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Assessing parallel gene histories in viral
genomes
Beatriz Mengual-Chuliá1,2, Stéphanie Bedhomme1,2,3, Guillaume Lafforgue3,4, Santiago F. Elena4,5,6

and Ignacio G. Bravo1,7,8*

Abstract

Background: The increasing abundance of sequence data has exacerbated a long known problem: gene trees and
species trees for the same terminal taxa are often incongruent. Indeed, genes within a genome have not all followed
the same evolutionary path due to events such as incomplete lineage sorting, horizontal gene transfer, gene
duplication and deletion, or recombination. Considering conflicts between gene trees as an obstacle, numerous
methods have been developed to deal with these incongruences and to reconstruct consensus evolutionary
histories of species despite the heterogeneity in the history of their genes. However, inconsistencies can also be
seen as a source of information about the specific evolutionary processes that have shaped genomes.

Results: The goal of the approach here proposed is to exploit this conflicting information: we have compiled eleven
variables describing phylogenetic relationships and evolutionary pressures and submitted them to dimensionality
reduction techniques to identify genes with similar evolutionary histories. To illustrate the applicability of the method,
we have chosen two viral datasets, namely papillomaviruses and Turnip mosaic virus (TuMV) isolates, largely dissimilar in
genome, evolutionary distance and biology. Our method pinpoints viral genes with common evolutionary patterns. In
the case of papillomaviruses, gene clusters match well our knowledge on viral biology and life cycle, illustrating the
potential of our approach. For the less known TuMV, our results trigger new hypotheses about viral evolution and gene
interaction.

Conclusions: The approach here presented allows turning phylogenetic inconsistencies into evolutionary information,
detecting gene assemblies with similar histories, and could be a powerful tool for comparative pathogenomics.

Keywords: Gene trees, Incongruence, Phylogenetic inference, Species trees, Virus evolution, Pathogen evolution,
Potyvirus, Papillomavirus, HPV

Background
One of the key goals of evolutionary biology is to reconsti-
tute the evolutionary history of species and to establish
their filiation patterns. This goal has been pursued using
first morphological and physiological data and later
molecular data, which harbour a large amount of
phylogenetic information. The first molecular phylogenetic
reconstructions were based on, often partial, sequences of
one orthologous locus in various species. A single locus
was considered representative of the history of the whole

genome and of the species. As more sequence data became
available, this representativeness was jeopardized as exam-
ples of incongruent stories revealed by different genes for
the same set of species or discrepancies between species
tree and gene trees accumulated, e.g. fungi [1, 2], plants [3]
and mammals [4]. Earlier examples have been reviewed by
Nichols and coworkers [5]. The reason for these discrepan-
cies can be either biological or technical. Regarding biol-
ogy, there are three main evolutionary events responsible
for them [6]. The first one is incomplete lineage sorting,
also called deep coalescence, which corresponds to the
persistence, after speciation, of ancestral polymorphism
and subsequent loss of alleles or random sampling. For
example incomplete lineage sorting has been pervasive
during the bird adaptive radiation that followed the
Cretaceous/Tertiary crisis [7]. The second one is gene
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exchange between species, which can occur either by
hybridization, pervasive in plants [8], or by horizontal gene
transfer, frequent in prokaryotes [9, 10]. The third one
is gene duplication and subsequent loss and evolution
that might render difficult the correct identification of
orthologous genes [11]. Regarding reconstruction tech-
niques, discrepancies between gene tree and species
tree inferences can also be artefacts due among others
to sequencing errors, orthologous genes misidentifica-
tion, alignment underperformance, wrong model choice
or inefficient search for global likelihood optima during
phylogenetic reconstruction.
In the genomic era, datasets span several genes (some-

times the whole genome), each available in a variable num-
ber of taxa. A higher volume of sequences means more
phylogenetic information but also more incongruences be-
tween gene trees. This renders the reconstitution of species
trees always more difficult and controversial. The two main
questions about incongruences are: (1) how to detect and
quantify them? and (2) what to do with them? Regarding
the first question, a large number of tests have been de-
signed to compare two phylogenetic trees, assessing either
the distance or similarity in terms of topology or branch
length or a combination of both. An idea of the diversity of
these methods as well as a test for their relative efficiency
depending on the dataset can be found in Kuhner and
Yamato [12]. Additionally, methods have been developed
to analyse sets of phylogenetic trees reconstructed from
different sequences. They allow identifying outliers, that
can be futher studied to determine the origin of the differ-
ence in their reconstructed evolutionary history. These
methods use principal components analysis [13], heat maps
[14] or clustering of likelihood ratio tests [15], Euclidean
distances [16], multiple co-inertia analysis [17], linear cor-
relation between genetic distance matrices of aligned indi-
vidual gene sequences and aligned genome sequences [18],
information theory [19], or non-parametric estimation of
tree distribution [20].
Regarding the “what to do with them?” question, one

approach has been to find a consensus tree capturing the
essential features of the evolutionary history of the species.
Data for each gene can be analysed independently and
then combined by a consensus tree approach [21, 22],
supertree-based approaches [23–26], Bayesian approach
[27], summary by maximum agreement subtrees [28, 29],
coalescent approach (e.g. [30]), or Bayesian reconstruction
of gene trees taking the species tree as a prior [31, 32]. An
extension of this last model proposes the estimation of the
species tree from multiple-allele data [33]. Data for each
gene can also be analysed simultaneously through concat-
enation into a supermatrix [34]. Recent developments
allow for differential weighing between partitions, e.g. as a
function of parameters such as gene length or bootstrap
support, in order to avoid arbitrarily giving the same

importance to all genes and all partitions, as synthetized
by de Queiroz and coworkers [35]. Conflict between gene
trees can also be seen as a source of information about
genome evolution rather than an obstacle to reconstruct-
ing the species tree. Some methods acknowledge that a
genome contains different evolutionary histories, either
through gene networks representing alternative phylogen-
etic paths in a graphical way or the projection of conflict-
ing signals in 2D, (e.g. SplitsTree4; [36]), or by explicit
consensus network, in which horizontal gene transfers
and hybridization are explicitely represented [37]. Add-
itionally, methods have been developed that extract sev-
eral consensus trees from a set of gene trees, by clustering
output trees [38], by representing all splits above a prede-
fined threshold in as few trees as possible [39] or by intro-
ducing a general score that compares the goodness of fit
of models with one or various trees [40].
The available methods generally focus on a single char-

acteristic extracted from each gene alignment, most often,
the topology of the best-known tree. Some methods can
be applied to more than one characteristic, for example
the nodal and the patristic distance, but none of them al-
lows combining various evolutionary characteristics and
extracting in a synthetic way groups of genes with similar
evolutionary history. Recent methods have been developed
to perform analysis on very large data sets and often do
not perform well on small genomes. For example, using
simulated data sets, de Vienne and coworkers [17] estab-
lished that Phylo-MCOA retrieved correctly outliers only
if data sets contained more than 30 genes and species.
Thus, such methods may not be suited for application to
small viral genomes, in which each gene represents a sig-
nificant proportion of the whole genome.
Here we propose a method to identify groups of genes

sharing similar evolutionary histories using an integrative
strategy. In this strategy, we have considered different
characteristics of the evolution of each of the genes, such
as tree-topology, branch length, detection of the level of
selection operating on the proteins and phylogenetic dis-
tances between taxa, and have combined them in order to
detect groups of genes sharing evolutionary characteris-
tics. We applied this method to viral data sets. The small
size of viral genomes is not synonymous of simple and
homogeneous evolutionary history. Indeed, viral evolution
is strongly affected by recombination and by differential
selection pressure on different genes. In vivo estimates of
recombination rate range from 4 × 10-8 in Poliovirus [41]
to 10-4 in Hepatitis C virus [42]. Recombination has been
documented to occur at the intraspecific level as in
Watermelon mosaic virus [43], at the intragenus level as
in Potyvirus [44], at the intrafamily level as between Ipo-
movirus and Potyvirus [45] or between Papillomavirus
genera [46] and at the interfamily level as between Papillo-
maviridae and Poliomaviridae [47]. Besides, differential
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selection pressures acting on different genes result in di-
verse evolutionary rates, for example in Hepatitis E virus
[48], in porcine parvoviruses [49] or in murine cyto-
megalovirus [50]. Typical genes with a high proportion of
codons under positive selection are the ones in contact
with the host immune system and implicated in immune
escape and evolutionary arms race [51, 52].

Methods
The general analysis strategy is depicted in Fig. 1 and a
detailed workflow description is depicted in Additional
file 1: Supplementary material and methods. We have
collected information about the gene-specific evolution-
ary patterns at three levels: direct phylogenetic inference,
selection, and pairwise evolutionary distances.

Phylogenetic inference
Viral gene sequences were aligned at the amino acid level
using MUSCLE [53] and the underlying nucleotide se-
quences were aligned accordingly. Poorly aligned se-
quences and divergent regions were removed using the
GBLOCKS software [54] at the codon level under non-
stringent conditions and allowing for gap positions. Phylo-
genetic relationships were inferred separately for each
gene and for the concatenated sequence of all genes in a
genome. Phylogenetic reconstructions were performed by
maximum likelihood (ML) using RAXML_V7.2.8 [55] at
the nucleotide level, using the GTR +G4 model, with par-
titions per gene and per codon position within a gene, and
500 bootstrap cycles, and at amino acid level using the

LG +G4 model. Model choice was performed using the
Akaike information criterion among alternative models
tested with RAXML for nucleotide and for amino acids.
To visualize and represent incongruences between gene
trees, we generated a split network computed from gene
trees as a supernetwork using 100 runs of the SPLIT-
STREE4 software with default parameters [36]. Phylogen-
etic reconstructions provided the first four variables for
the analysis: total tree length for the nucleotide tree
(Tree_length_nt), relative contribution of the second and
third codon positions to the tree length (Weight_2nd_pos,
Weight_3rd_pos), and total tree length for the amino acid
tree (Tree_length_aa).

Tree comparison
Evaluating similarities between phylogenetic trees is still
a source of debate, and several methods for tree com-
parison have been proposed, possibly because there is no
simple answer to the description of the extent of differ-
ence between trees, as reviewed recently [12]. To quan-
tify the overall differences in the relative branch length
and topology of two phylogenetic trees, we have chosen
the K-score index, which searches to minimise the
branch length distance between both trees [56]. The
method is implemented in the KTREEDIST software.
We calculated all pairwise K-score values between gene
trees at the amino acid and at the nucleotide levels. Im-
portantly, the K-score calculation involves first a scaling
step that is dependent on the tree used as reference, and
the resulting matrices are therefore asymmetrical. To

Alignment: 
Protein sequence choice 
Alignment at the aa level with MUSCLE 
Analysis at the nucleotide level 
Alignment pruning with Gblocks (non-stringent conditions) 

Identification of site-specific 
positive and purifying 
selection with Selecton 
Selection_per_pos at the 
gene level  

Maximum likelihood 
phylogenetic reconstruction 
with RAxML on the 
concatenated sequence 

Maximum likelihood phylogenetic 
reconstruction with RAxML for each gene 
Tree_length_nt, Tree_length_aa, 
Weight_2nd_pos, Weight_3rd_pos 

Gene tree comparison (2 by 2) with 
K-treedist for aa and nt + PCoA on 
the distance matrix   
TreeComp1_nt, TreeComp2_nt, 
TreeComp1_aa, TreeComp2_aa 

Calculation of aa and nt 
distances for all possible pairs 
for each gene and the 
concatenate sequence 

Plot aa distances vs nt distances  
Normalization to the concatenate 
Norm_pwdist_aa 
Norm_pwdist_nt 

Fig. 1 Diagram representing the different evolutionary parameters (in red) derived from the initial protein sequence data set of the different genes
and their concatenated. These eleven parameters are those included in the final cluster/PCA
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obtain values describing the general characteristic of one
gene in terms of similitude of its tree to the trees of the
other genes, these matrices were processed using Principal
Coordinate Analysis (PCoA) with the VEGAN and ADE4
R Packages. The output of the PCoA provides a re-scaled
distance matrix between the phylogenetic trees used as in-
put, with the new, re-scaled dimensions accounting for a
decreasing amount of the overall variability in the initial
matrix. In our case, the first two dimensions of the PCoA,
captured a large proportion of the variance: above 60 %
for TuMV and above 90 % for PVs. Both dimensions were
plotted in order to visualize close vs. distant genes in
terms of similitude of their trees. The coordinates of each
gene on the first two dimensions were retained for the
final analyses (TreeComp1_nt, TreeComp2_nt, TreeCom-
p1_aa, TreeComp2_aa).

Selection regime
For each gene, signature of positive, negative selection or
lack thereof was identified by calculating the ω = dN/dS ra-
tio at the individual codon level. For each gene, the align-
ment and the best-known ML tree were used as input for
the SELECTON online tool [57]. We assessed first the
presence of positions under positive selection using the
MEC [58] and the M8 evolutionary models, and tested
likelihood against the alternative M8a model, which does
not consider positive selection [59]. The Huber robust cen-
tral M-estimator of ω was used as a synthetic value of the
selection direction for each gene and saved as an additional
evolutionary parameter (Selection_per_pos). In order to
have high power under normality the constant used to cal-
culate the Huber M-estimator was 1.28.

Pairwise evolutionary distances
For each gene tree and for the corresponding concatenated
tree, all pairwise patristic distances (pwdist, i.e., the sum of
branch-length distances) between terminal taxa were calcu-
lated both at the amino acid and nucleotide levels. In order
to compare distances between taxa for different genes in a
same genome, we normalised them by dividing each pair-
wise distance obtained from a gene tree by the correspond-
ing distance obtained from the concatenated tree for the
same pair of taxa. For each gene, normalised distances were
synthesized by calculating the Huber robust central M-
estimator and the associated median absolute deviation
(MAD). The Huber M-estimator of pairwise nucleotide dis-
tances and amino acid distances were added as evolutionary
parameters characterizing the genes (Norm_pwdist_nt,
Norm_pwdist_aa). Additionally, the graphical representa-
tion shown in Fig. 2 of the normalised amino acid distance
versus the normalised nucleotide distance allows categoriz-
ing the genes for their evolutionary behaviour relatively to
the genome containing them. Indeed, the (1,1) point repre-
sents the evolutionary characteristics of the concatenated,

and lines parallel to the axes and going through this point
divide the plan in four sectors of faster/slower evolution for
amino acid/nucleotide (Fig. 2).
Finally all the above-mentioned evolutionary parame-

ters (shown in blue in Fig. 1) were combined to identify
genes displaying similar evolutionary metrics by applying
techniques for dimensionality reduction implemented in
the R packages PVCLUST and STATS: i) Ward hierarch-
ical cluster identification using the Euclidean distances.
The approximately unbiased (AU) support values, and
the bootstrap probability (BP) support values were also
computed; ii) principal component analysis (PCA). Data
were standardized prior to their analysis.

Data sets
Turnip mosaic virus (TuMV) data set
The first data set used contained 30 genomes of TuMV
isolates (Additional file 2: Table S1a). TuMV belongs to the
genus Potyvirus within the family Potyviridae, the largest
family of plant viruses and the source of important crop
losses in cultivated plants. TuMV is a worldwide distrib-
uted virus, sap-transmissible to a wide range of species and
transmitted by many aphid species in a non-persistent
manner [60]. TuMV is a positive-sense single stranded
RNA virus, with a filamentous, non-enveloped helical cap-
sid. As all potyviruses, the TuMV genome is linear, mono-
partite and around 10 kb in length. It encodes a unique
ORF, translated into a polyprotein, autocatalytically cleaved
into ten mature proteins: P1, HC-Pro, P3, 6 K1, CI, 6 K2,
VPg, NIa-Pro, NIb, and CP. An overlapping open reading
frame coding a small additional protein, PIPO, after +2 fra-
meshifting within P3 has also been described [61]. The
knowledge of the intra-plant biology of this virus is moder-
ate, compared to viruses infecting humans, and the protein
function(s) are well described for some proteins, yet ig-
nored for others. There are currently over one hundred
whole TuMV genome sequences available but a minimum
recombination set of 30 TuMV full-length genomes were
retained for the analysis, according to Tan and coworkers
[62]. Only coding sequences were used for this analysis,
and the PIPO overlapping gene was not considered.

Papillomavirus data set
The second data set contained genomes of various papil-
lomavirus species (Additional file 2: Table S1b). Papillo-
maviruses (PVs) are animal viruses belonging to the
Papillomaviridae family. The biology and natural history
for some of these viruses and the function of each gene
are known in many details, because of their role in indu-
cing lesions, benign and malignant tumours in humans
and animals [63]. PVs are small, non-enveloped viruses,
with a genome encoded in a circular double-stranded
DNA molecule of around 8 kb. The PV genome is di-
vided in two gene clusters. The first one called “early
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genes” is composed by E6 and E7 (involved in the initial
destabilization of the host cell), E1 and E2 (genome rep-
lication), E4 (interaction with the cellular cytoskeleton),
and E5 (immune exposure and response to growth fac-
tors) [64]. The second cluster called “late genes” is com-
posed by L1 and L2, encoding for the capsid proteins.
The E4 ORF, nested within the E2 gene, was not in-
cluded in our analyses. The E5 was also not considered
in our analyses because it is absent in most PV genomes,
and probably they do not share a common ancestor [65].
Most of the complete PV genomes deposited in data-
bases are human PVs belonging to the Alpha-, Beta- and
Gammapapillomaviruses. In contrast, animal PV diver-
sity is poorly sampled. To avoid an over-representation
of these three taxa, a subset of 79 representative PV
types that covered the sequence diversity of all known
PVs was chosen. Representative sequences were chosen
avoiding PVs suspected of having undergone recombin-
ation [46].

Results
Analysis of the TuMV data set
Additional file 3: Figure S1a displays the best-known ML
tree obtained for the concatenated sequences and
Additional file 3: Figure S1b the split network resulting
from the individual best-known ML gene trees. Individual
gene best-known ML trees are given in Additional file 3:

Figure S1 and support values for each group is shown in
Additional file 4: Table S2a.
The nucleotide gene tree lengths (without partition)

showed a decreasing trend along the TuMV genome
(Fig. 3a), as indicated by the negative regression of the nu-
cleotide tree length on the gene order (R2 = 0.82; F1,8 =
36.54, p < 0.001). Grouping the tree lengths by a K-means
cluster and choosing the cluster number by the AIC, re-
vealed that the data best cluster in three groups: the four
genes located on 5’ in the genome (P1, HC-Pro, P3, and
6 K1; tree length between 2.5 and 2.9 accepted substitu-
tions per site), the following five genes (CI, 6 K2, VPg, NIa-
Pro, and NIb; tree length between 1.65 to 2) and CP (tree
length 0.994). Interestingly, the amino acid gene tree length
(Fig. 3b), follows the same decreasing trend but with a lot
more variations resulting in a non-significant regression of
tree length on gene order and no clear clustering of the
tree length values (R2 = 0.33; F1,8 = 3.95, p =0.082). As ex-
pected, the third codon position provides the highest con-
tribution to the total tree length, followed by the first and
then the second position, the latest being fixed for 6 K1
and NIa-Pro.
Four columns of Additional file 5: Table S3a show the

projection values in the first two dimensions of the
PCoA of the pairwise distances between the individual
gene trees, considering a combination of topology and
branch length (K-score) (Fig. 3c and d) [56]. In terms of
selection regime, all TuMV genes present a ω central

aa distance 
increases 

aa distance 
decreases 

nt distance  
increases 

nt distance  
decreases 

P
ai

rw
is

e 
d

is
ta

n
ce

 a
a 

Pairwise distance nt 

Average of aa 
pairwise distance 
in the reference 

Average of nt 
pairwise distance 
in the reference Reference  

Fig. 2 Normalised nucleotide distance vs normalised amino acid distance. The (1, 1) point labels the evolutionary behaviour of the concatenated
and the lines parallel to the axis and passing through this point define four sectors representing the four types of relative evolutionary speed
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estimator below 0.07 except P1, with a ω central esti-
mator of 0.37 (Fig. 3e). Accordingly, P1 is also the gene
with the highest proportion of codons under positive
or neutral selection (23 %). The rest of the genes
present a large majority (>95 %) of their codons under
purifying selection.

The organisation of the genes into the TuMV genome is
shown in Fig. 4a. Plotting the nucleotide pwdist against
the amino acid pwdist yielded always a high correlation,
for each individual gene as well as for the concatenated,
but the slope of the regression varied largely depending on
the gene (see example in Fig. 4b). When normalising the

b)

c) d)

a)

e)
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Fig. 3 a,b Tree length (number of substitution per site) of TuMV. a Plot of the nucleotide tree length displaying the contribution of the first,
second and third codon position in dark grey, white and light grey respectively. b Plot of the amino acid tree length. c,d Biplot of the principal
coordinates analysis (PCoA) using the four variables TreeComp1_nt, TreeComp2_nt, TreeComp1_aa, TreeComp2_aa (see Additional file 5: Table S3)
for TuMV. The first principal component is represented in the x-axis, and the second principal component is represented in the y-axis. Percentage
values in the axes indicate the percentage of variation explained by either component. e Percentage of sites under positive (dark grey), neutral
(white) and purifing selection (light grey) for TuMV (left scale). The solid black line represents the Huber M-estimator of ω (± median absolute
deviation) of all positions for each gene and for the concatenated (right scale)
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distances by dividing each individual gene-based pwdist
by the corresponding concatenated-based pwdist, dif-
ferent genes behaved differently and fell in three sectors
of the normalised plot (Fig. 4c): P1, P3 and 6 K2 dis-
played both higher amino acid and nucleotide pwdist
than the concatenated; VPg displayed higher amino
acid but similar pwdist than the concatenated; 6 K1 and
HC-Pro displayed lower amino acid but higher nucleo-
tide pwdist than the concatenated; CI, NIa-Pro and NIb
displayed both lower amino acid and nucleotide pwdist
than the concatenated; and CP displayed less variation
in both amino acid and nucleotide than the average of
the genome, but the ratio between both was similar to
that of the concatenated.

The results for the eleven variables extracted (Additional
file 5: Table S3a) were finally combined and a cluster ana-
lysis was applied to the ten genes in the TuMV genome.
The results are displayed in Fig. 4d. The height of the
branches represents the distances between clusters calcu-
lated by the Ward method. The cluster analysis showed a
clear separation of P1 from the rest of genes (AU support
p = 0.63). Two further clusters could be distinguished, a
first one containing genes located in the first half of the
polyprotein (HC-Pro, P3 and 6 K1) and 6 K2, and a sec-
ond one containing genes of the second half of the poly-
protein and CI. Members of the second cluster were more
similar between them than the one of the first one and
there is no further grouping within each of these two

a)

b) c)

d) e)

Fig. 4 a TuMV genome organisation. b Nucleotide distance vs amino acid distance of the TuMV. Slopes values for each regression are indicated.
All regression p < 0.001. c Nucleotide vs amino acid pairwise distances for TuMV genes. For each gene, the Huber estimator (±median absolute
deviation) of the distances normalised to their respective concatenated is displayed. d Hierarchical cluster dendogram using the eleven chosen
variables (see Additional file 5: Table S3a) for TuMV. The clustering was performed using the euclidean distances and the Ward method. Probability
values were calculated using bootstrap resampling techniques, the approximately unbiased (AU) support p-value (red) and the bootstrap probability
(BP) value (red). e Biplot of the principal component analysis (PCA) using the eleven chosen variables (see Additional file 5: Table S3a) for TuMV. The
first principal component is represented in the x-axis, and the second principal component is represented in the y-axis. Percentage values in the axes
indicate the percentage of variation explained by either components. Original variables are given in blue, and those showing co-variation above 0.8
are encircled by discontinuous lines
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clusters. Regarding the PCA, the first two axes explain
more than 75 % of the global variance, with P1 differing
largely from the rest of the genes based on the first de-
rived axis (Fig. 4e). The value on the second axis seems to
globally correspond to gene order in the genome: genes
from the first half of the genome have negative values
whereas genes from the second half have positive values.
Covariance values above 80 cluster the eleven considered
variables into two groups and four isolated variables.

Analysis of the PV data set
Additional file 6: Figure S2a displays the best-known ML
tree obtained for the concatenated genes and Additional
file 6: Figure S2b the split network from the individual
best-known ML gene trees. Individual gene trees are
depicted in the same Additional file 6: Figure S2 and
support values for the crown groups are provided in
Additional file 4: Table S2b.
PVs displayed nucleotide and amino acid tree lengths

globally homogeneous across the individual genes (Fig. 5a
and b). There were no significant trends in tree length
with gene order neither for nucleotide (R2 = 0.26; F1,4 =
1.376, p = 0.31) nor for amino acid (R2 = 0.39; F1,4 = 2.57,
p = 0.18). Grouping the tree lengths using a K-means
cluster and choosing the number of clusters after the
AIC, the best clustering at the nucleotide level was with
two clusters: E6 and E7 in one and the remaining genes
in the other. At the amino acid level, the lowest and in-
distinguishable AIC values were for 2 (E6-E7-E2 and L1-
L2-E1) and three clusters (E7, E6-E2-L2 and E1-L1).
The first four columns of Additional file 5: Table S3b

show the projection values in the first two dimensions of
the PCoA of the pairwise distances between the individ-
ual gene trees, considering a combination of topology
and branch length (K-score) (Fig. 5c and d) [56]. In both
PCoA, the first axis spreads E6 (positive value), E7
(negative value) and a group formed by all other genes
(values close to 0).
Regarding selection regime, PV genes presented a cen-

tral estimator for ω ranging from 0.08 to 0.6 (Fig. 5e),
with E7 gene showing the highest ω = 0.60 ± 0.37. Also,
25 % of the E7 codons were under neutral or positive se-
lection, while all codons in other genes are under purify-
ing selection, except 1.8 % of positions under neutral or
positive selection in E2.
The organisation of the genes into the PV genome is

shown in Fig. 6a. Plotting nucleotide pwdist against amino
acid pwdist yielded always a high correlation, for each indi-
vidual gene as well as for the concatenated, but the slope
of the regression varied largely depending on the gene (see
example in Fig. 6b). Plotting Norm_pwdist_nt vs Norm_pw-
dist_aa showed that E6 was the most divergent gene with
respect to the complete genome, displaying the highest dis-
tances at both the amino acid and the nucleotide levels

(Fig. 6c). In contrast, E1 and L1 were more conserved than
the complete genome at the amino acid level, and E1 and
E2 were more conserved than the complete genome at the
nucleotide level.
The cluster analysis of the eleven variables extracted for

the six analysed genes (Additional file 5: Table S3) is given
in Fig. 6d. The cluster analysis showed a clear separation
of E7 from the rest of genes. Then genes involved in build-
ing the virus capsid, L2 and L1, clustered with an AU sup-
port p = 0.85 and early genes involved in genome
replication, E1 and E2, clustered together with an AU sup-
port p = 0.82. Regarding the PCA, the eleven observed
variables could be rescaled into two principal components
that explained 72.74 % of the total observed variation
(Fig. 6e). Regarding the genes, the first component dis-
criminated E7 from the other genes and the second com-
ponent separated E6 from the other genes. Covariance
values above 80 clustered the eleven considered variables
into three groups and four isolated variables.

Discussion
We describe here an integrative approach to identify
groups of genes sharing common patterns of evolution in
genomes with reduced size, and exemplified the validity of
the method by applying it to two viral genome datasets,
differing largely in genome structure as well as in evolu-
tionary distance among the taxa included. We chose two
data sets with quite different characteristics to illustrate
both the applicability of the method in distinct situations
and how the outcome can be used and interpreted de-
pending on these situations. The TuMV data set is an ex-
ample of RNA viruses with low divergence between the
terminal leaves and a moderate knowledge of the biology
of the virus whereas the PVs data set is an example of
DNA viruses with high divergence between the terminal
leaves and a good knowledge of the viruses biology.
The method here depicted combines a series of eleven

variables recapitulating information about tree topology
and branch length, about agreement between gene-based
and genome-based phylogenetic reconstructions, about
the strength of selection along the positions in a gene, and
about comparison between gene-based and genome-based
distances between taxa. These eleven variables are not
fully independent from one another, but covariance pat-
terns between variables are different for the two viral data-
sets, thus showing that none of them can a priori be
considered as redundant. The result provides with visual,
intuitive plots easy to interpret, which can guide further
informed comparisons, when incorporating knowledge on
gene function. Thus, interpreting nucleotide vs amino acid
pairwise distances with the key provided in the graphical
representation of the normalised amino acid distance vs
the normalised nucleotide distance shows distinct evolu-
tionary patterns for both datasets, and allows pinpointing
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highly divergent genes, e.g. P1 in TuMV genomes and E6
and E7 in PVs. Further, we have applied information reduc-
tion techniques that allow projecting the 11-dimension
space into more visual two-dimensional plots. Again, obvi-
ous trends of similarity in evolutionary patterns are evi-
denced and can be tracked back to biological differences

between genes, as in the split between the E6 and E7
genes and the rest of the PV genes, mirroring the pro-
posed evolutionary history for the blocks composing
the PV genomes [66, 67].
For TuMV genes, we identified two major gene clus-

ters grouping together genes that are physically close in

a) b)

c)

e)

d)

Fig. 5 a,b Tree length (number of substitution per site) for PVs. a Displays nucleotide tree length with the contribution of the first, second and
third codon position in dark grey, white and light grey respectively. b Represents the amino acid tree length. c,d Biplot of the principal coordinates
analysis (PCoA) using the four variables TreeComp1_nt, TreeComp2_nt, TreeComp1_aa, TreeComp2_aa (see Additional file 5: Table S3) for PV. The first
principal component is represented in the x-axis, and the second principal component is represented in the y-axis. Percentage values in the axes show
the percentage of variation explained by either components. e Percentage of sites under positive (dark grey), neutral (white) and purifing selection
(light grey) for PVs (left scale). The solid black line represents the Huber M-estimation of ω (±median absolute deviation) of all position for each gene
and the concatenated (right scale)
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the viral genome. Certain genes are well conserved
among isolates (NIb, CP) while others are more divari-
cated (P1, P3). Our results show that P1 presents a very
distinct evolutionary pattern, in terms of increased
positive selection, long amino acid tree length and large
pairwise amino acid distances. P1 is known to be di-
verse in sequence and length both within and between
species [68–70]. It has also been established that intra-
gene recombination and gene duplication contributed
to the evolution of P1 and to successful host adaptation
[45]. Moreover, the non-proteolytic part, i.e. a very

large portion of the protein, is dispensable for infectiv-
ity and replication in Tobacco etch potyvirus (TEV)
[71], suggesting a lower level of selective constraint on
this protein. Finally, P1 plays a role in determining the
virus host range [72, 73]. This role implies that the P1
protein carries the hallmark of either a process of adap-
tation to the host or of an evolutionary arms race with
the host(s). These two phenomena are likely respon-
sible for the observed pattern of positive selection and
increased amino acid diversity, which cluster P1 apart
from the rest of the TuMV genes.

a)

b) c)

d) e)

Fig. 6 a PV genome organisation. b Nucleotide distance vs amino acid distance for PVs. Slopes values for each regression are indicated. All
regression p < 0.001. c Nucleotide vs amino acid pairwise distances for PV genes. For each gene, the Huber estimator (±median absolute deviation) of
the distances normalised to their respective concatenated is represented. d Hierarchical cluster dendogram using the eleven chosen variables (see
Additional file 5: Table S3b) for PV. The clustering was performed using the euclidean distances and the Ward method. Probability values were
calculated using bootstrap resampling techniques, the approximately unbiased (AU) support p-value (red) and the bootstrap probability (BP) value
(red). e Biplot of the principal component analysis (PCA) using the eleven chosen variables (see Additional file 5: Table S3b) for PV. The first principal
component is represented in the x-axis, and the second principal component is represented in the y-axis. Percentage values in the axes show
the percentage of variation explained by each components. Original variables are given in blue, and those showing co-variation above 0.8 are
encircled by discontinuous lines
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One striking pattern for TuMV is that the final clus-
tering closely follows the gene order in the genome.
Gene order is known to be very essential for potyvirus
functioning as recently demonstrated experimentally in
TEV [74]: the NIb gene, encoding for the polymerase,
was relocated at all possible intercistronic positions and
all relocations were lethal to the virus except when NIb
was placed before P1 or between P1 and HC-Pro. This
experimental result also adds to the idea that the 5’ side
of the potyvirus genome is more permissive to changes.
As for the origin of the relationship between gene order
and evolutionary history outlined by our study, it could
go both ways: gene order could drive evolutionary his-
tory or evolutionary history could drive gene order. In
the first, case, we have here a higher degree of conserva-
tion for the 3’ proteins that could be due to an increase
in the selection pressure along the genome. However, we
cannot totally exclude a decrease in the error rate of the
NIb RNA-dependent-RNA polymerase along the gen-
ome, even though it has never been documented. Re-
garding the potential increase in selection pressure along
the genome, it is important to keep in mind that the
genome itself serves as mRNA and is translated into a
polyprotein, which is then cleaved in ten functional pro-
teins. Hitherto, no mechanisms for differential regulation
of individual protein expression have been described,
meaning that all proteins are expected to be synthesised
simultaneously and in similar amounts. However, such
uniformity for protein products with different functions
and requirements is unlikely. A recent study on the P1
protease of Plum pox potyvirus, reveals a modulation of
its activity. This P1 protease activity regulation could allow
for a fine modulation on the viral amplification and reduce
triggering of host immune responses [75]. This recent
study is a first element arguing for differences in expres-
sion levels, potentially causing differences in selection in-
tensity. An alternative mechanism for the regulation of
the expression of individual proteins would be the pres-
ence of internal ribosome entry segment (IRES). This
mechanism has been identified in picornaviruses [76] and
in the Shrimp white spot syndrome virus [77]. The same
phenomenon could apply to the single TuMV ORF with a
higher expression of 3’ proteins than of 5’ proteins, leading
to a more stringent selection on 3’ proteins.
In the context of the reverse causality – evolutionary his-

tory drives gene order - the observed clustering could re-
flect the organisation of the genome in groups of proteins
that interact together for the realisation of the same func-
tion: host-virus interaction (P1), accessory factors of gen-
ome replication (HC-Pro, P3, CI) and core replicase (6 K2,
VPg, NIb). An evolutionary advantage of such genome or-
ganisation would be that interacting proteins are released
simultaneously. However the “functional group” argument
is not very appropriate for compact viral genomes with

multifunctional proteins involved in multiple interactions.
For example, CI and CP have been described as having a
role in virus cell-to-cell movement [78–80] but do not
cluster in terms of evolutionary patterns.
Regarding PVs, the results are consistent with the gene

expression patterns and with the natural history of the
viral infection. Both clustering and pairwise distances
analyses reveal that PV genes are organised in two main
blocks: the first one composed by genes involved in the
replication of the viral genome, and the second one
composed by genes involved in the encapsidation of the
virus. These two blocks are accompanied by the onco-
genes E6 and E7, which are not grouped in any cluster.
This result is consistent with the hypothesis suggesting
that the proto-PV was composed by the E1, E2, L2 and
L1 genes, the core region of the genome, while the E6
and E7 were incorporated later, providing with dispens-
able transforming capacities [66]. Further, this clustering
matches well differences in codon usage preferences be-
tween different PV genes, which are similar for genes
expressed at similar stages of the natural history of the
PV infection [81].
The two blocks of the PV genome encompasses the only

four genes that are present in all PVs and that may poten-
tially suffice for completing the viral infection cycle [66].
They encode for the L1 and L2 proteins, which form the
viral capsid [82]; for the E1 protein, which binds DNA, re-
cruits cellular factors for DNA replication and acts as a
helicase [83–85]; and for the E2 protein, a transcription
factor that modulates viral gene expression and also di-
rects E1 activity [86, 87]. The L1 gene is under a strong
purifying selection, likely reflecting the essentially struc-
tural role of the L1 proteins, which are able to spontan-
eously self-assemble into virions [88]. The E1 and the L2
genes show similar global ratios of synonymous and non-
synonymous mutations, as both lie on the reference diag-
onal for the concatenated genome, although the L2 gene
accumulates more changes. Finally, the E2 gene contains a
small number of positions identified to be under positive
selection. These positions may indeed be under selection
or may instead reflect the particular architecture of this
protein: the N- and C-termini are well-conserved and
interact forming an internal dimer to bind DNA [87],
while the central, hinge region is poorly conserved and
consists of stretches rich in proline, serine and glycine
[89–93]. The filtering step for the sequence alignment
previous to phylogenetic inference identifies most of the
E2 hinge region to be poorly conserved and consequently
removes it. The few positions under positive selection
identified in the E2 gene map to the remnants of the hinge
region that have been selected for tree construction. The
hinge region of the E2 gene accommodates the E4 ORF
overlapping in a ±1 frame. In this hinge region, the pres-
sure towards conservation of the E4 amino acid positions
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renders synonymous changes in the E4 frame as non-
synonymous changes in the E2 frame [94]. This E4 gene
has not been included in our analyses because it is prop-
erly annotated only in a few genera of the Papillomaviri-
dae family.
The isolated genes E6 and E7 are not present in all

PVs, as some PVs encode E7 but no E6 proteins [95–97]
whereas other PVs encode E6 but no E7 proteins [46, 98,
99]. For the best studied PVs, the role of these proteins
during PV infection is the disruption of the growth host
cell control by interacting with the tumour suppressor
proteins p53 and pRb in the upper layers of the epithe-
lium [100–102]. The expression of both genes drives du-
plication of keratinocytes in skin layers in which no
replication normally occurs, and prevents checkpoint
mechanisms from triggering cell arrest [103–105]. Both
E6 and E7 proteins are small and highly disordered and
have multiple interaction partners [106–109]. These
structural features, together with the fact of being dis-
pensable in the PV genome, constitute the main differ-
ences between the E6 and E7 proteins and those present
in the PV core genome, E1-E2-L2-L1. The results in our
analyses for PVs deepen those from previous reports [65,
66, 81] and reflect also these fundamental differences,
gathering the inconsistency in phylogenetic relationships
inferred for the two oncogenes, the increase in accepted
nucleotide substitutions, and the large fraction of posi-
tions under positive selection for E7, and leading to the
clear split of the PV genes into two clusters that globally
reflect PV biology and evolution.

Conclusion
The idea that viral genes might have different evolutionary
histories is not new, particularly for virus with segmented
genomes (e.g. [110, 111]). However, comparisons are often
qualitative and use only part of the information that can
be extracted from the sequences. The comprehensive ana-
lysis presented here allows identifying characteristics of
the evolution of individual genes and to pinpoint groups
of genes with similar evolutionary patterns in terms of
phylogenetic relationships and evolutionary pressures.
The two data sets we used illustrate that this strategy can
be applied to different evolutionary scales: the TuMV data
set gathered sequences of variants of a virus species with a
divergence of 10-2 substitutions/position/taxon, whereas
the PV data set was constituted of sequences of species
within the Papillomaviridae family with 10-1 substitu-
tions/position/taxon. This difference of evolutionary scale
is actually reflected in the 20 times difference in tree
length. The viral genomes in the example data sets were
of the same length range (10 kb), but the method could be
applied to larger viruses or to bacterial genomes. For lar-
ger genomes the procedure described here could allow
identifying gene clusters with similar evolutionary pattern

within the core genome of bacteria, as it has allowed us in
the case of the PVs to infer the evolutionary steps prior to
the appearance of modern PV genomes.
With this first attempt to combine evolutionary and

phylogenetic information on the orthologous genes of
sets of isolates, we have shown, in an integrative way,
that inconsistencies between gene trees can be exploited
to identify groups of genes with similar evolutionary his-
tories. By choosing two viral data sets with very distinct
characteristics, we illustrated that this method (1) can be
applied to very compact genomes, (2) is able to recover
from an evolutionary point of view the functional data
accumulated on well-characterized virus or (3) to un-
ravel unknown characteristics of the evolutionary his-
tory, likely related to protein functions, of less studied
viruses. This opens perspectives for the generation of
evolutionary and functional hypotheses on the basis of
sequence data in general and for a refinement of core-
genome determination in particular.

Additional files

Additional file 1: Supplementary material and methods. Exhaustive
workflow description indicating the input and output files for each step
and where to find the software resources. This workflow combined with
Fig. 1 allows full reproduction of the method. (PDF 1916 kb)

Additional file 2: Table S1. Accession numbers of TuMV (a) and PV (b)
genomes used to perform the analysis.

Additional file 3: Figure S1. Best-known ML tree (a) and phylogenetic
network (d) constructed from the TuMV concatenated nucleotide data
set. Around them, the best-known ML tree constructed for each of the
genes of TuMV at nucleotide level. Shaded areas correspond to the
supported groups refered to in the text and in Additional file 4: Table S2a.

Additional file 4: Table S2. Bootstrap support for the clusters identified
(see Additional file 3: Figure S1 and Additional file 6: Figure S2) in the
phylogenetic trees built from the concatenated sequence for the
concatenated tree and the gene trees, for the TuMV and the PV
nucleotide data set.

Additional file 5: Table S3. Values of the eleven variables extracted
from different characteristics of the evolution of each of the genes, such
as tree-topology, branch length, detection of the level of selection operating
on the proteins and phylogenetic distances between taxa.

Additional file 6: Figure S2. Best-known ML tree (a) and phylogenetic
network (d) constructed from the PV concatenated nucleotide data set.
Around them, the best-known ML tree constructed for each of the genes
of PV at nucleotide level. Shaded areas correspond to the supported
groups refered to in the text and in Additional file 4: Table S2b.
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