. 5A: TEV-HCPro2-HCPro3: t4=3.491, P = 0.0251; fig. 5C:

TEV-NIb1-NIb9: t4=45.097, P<0.001; TEV-NIb2-NIb9:

Table 1

Model Parameters

Parameter Value Explanation

� 500 Number of founders of infection (Zwart et al. 2014).

kt=9 weeks 4 � 109 Final value time-varying carrying capacity (9 weeks post-infection), weight of leaves multiplied by

carrying capacity as estimated (Zwart et al. 2012).

b 1.344 Initial growth rate (per generation) for virus with single gene copy (Zwart et al. 2012).

a fb Initial growth rate for virus with a duplicated gene, where � is the relative fitness of the virus

with duplications compared with the virus with a single gene copy (see results)

g 2.91 Generations per day (Martı́nez et al. 2011).

b b/a The effect of A the replication of B

a a/b The effect of B the replication of A
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t4=8.650, P<0.001). However, there was no difference in

accumulation for the virus with a duplication of NIa-Pro

(fig. 5B: TEV-NIaPro2-NIaPro8: t4=2.099, P = 0.104). All the

four viruses with a gene duplication therefore have a reduced

within-host competitive fitness, and three out of four viruses

also have reduced accumulation levels. None of the possible

benefits of these gene duplications therefore can compensate

for their costs.

After evolving the viruses with gene duplications using

three 9-week passages, within-host competitive fitness of all

four viruses increased (open circles in fig. 4), compared with

their respective ancestral viruses (fig. 4; asterisks indicate a

significant increase, t-test with Holm–Bonferroni correction

for multiple tests). When comparing the evolved lineages,

within-host fitness for TEV-HCPro2-HCPro3 (fig. 4A) and

TEV-NIaPro2-NIaPro8 (fig. 4B) was similar to that of the wild-

type TEV. On the other hand, the evolved TEV-NIb1-NIb9

and TEV-NIb2-NIb9 lineages did not reach wild-type virus

within-host fitness levels (fig. 4C). The within-host fitness of

evolved lineages was compared by means of a nested ANOVA

(table 2), allowing the independent lineages (at least 5)

to be nested within the genotype and the independent

plant replicates (3) to be nested within the independent line-

ages within the genotype. The nested ANOVA confirms

that there is indeed an effect of the genotype for the TEV-

NIb1-NIb9 and TEV-NIb2-NIb9 viruses (table 2; Willemsen

et al. 2016), whereas for the TEV-HCPro2-HCPro3 and

TEV-NIaPro2-NIaPro8 no effect was found. In summary, the

fitness of TEV-HCPro2-HCPro3 and TEV-NIaPro2-NIaPro8

clearly increases to levels similar to the wild-type,

whilst fitness did not increase for TEV-NIb2-NIb9 and TEV-

NIb1-NIb9.

Together with within-host fitness, virus accumulation also

increased significantly for the evolved TEV-NIb1-NIb9 and TEV-

NIb2-NIb9 virus lineages (fig. 5C; asterisks), when compared

with their respective ancestral viruses. However, accumulation

levels did not increase significantly for most of the evolved

lineages of the TEV-HCPro2-HCPro3 and TEV-NIaPro2-

NIaPro8 genotypes. Nevertheless, these two genotypes have

much higher initial accumulation levels than the genotypes

with a duplication of the NIb gene. When comparing the ac-

cumulation levels of the evolved lineages to those of the wild-

type, TEV-HCPro2-HCPro3 (fig. 5A), TEV-NIaPro2-NIaPro8

(fig. 5B), and TEV-NIb2-NIb9 (fig. 5C) do reach wild-type ac-

cumulation levels, whereas TEV-NIb1-NIb9 does not (fig. 5C).

Comparing the accumulation levels of the evolved lineages by

means of a nested ANOVA (table 2) confirms that there is an

effect of the genotype for the TEV-NIb1-NIb9 virus (table 2;

Willemsen et al. 2016), whereas no effect for the TEV-HCPro2-

HCPro3, TEV-NIaPro2-NIaPro8, and TEV-NIb2-NIb9 viruses was

found.

When comparing the within-host competitive fitness of the

evolved TEV-NIaPro2-NIaPro8 9-week lineages to the 3-week

lineages, we found that there is a linear relationship between

genome size and within-host competitive fitness (fig. 6;

Spearman’s rank correlation �=�0.795, 10 d.f., P = 0.006).

The evolved 9-week lineages, that contain genomic deletions,

have a significant higher within-host competitive fitness

(Mann–Whitney U = 4.5, P< 0.001) than the evolved

3-week lineages without deletions.

FIG. 2.—Deletion detection along the evolution experiments. RT-PCR was performed on the region containing a duplication in the viral genotypes (A–D).

Either an intact duplicated copy (white boxes), a deletion together with an intact duplicated copy (light-grey boxes), or a partial or complete loss of the

duplicated copy (dark-grey boxes) were detected.
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Genome Sequences of the Evolved Lineages

All evolved and ancestral lineages have been fully sequenced

using the Illumina technology. The sequences of the ancestral

lineages were used as an initial reference for the evolved

lineages. Furthermore, for the lineages where deletions were

detected by RT-PCR (fig. 3), parts of the genome were se-

quenced by Sanger to determine the exact deletion sites.

The majority deletions variants were used to construct new

FIG. 3.—The reduction in genome size over time. The different panels display how the genome size of the different viral genotypes with gene

duplications (A–D) changes along the evolution experiments. The dotted grey lines indicate the genome sizes of the wild-type virus (below) and the ancestral

viruses (above). The genome sizes of the 3-week lineages are drawn with dashed black lines and open symbols, and those of the 9-week lineages are drawn

with continuous blue lines and filled symbols.
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FIG. 4.—Within-host competitive fitness of the evolved and ancestral lineages. Fitness (W), as determined by competition experiments and RT-qPCR of

the different viral genotypes with respect to a common competitor; TEV-eGFP. The ancestral lineages are indicated by filled circles and the evolved lineages

by open circles. The different viral genotypes are color coded, where the wild-type virus is drawn in green. The asterisks indicate statistical significant

differences of the evolved lineages as compared with their corresponding ancestral lineages (t-test with Holm–Bonferroni correction).
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reference sequences for each of the evolved TEV-HCPro2-

HCPro3, TEV-NIaPro2-NIaPro8, TEV-NIb1-NIb9, and TEV-NIb2-

NIb9 lineages that contain deletions. After an initial mapping

step, mutations were detected in the evolved lineages as

compared with their corresponding ancestor (“Materials and

Methods” section). Beside the large genomic deletions, differ-

ent patterns of adaptive evolution were observed for each viral

genotype (fig. 7 and table 3). For a more detailed description

FIG. 5.—Virus accumulation of the evolved and ancestral lineages. Virus accumulation, as determined by accumulation experiments and RT-qPCR at

7dpi of the different viral genotypes. The ancestral lineages are indicated by filled circles and the evolved lineages by open circles. The different viral

genotypes are color coded, where the wild-type virus is drawn in green. The asterisks indicate statistical significant differences of the evolved lineages as

compared with their corresponding ancestral lineages (t-test with Holm–Bonferroni correction).
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of the mutations detected, see supplementary text S1

(Supplementary Material online). After remapping the cleaned

reads against a new defined consensus sequence for each

lineage, we looked at the variation within each lineage.

Single nucleotide polymorphisms (SNPs) were detected at a

frequency as low as 1%. In all four virus genotypes as well as

in the wild-type virus, most of the SNPs were present at low

frequency (frequency of SNPs at<0.1: TEV-HCPro2-

HCPro3=89.8%; TEV-NIaPro2-NIaPro8=84.8%; TEV-NIb1-

NIb9=83.3%; TEV-NIb2-NIb9=81.2%; TEV = 85.2%), with a

higher prevalence of synonymous (TEV-HCPro2-HCPro3:

54.7%, TEV-NIaPro2-NIaPro8: 57.7%, TEV-NIb1-NIb9:

66.4%, TEV-NIb2-NIb9: 64.5%, TEV: 59.7%) versus non-syn-

onymous changes (supplementary fig. S1, Supplementary

Material online). Moreover, a percentage of the non-synony-

mous changes for TEV-HCPro2-HCPro3 (16.7%) and TEV-

NIaPro2-NIaPro8 (7.3%) as well as the wild-type TEV

(14.8%), are actually leading to stop codons and there-

fore unviable virus variants. In the lineages of both

TEV-HCPro2-HCPro3 and TEV-NIaPro2-NIaPro8, there are sig-

nificant differences in the distribution of the frequency of syn-

onymous and non-synonymous SNPs per nucleotide position

(Kolmogorov–Smirnov test; TEV-HCPro2-HCPro3: D = 0.219,

P<0.001; TEV-NIaPro2-NIaPro8: D = 0.151, P = 0.009),

whereas for TEV-NIb1-NIb9 and TEV-NIb2-NIb9 (Willemsen

et al. 2016) and the wild-type virus this is not significant

(Kolmogorov–Smirnov test; TEV: D = 0.084, P = 0.555). For

more details on the frequency of the SNPs within every line-

age, see supplementary tables S3–S5 (Supplementary Material

online).

Genomic Stability of TEV with Duplications of
Homologous Genes

To better understand the evolutionary dynamics of viruses

with gene duplications, we developed a simple mathematical

model of virus competition and evolution. Based on amplicon

sizes, the genome size for all evolved lineages was estimated

Table 2

Nested ANOVA s on Within-Host Competitive Fitness and Viral Accumulation

Genotype Trait Source of variation SS df MS F P

TEV-HCPro2-HCPro3 Competitive fitness Genotype 0.049 1 0.049 0.786 0.396

Lineage within genotype 0.624 10 0.062 9.947 <0.001

Plant within lineage within genotype 0.150 24 0.006 347.244 <0.001

Error 0.001 72 1.81 � 10�5

Accumulation Genotype 0.008 1 0.008 0.080 0.783

Lineage within genotype 1.012 10 0.101 1.005 0.467

Plant within lineage within genotype 2.417 24 0.101 51.187 <0.001

Error 0.142 72 0.002

TEV-NIaPro2-NIaPro8 Competitive fitness Genotype 0.155 1 0.155 4.534 0.066

Lineage within genotype 0.274 8 0.034 4.285 0.004

Plant within lineage within genotype 0.160 20 0.008 503.714 <0.001

Error 0.001 60 1.59 � 10�5

Accumulation Genotype 0.246 1 0.246 1.199 0.305

Lineage within genotype 1.643 8 0.205 2.224 0.070

Plant within lineage within genotype 1.847 20 0.092 323.631 <0.001

Error 0.017 60 0.001

TEV-NIb1-NIb9 Competitive fitness Genotype 1.308 1 1.308 49.734 <0.001

Lineage within genotype 0.212 8 0.026 3.145 0.018

Plant within lineage within genotype 0.169 20 0.008 175.319 <0.001

Error 0.003 58 4.81� 10�5

Accumulation Genotype 5.374 1 5.374 36.006 <0.001

Lineage within genotype 1.194 8 0.149 0.939 0.507

Plant within lineage within genotype 3.178 20 0.159 263.098 <0.001

Error 0.036 60 0.001

TEV-NIb2-NIb9 Competitive fitness Genotype 1.796 1 1.796 36.175 <0.001

Lineage within genotype 0.397 8 0.050 4.207 0.004

Plant within lineage within genotype 0.236 20 0.012 519.611 <0.001

Error 0.001 60 2.27� 10�5

Accumulation Genotype 0.824 1 0.824 3.728 0.090

Lineage within genotype 1.771 8 0.221 3.439 0.012

Plant within lineage within genotype 1.290 20 0.065 110.478 <0.001

Error 0.034 59 0.001
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for every passage (fig. 3). Our model attempts to account for

these data, and specifically how long the duplicated gene

copy is maintained in the virus population. The model we

developed describes how a population composed initially of

only a virus variant with a gene duplication (variant A) through

recombination, selection, and genetic drift acquires and even-

tually fixes a new variant that only retains the original copy of

the duplicated gene (variant B). The model includes a genetic

bottleneck at the start of each round of passaging (i.e., the

initiation of infection in the inoculated leaf), with a fixed total

number of founders and binomially distributed number of

founders for variants containing the gene duplication.

Following this genetic bottleneck, there is deterministic

growth of both variants as well as deterministic recombination

of A into B. The main question we addressed is whether

knowing the fitness of duplicated viruses (i.e., a) is sufficient

information to predict the stability of the inserted gene. Or do

the data support a context-dependent recombination rate,

with the context being (i) identity and position of the duplica-

tion, (ii) passage length, or (iii) both? We considered four dif-

ferent situations that are represented in the following models:

Model 1: one recombination rate for all conditions

(1 parameter);

Model 2: virus-genotype-dependent recombination rate

(4 parameters);

Model 3: passage-duration-dependent recombination

rates (2 parameters);

Model 4: virus-genotype- and passage-duration-depen-

dent recombination rates (full model, 8 parameters).

The model estimates of � are given in table 4. Note that the

parameter is often a minimum (when the virus is very unsta-

ble) or a maximum value (when the virus is very stable). If the

optimum is represented by more than one parameter value

(i.e., a range of parameter values that correspond to the

lowest NLL), the mean of these values is given. Some of the

models fit the data well (table 5), and we therefore saw no

reason to explore more complex models of virus evolution.

When comparing these models, we found that Model 2 is

the best-supported model (table 5). Thus, only a genotype-

dependent recombination rate is required to account for the

data. The results strongly suggest that the fitness of a virus

with a gene duplication does not provide sufficient informa-

tion for predicting genomic stability. Rather, as the recombi-

nation rate is dependent on the genetic context, the supply of

recombinants which have lost the duplicated gene will vary

greatly from one genotype to another. High recombinogenic

sites will remove the second copy fast, whereas low recombi-

nogenic sites will preserve the copy for longer periods of time,

after which it will be unavoidably removed, as confirmed by

the numerical analysis of equations (1) and (2) (supplementary

text S2, Supplementary Material online).

On the other hand, passage duration has a strong effect on

the observed stability of gene duplications. However, model

selection shows that this phenomenon can be sufficiently ex-

plained by considering the combined effects of selection and

genetic drift, and without invoking passage-duration-depen-

dent recombination rates. Given that recombination and se-

lection are deterministic in the model, deletion variants will

always arise during infection. However, depending on the

rates of recombination and selection, these deletion variants

may not reach a high enough frequency to ensure they are

sampled during the genetic bottleneck at the start of each

round of infection. This effect will be much stronger in the

3-week passages—because there will be fewer recombinants

and less time for selection to increase their frequency—ex-

plaining why for some viruses there is such a marked differ-

ence in the observed genomic stability for different passage

lengths.

The deterministic dynamics of the evolutionary model of

stability of genomes containing gene duplications have also

been investigated (supplementary text S2, Supplementary

Material online). These analyses were performed on the

model as described in equations (1) and (2), albeit with a

time-independent carrying capacity. The stability of three

fixed points was analyzed: (i) the extinction of both A and B,

(ii) the domination of B over the population, and (iii) the co-

existence of A and B in the population. The fixed points anal-

ysis indicates that when a<b and �> a – b, the B virus

subpopulation will outcompete the A subpopulation.

FIG. 6.—The relationship between genome size and within-host com-

petitive fitness. The pink filled circle represents the within-host competitive

fitness of the ancestral TEV-NIaPro2-NIaPro8 and the green filled circle that

of the ancestral wild-type TEV. The black open circles represent the evolved

3-week (right) and 9-week (left) TEV-NIaPro2-NIaPro8 lineages. The evolved

9-week lineages, that contain genomic deletions, have a significant higher

within-host competitive fitness (Mann–Whitney U = 4.5, P< 0.001) than

the evolved 3-week lineages without deletions. A linear regression has

been drawn to emphasize the trend in the data.
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FIG. 7.—Genomes of the ancestral and evolved lineages. Mutations were detected using NGS data of the evolved virus lineages as compared with their

ancestral lineages. The square symbols represent mutations that are fixed (>50%) and the circle symbols represent mutations that are not fixed (<50%).

Filled symbols represent non-synonymous substitutions and open symbols represent synonymous substitutions. Black substitutions occur only in one lineage,

whereas color-coded substitutions are repeated in two or more lineages, or in a lineage from another virus genotype. Note that the mutations are present at

different frequencies as reported by SAMtools. Grey boxes indicate genomic deletions in the majority variant.
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This parametric combination is the one obtained using the

biologically meaningful parameter values shown in table 1.

This means that, under the model assumptions, the popula-

tion of virus variants containing a gene duplication is unstable,

and the population will be asymptotically dominated by virus

variants containing a single gene copy. Notice that, the rate of

recombination (�) is also involved in this process of out-com-

petition (see the bifurcation values calculated in supplemen-

tary text S2, Supplementary Material online). Specifically, if

�> a – b, coexistence of the two virus variants is not possible.

Interestingly, the model also reveals the existence of a tran-

scritical bifurcation separating the scenario between coexis-

tence of the two variants and dominance of B. Such a

bifurcation can be achieved by tuning � as well as by unbalan-

cing the fitness of A and B virus types. This bifurcation gives

place to a smooth transition between these two possible evo-

lutionary asymptotic states (i.e., unstable A population and

coexistence of A and B populations). The bifurcation will

take place when a = b + �, or when � is above a critical thresh-

old, �c=a – b, that can be calculated from the mathematical

model (supplementary text S2, Supplementary Material

online).

Finally, we characterized the time to extinction of the A

subpopulation. We characterized these extinction times as a

function of viral fitness and of �. Such a time is found to

increase super-exponentially as the fitness of the A subpopu-

lation, approaches the fitness of the B subpopulation. This

effect is found for low values of recombination rates, similar

to those shown in table 4. As expected, increases in � produce

a drastic decrease in the time needed for the single-copy

variants to outcompete the variants with a gene duplication

within the population (supplementary text S2, Supplementary

Material online).

Discussion

Present-day viruses display a great variation in genome size

and structure, indicating that gene duplication must have

played a role in the early diversification of virus genomes.

However, nowadays gene duplications are rarely documented

in viruses, especially in RNA viruses. Therefore, it is quite ob-

vious to expect a priori that genomes with gene duplications

will be unstable in present-day RNA viruses. However, precise

gene duplications occur never or only rarely in nature, and as

our model virus encodes for a polyprotein, partial gene dupli-

cations are most likely to be non-functional. The engineered

viruses in this study, removed that hurdle and therefore we

expected that there was a higher probability of the introduced

gene duplications contributing to the enhancement of a virus

function or even the exploration of new functions.

Nevertheless, none of the duplication events explored in this

study appeared to be beneficial for TEV, both in terms of their

immediate effects and second-order effects on evolvability.

Gene duplication resulted in either an unviable virus or a sig-

nificant reduction in viral fitness. In all cases, the duplicated

gene copy, rather than the ancestral gene copy, was deleted

during long-duration passages. The earlier detection and more

rapid fixation of deletion variants during longer-duration pas-

sages is congruent with results from a previous study (Zwart

et al. 2014), where deletions of eGFP marker inserted in the

TEV genome were usually observed after a single 9-week pas-

sage, but were rarely spotted even after nine 3-week pas-

sages. In this study, similar results were obtained for TEV-

NIaPro2-NIaPro8 where no deletions were spotted in the 3-

week passages. On the other hand, the highly divergent re-

sults reported here for the stability of different duplicated

genes suggest that passage duration is not the main factor

determining whether gene duplication will be stable or unsta-

ble. Therefore, we postulated that the size of the duplicated

gene, the nature of the gene, and/or the position for duplica-

tion could play a role in the stability of genomes containing a

gene duplication.

The observation that gene duplication events result in de-

creases in fitness is not unexpected. The high mutation rate of

RNA viruses is likely to constrain genome size (Holmes 2003),

given that most mutations are deleterious (Sanjuán et al.

2004; Elena et al. 2006). This imposes the evolution of

genome compression, where overlapping reading frames

play a major role (Belshaw et al. 2007, 2008). In our model

virus, we speculate that the fitness cost can be related to three

processes: (i) the increase in genome size, (ii) the extra cost of

more proteins being expressed in the context of using more

cellular resources, and (iii) a disturbance in correct polyprotein

processing. Although all the duplications considered here

could conceivably have advantages for viral replication or

encapsidation, our results suggest that the any such advan-

tages are far outweighed by the costs associated with a larger

genome, increased protein expression or the effects on poly-

protein processing. However, the duplication of NIa-Pro does

not affect the viral accumulation rate. This could be explained

by the fact that the NIa-Pro gene is much smaller than the

other duplicated genes. Consequently, in conditions where

selection has the least time to act between bottleneck

events associated with infection of a new host (3-week

Table 3

Adaptive Convergent Mutations within Each Virus Genotype

Virus genotype nt change

at ancestral

position

aa change gene nt position

in gene

TEV-HCPro2-HCPro3 A304G I!V P1 160

U4444C S!P P3 625

TEV-NIaPro2-NIaPro8 C1466U S!L NIa-Pro2 410

A4357G I!V 6K1 148

TEV-NIb1-NIb9 A1643U Y!F NIb1 1499

TEV-NIb2-NIb9 C6351U Y!Y CI 1173

nt: nucleotide; aa: amino acid.
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passages), no deletions were observed. In the long-passage

experiment, selection has more time to act and increase the

frequency of beneficial de novo variants, allowing them to be

sampled during the bottleneck at the start of the next round

of infection. In addition, the size of the gene duplication also

seems to play a role. But what about the position and the

nature of the duplicated gene? When duplicating the same

gene, NIb, to either the first or second position in the TEV

genome, we see clear differences in the deletion dynamics

and fitness measurements (figs. 3–5; Willemsen et al. 2016).

Comparing the duplication and subsequent deletion of HC-

Pro, NIa-Pro and NIb at the same second position, we observe

that both accumulation and within-host competitive fitness

cannot be completely restored by the virus that originally

had two copies of the NIb replicase gene, whilst viruses that

originally had two copies of the HC-Pro gene or the main viral

protease NIa-Pro gene do restore their fitness after deletion.

However, because our evolutionary experiments were limited

to approximately half a year, we cannot rule out complete

restoration of fitness over longer time periods.

At the sequence level, there were some convergent single-

nucleotide mutations, although in most cases these occur only

in a small fraction of lineages. The transient presence of the

duplicated NIa-Pro copy in the 3-week lineages does seem to

be linked to an adaptive mutation. However, our fitness mea-

surements suggest that the cost of gene duplication cannot be

overcome by this single nucleotide mutation. The main

change in the evolved lineages is the deletion of the duplicated

gene copy. However, some deletions extend beyond the du-

plicated gene copy, including the N-terminal region of the HC-

Pro cysteine protease, similar to results obtained by previous

studies (Dolja et al. 1993; Zwart et al. 2014; Willemsen et al.

2016). The N-terminal region of HC-Pro is implicated in trans-

mission by aphids (Thornbury et al. 1990; Atreya et al. 1992)

and is not essential for viral replication and movement (Dolja

et al. 1993; Cronin et al. 1995). Our experimental setup does

not involve transmission by aphids, however, we do not ob-

serve this deletion when evolving the wild-type virus.

Moreover, we only observe this deletion when the position

of gene duplication or insertion (Zwart et al. 2014) is before

HC-Pro, suggesting that gene insertion and subsequent dele-

tion at this position facilitates recombination to an even smal-

ler genome size.

By fitting a mathematical model of virus evolution to the

data, we found that knowing only viral fitness is not enough

information to predict the stability of the duplicated genes:

model selection suggests there is a context-dependent recom-

bination rate, and specifically, the identity and position of the

duplication also play a role. Given that the supply rate of var-

iants with large deletions will be driven largely by homologous

recombination, we had expected stability to depend on the

genetic context. The estimates of the recombination rate per

genome and generation in this study are far lower than pre-

viously reported for TEV, which was estimated to be 3.43 �

10�5 per nucleotide and generation (Tromas, Zwart, Poulain,

et al. 2014), which translates into 0.327 per genome and

generation. The estimates of this study (TEV-HCPro2-HCPro3:

1.00 � 10�3; TEV-NIaPro2-NIaPro8: 2.24 � 10�10; TEV-NIb1-

NIb9: 1.26 � 10�3; TEV-NIb2-NIb9: 3.55 � 10�5) are much

closer to the per nucleotide estimate. This large discrepancy

could be related to two factors. First, Tromas, Zwart, Poulain,

et al. (2014) considered recombination between two highly

similar genotypes, which requires consideration of many de-

tails of the experimental system, including the rate at which

cells will be coinfected by these genotypes. On the other

hand, considering these details should lead to a general

Table 4

Model Parameter Estimates for Deterministic Recombination Rate

Model Estimates of Log10[d] (Lower 95% fiducial limit, upper 95% fiducial limit)

1 �6.2 (*)

2 2HCPro 2NIaPro 2NIb1 2NIb2

��3.0 (*) =�9.65 (�10.1, �9.0) ��2.9 (*) =�4.45 (�5.2, �3.7)

3 3W 9W

=�6.2 (*) =�9.65 (�10.1, �7.5)

4 2HCPro 3W 2NIaPro 3W 2NIb1 3W 2NIb2 3W

��3.0 (*) ��9.0 (*) ��2.9 (*) =�4.45 (�5.5, �3.7)

2HCPro 9W 2NIaPro 9W 2NIb1 9W 2NIb2 9W

��10.5 (*) =�9.6 (�10.1, �7.5) ��10.1 ��11.5 (*)

*The fiducial limit is identical to the parameter estimate, also when the parameter estimate is a range, 2HCPro: TEV-HCPro2-HCPro3; 2NIaPro: TEV-NIaPro2-NIaPro8; 2NIb1:
TEV-NIb1-NIb9; 2NIb2: TEV-NIb2-NIb9; 3W: 3-week passages; 9W: 9-week passages.

Table 5

Model Selection for Models with Deterministic Recombination

Model Parameters NLL AIC "AIC Akaike Weight

1 1 254.284 510.569 443.470 0.000

2 4 29.549 67.099 �0.000 0.982

3 2 226.669 457.339 390.240 0.000

4 8 29.549 75.099 8.000 0.018
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estimate of the recombination rate (as opposed to the rate at

which two different genotypes will recombine in a mixed in-

fection) and hence this explanation is not very satisfactory.

Second, only a small fraction of all recombination events will

render viruses with a conserved reading frame, and a suitable

deletion size: large enough to have appreciable fitness gains

and be selected, but small enough not to disrupt the sur-

rounding cistrons or polyprotein processing. Therefore, the

parameter � described here is in fact the rate at which this

particular subclass of recombinants occurs. This subclass is

likely to be only a small fraction of all possible recombinants,

and hence it is quite reasonable that these two estimates of

the recombination rate vary by several orders of magnitude.

In addition to gene duplications, the model developed in

this study can be applied to predict the stability of other types

of sequence insertions, such as those brought about by hor-

izontal gene transfer. Understanding the stability of gene in-

sertions in genomes is highly relevant to the understanding

genome-architecture evolution, but it also has important im-

plications for biotechnological applications, such as heterolo-

gous expression systems. Our results here suggest that the

fitness costs of extraneous sequences may not be a good

predictor of genomic stability, in general. Therefore, in prac-

tical terms, it could be advisable to empirically test the stability

of, e.g., a viral construct, rather than make assumptions on

stability based on parameters such as replication or

accumulation.

Supplementary Material

Supplementary tables, figures, and texts are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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