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Abstract
Genetic	variation,	as	a	basis	of	evolutionary	change,	allows	species	to	adapt	and	per-
sist	in	different	climates	and	environments.	Yet,	a	comprehensive	assessment	of	the	
drivers	of	genetic	variation	at	different	spatial	scales	is	still	missing	in	marine	ecosys-
tems.	Here,	we	investigated	the	influence	of	environment,	geographic	isolation,	and	
larval	dispersal	on	the	variation	in	allele	frequencies,	using	an	extensive	spatial	sam-
pling	(47	locations)	of	the	striped	red	mullet	(Mullus surmuletus)	in	the	Mediterranean	
Sea.	Univariate	multiple	regressions	were	used	to	test	the	influence	of	environment	
(salinity	and	temperature),	geographic	isolation,	and	larval	dispersal	on	single	nucleo-
tide	polymorphism	(SNP)	allele	frequencies.	We	used	Moran’s	eigenvector	maps	(db-	
MEMs)	 and	 asymmetric	 eigenvector	 maps	 (AEMs)	 to	 decompose	 geographic	 and	
dispersal	distances	in	predictors	representing	different	spatial	scales.	We	found	that	
salinity	and	temperature	had	only	a	weak	effect	on	the	variation	in	allele	frequencies.	
Our	results	revealed	the	predominance	of	geographic	isolation	to	explain	variation	in	
allele	 frequencies	 at	 large	 spatial	 scale	 (>1,000	km),	while	 larval	 dispersal	was	 the	
major	 predictor	 at	 smaller	 spatial	 scale	 (<1,000	km).	 Our	 findings	 stress	 the	
	importance	of	 including	 spatial	 scales	 to	understand	 the	drivers	of	 spatial	 genetic	
variation.	We	suggest	that	larval	dispersal	allows	to	maintain	gene	flows	at	small	to	
intermediate	scale,	while	at	broad	scale,	genetic	variation	may	be	mostly	shaped	by	
adult	mobility,	demographic	history,	or	multigenerational	 stepping-	stone	dispersal.	
These	findings	bring	out	important	spatial	scale	considerations	to	account	for	in	the	
design	of	a	protected	area	network	that	would	efficiently	enhance	protection	and	
persistence	capacity	of	marine	species.
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1  | INTRODUC TION

Genetic	 variation	 is	both	 the	outcome	and	 the	basis	of	 evolution-
ary	change	 (Kokko	et	al.,	2017),	allowing	species	to	adapt	to	novel	
environmental	conditions	and	persist	 in	different	climates	and	en-
vironments.	Describing	the	spatial	patterns	of	genetic	variation	can	
help	to	better	understand	the	underlying	processes	of	evolution	and	
is	one	of	the	main	focuses	of	landscape	genetics	(Manel,	Schwartz,	
Luikart,	&	Taberlet,	 2003).	 Studying	 the	 spatial	 distribution	of	 ge-
netic	 variation	 requires	 both	 characterizing	 the	 genetic	 structure	
of	 populations	 and	 detecting	 the	 variables	 influencing	 its	 spatial	
organization.

Geographic	 isolation,	barriers	 to	gene	 flow,	and	environmental	
or	landscape	features	can	generate	spatial	genetic	patterns	such	as	
isolation	by	distance	(IBD;	Kimura	&	Weiss,	1964),	isolation	by	resis-
tance	(IBR),	or	adaptive	genetic	isolation	(Nosil,	Egan,	&	Funk,	2008).	
Barriers	and	resistance	to	movement	are	directly	related	to	dispersal	
of	 individuals	at	various	 life	stages.	Yet,	 in	marine	 landscapes	 (i.e.,	
seascapes),	 dispersal	 of	most	 organisms	 occurs	 during	 the	 pelagic	
larval	 stage	 and	 depends	 on	 oceanic	 currents	 that	 can	 transport	
propagules	over	 large	distances	 (White	et	al.,	2010).	Larval	disper-
sal	 is	 then	 expected	 to	 influence	 seascape	 genetic	 variations,	 and	
the	resulting	genetic	patterns	often	differ	from	the	classical	theory	
of	 isolation	by	distance	 (Selkoe	et	al.,	2016).	Hence,	a	comprehen-
sive	assessment	of	the	drivers	of	spatial	genetic	variation	in	marine	
populations	 needs	 to	 include	 in	 a	 same	 framework	 environmental	
heterogeneity,	 geographic	 isolation,	 and	 larval	 dispersal	 (D’Aloia,	
Bogdanowicz,	Harrison,	&	Buston,	2014;	Selkoe	et	al.,	2016).	To	this	
aim,	large-	scale	datasets	and	novel	analytical	methods	are	required	
(Manel	&	Holderegger,	2013).

White	 et	al.	 (2010)	 were	 among	 the	 first	 to	 show	 that	 larval	
dispersal	was	a	better	driver	of	 genetic	 structure	 than	geography	
measured	as	the	mere	Euclidean	distance.	Selkoe	et	al.	(2010)	more-
over	demonstrated	the	importance	of	considering	other	ecological	
and	environmental	factors	to	explain	seascape	genetic	patterns.	In	
their	 study,	 they	 showed	 that	habitat	 (i.e.,	 kelp	coverage)	was	 the	
main	variable	shaping	genetic	structure	for	three	fish	species,	thus	
demonstrating	 that	 beyond	 larval	 dispersal,	 the	 survival	 capacity	
within	a	given	habitat	also	affects	gene	flow.	Seascape	genetic	pat-
terns	can	also	be	shaped	by	other	environmental	variables	such	as	
temperature	or	salinity	through	isolation	by	adaptation	(Nosil,	Funk,	
&	Ortiz-	Barrientos,	2009).	Environmental	 gradients	may	 influence	
both	 adaptive	 and	 neutral	 genetic	 variations	 if	 the	 movement	 of	
individuals	is	limited	by	a	strong	ecological	selection	against	immi-
grants	 (Nosil	 et	al.,	 2009).	 Historical	 events	 such	 as	 demographic	
fluctuations	and	colonization	are	also	expected	to	influence	spatial	
genetic	variation	(Lowe	&	Allendorf,	2010).	It	is	now	well	established	
that	several	processes	structure	genetic	variation,	but	there	is	still	
much	to	be	learned	about	the	drivers	of	seascape	genetic	patterns	
(Selkoe	et	al.,	2016).	 In	particular,	 the	 relative	 importance	and	 the	
spatial	 scale	 associated	with	 these	 drivers	 are	 rarely	 discussed	 in	
seascape	 studies	 (Riginos,	 Crandall,	 Liggins,	 Bongaerts,	 &	 Treml,	
2016).

Here,	we	defined	three	spatial	scales	for	which	we	expect	differ-
ent	processes	to	affect	fish	spatial	genetic	variation	(Jombart,	Dray,	
&	Dufour,	2009;	Wagner	&	Fortin,	2013):	(i)	broad	scale	where	we	
assume	a	preponderant	effect	of	colonization,	migration,	or	isolation	
by	 adaptation;	 (ii)	 intermediate	 scale	 at	which	 larval	 dispersal	 and	
adult	dispersal	are	expected	to	occur;	and	(iii)	local	scale,	expected	
to	be	dominated	by	processes	such	as	local	retention	of	larvae	and	
local	 adaptation.	 We	 thus	 hypothesize	 that	 geographic	 isolation	
primarily	 shapes	 genetic	 structure	 at	 large	 scale,	 while	 the	 influ-
ence	of	dispersal	and	gene	flow	may	become	more	prevalent	when	
downscaling	 (Almany	 et	al.,	 2013;	 D’Aloia,	 Bogdanowicz,	 Majoris,	
Harrison,	&	Buston,	2013).

Here,	we	used	 the	Mediterranean	Sea	as	 the	archetypal	 situa-
tion	where	 larval	 dispersal	 distance	 and	 geographic	 distance	may	
be	 weakly	 correlated	 owing	 to	 a	 very	 tortuous	 coastline,	 several	
physical	barriers	(oceanic	fronts	and	gyres),	and	heterogeneous	sea	
currents	 (Galarza	et	al.,	2009).	This	 study	characterizes	 the	spatial	
genetic	pattern	of	a	heavily	exploited	species,	the	striped	red	mullet	
(Mullus surmuletus).	The	striped	red	mullet	is	a	demersal	fish	species	
inhabiting	 coastal	 shelf	 ecosystems	 from	0	 to	 ~100	m	depth.	 This	
species	 is	widely	 distributed	 in	 the	 eastern	North	Atlantic	Ocean,	
from	the	British	Isles	in	the	North	to	Senegal	in	the	South,	including	
the	Mediterranean	and	Black	Sea	(Tserpes	et	al.,	2002).	It	is	among	
the	most	economically	valuable	species	 in	 the	Mediterranean	Sea.	
Spawning	occurs	from	May	to	July	and	produces	larvae	with	a	pe-
lagic	 stage	 lasting	 for	 approximately	 25–35	days	 (Macpherson	 &	
Raventos,	 2006).	 A	 change	 in	 distribution	 of	 the	 species	 toward	
deeper	waters	during	spring,	 just	before	the	spawning	season,	has	
been	shown	by	Machias,	Somarakis,	and	Tsimenides	(1998).	In	most	
demersal	fish	species,	larval	dispersal	is	presumed	to	play	an	import-
ant	role	in	shaping	the	genetic	variation	of	M. surmuletus.	However,	
the	magnitude	of	its	effect	relative	to	other	processes	and	the	spatial	
scales	of	its	action	remain	poorly	known.	Hence,	we	tested	the	in-
fluence	of	environmental	variables,	geographic	isolation,	and	larval	
dispersal	to	explain	the	genetic	variation	of	M. surmuletus	(Figure	1).

2  | MATERIAL S AND METHODS

2.1 | Study area, sampling design, and 
environmental variables

The	 study	 area	 covers	 the	 entire	Mediterranean	 coastline,	 includ-
ing	islands.	A	total	of	727	adults	of	M. surmuletus	were	collected	be-
tween	April	 and	November	2014	 in	47	 sites	embracing	 the	whole	
range	of	 the	Mediterranean	Sea	 at	 a	 fine	 resolution	 (≈100	km	be-
tween	 sampling	 locations	 on	 average)	 (Figure	2a;	 Table	 S1).	 The	
mean	 distance	 between	 our	 sampling	 sites	 was	 about	 100	km.	
Specimens	were	obtained	from	small-	scale	fishery	landings	in	each	
site:	The	local	origin	of	the	samples	was	confirmed	by	the	fishermen.	
Fish	samples	consisted	of	fin	clips	of	pectoral	and	caudal	fins	con-
served	in	96%	ethanol	prior	to	storage	at	4°C.

Sea	surface	temperature	(SST)	and	sea	surface	salinity	(SSS)	were	
computed	in	each	site	from	the	oceanographic	model	NEMOMED8	
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(Somot,	Sevault,	&	Deque,	2006),	which	has	a	spatial	resolution	of	
1/8°	(Albouy	et	al.,	2015)	from	the	period	1990–2013.	The	daily	data	
were	averaged	over	the	whole	period	for	both	SST	and	SSS	to	infer	
the	mean	values.	The	SSS	values	of	each	site	are	shown	in	Figure	2a	
and	the	SST	values	in	Figure	S1.

2.2 | Genetic data and analyses

Extraction	of	genomic	DNA	was	undertaken	using	the	DNeasy	Blood	
&	Tissue	Kit	(Qiagen)	according	to	the	manufacturer’s	protocol.	DNA	
quality	was	 assessed	 by	 running	 3	μl	 of	 each	DNA	 sample	 on	 1%	
agarose	gels.	DNA	concentration	was	determined	using	NanoDrop	
8000.	 A	 total	 of	 558	 DNA	 samples	 that	 fulfilled	 the	 quality	 and	
quantity	criteria	(DNA	of	high	molecular	weight,	with	at	least	40	μl	of	

DNA	available	at	a	concentration	>10	ng/μl)	were	then	sequenced.	
Individuals	were	genotyped	using	genotyping-	by-	sequencing	tech-
nique	 (GBS)	 based	 on	 the	 use	 of	 restriction	 enzyme	 digestion	 to	
sequence	 a	 reduced	 portion	 of	 the	 genome	 (Elshire	 et	al.,	 2011).	
Libraries	were	constructed	using	restriction	enzyme	ApeKI	(recogni-
tion	site:	GCWGC)	following	a	protocol	modified	from	Elshire	et	al.	
(2011).	Six	96-	plex	GBS	 libraries	were	prepared	and	sequenced	at	
the	 Institute	of	Genomic	Diversity	 at	Cornell	University	using	 the	
Illumina	HiSeq	2500	(100	bp,	single-	end	reads).	Each	library	was	se-
quenced	on	a	separate	HiSeq	flowcell	lane.

Raw	 read	 sequences	 were	 filtered	 according	 to	 quality	 base	
calling,	 removing	 sequences	with	 average	 Phred	 quality	 below	 25.	
Trimming	was	performed	to	remove	low-	quality	bases	at	the	extrem-
ities	of	the	reads	(Phred	quality	below	20).	Sequences	shorter	than	
60	bp	were	discarded	from	the	dataset.	For	each	sequenced	library,	
the	number	of	raw	reads	and	filtered	data	are	provided	in	Table	S1.	
SNP	calling	per	pool	was	performed	using	 the	Tassel	3.0	Universal	
Network-Enabled	Analysis	Kit	(UNEAK;	Lu	et	al.,	2013).	We	refiltered	
the	individual	raw	sequences	with	Stacks	software	(Catchen,	Amores,	
Hohenlohe,	Cresko,	&	Postlethwait,	2011),	which	confirmed	the	low	
coverage	and	high	rate	of	missing	data	for	individual	genotype	calling.	
To	overcome	this	bias,	we	considered	pools	of	individuals	sampled	at	
the	same	site	rather	than	the	individual	genotype	information.	This	
strategy	produced	a	dataset	of	47	“pools”	 (i.e.,	 sampling	sites)	con-
taining	between	nine	and	eighteen	individuals	(Table	S1),	and	whose	
sequence	coverage	was	>10×	at	1153	SNPs.	The	parameters	used	in	
both	UNEAK	and	Stacks	are	detailed	in	Appendix	S1.	We	verified	that	
the	uneven	sample	sizes	did	not	 influence	 the	estimations	of	allele	
frequencies	in	the	47	pools	(see	Figure	S2).

To	remove	the	potential	confounding	effect	of	SNPs	under	se-
lection,	we	eliminated	candidate	SNPs	(see	Dalongeville,	Benestan,	
Mouillot,	Lobreaux,	&	Manel,	2018).	Six	genome	scan	methods	were	
applied	to	detect	selection	signal,	and	the	sequences	of	all	the	out-
lier	SNPs	were	blasted	on	known	annotated	genes	in	the	NCBI’s	nr	
database	 (NCBI	 Resource	 Coordinators,	 2017).	 The	 blast	 analysis	
identified	30	sequences	corresponding	to	genes.	We	removed	the	
30	SNPs	corresponding	to	these	sequences	to	produce	the	final	al-
lele	frequencies	at	1123	SNPs	in	47	sites	for	subsequent	analyses.

Genetic	differentiation	between	the	pairs	of	47	sites	was	quan-
tified	by	 the	Wright’s	pairwise	FST,	calculated	using	 the	R	package	
“polysat”	(Clark	&	Jasieniuk,	2011).	To	test	for	isolation	by	distance	
(IBD),	we	performed	a	Mantel	test	between	pairwise	FST	computed	
from	allele	frequencies	and	marine	geographic	distances,	computed	
as	least-	cost	path	distances	with	infinite	resistance	values	assigned	
to	 landmasses.	 The	Mantel	 test	was	 performed	 using	 the	R	 pack-
age	“vegan”	(Oksanen	et	al.,	2016)	and	its	significance	using	10,000	
randomizations.

2.3 | Spatial and dispersal distances

Geographic	 isolation	 was	 measured	 as	 Euclidian	 distances	 be-
tween	pair	of	sites:	We	converted	degrees	latitude	and	longitude	to	
Cartesian	coordinates,	and	computed	the	Euclidian	distance	matrix.

F IGURE  1 Analytical	framework	used	to	test	the	influence	
of	environment,	geographic	isolation,	and	larval	dispersal	on	the	
genetic	variation	of	Mullus surmuletus	and	their	associated	spatial	
scales.	(a)	The	study	area,	the	Mediterranean	Sea.	(b)	The	response	
(SNP	allele	frequencies)	and	explanatory	variables	(environment,	
geographic	isolation,	and	larval	dispersal).	Distance-	based	Moran’s	
eigenvector	maps	(db-	MEMs)	were	used	to	calculate	node-	based	
predictors	of	geographic	isolation.	See	Borcard	and	Legendre	
(2002)	for	more	detailed	explanation	on	the	construction	of	db-	
MEMs.	Similarly,	asymmetric	eigenvector	maps	(AEMs)	were	used	
to	calculate	node-	based	predictors	of	larval	dispersal;	construction	
of	AEMs	is	detailed	in	Blanchet	et	al.	(2008a).	(c)	Multiple	linear	
regressions	and	the	Akaike	weight	used	to	estimate	the	relative	
effect	of	each	type	of	variable	on	variation	in	allele	frequencies,	
and	at	which	spatial	scale	they	are	mainly	associated
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Larval	 dispersal	was	quantified	using	 the	biophysical	model	 of	
Andrello,	 Jacobi,	 Manel,	 Thuiller,	 and	 Mouillot	 (2015),	 which	 es-
timates	 the	 probability	 of	 larval	 connection	 between	 each	 pair	 of	
sites.	The	model	was	parameterized	with	a	pelagic	larval	duration	of	
30	days	and	release	of	larvae	every	3	days	from	the	May	1	until	the	
May	28,	which	corresponds	to	the	spawning	season	of	the	species	in	
Mediterranean	waters.	Larvae	were	released	in	1/10th-	degree	cells,	
and	probabilities	of	dispersal	were	averaged	over	the	cells	belonging	
to	each	of	the	47	sites,	providing	a	47	×	47	larval	connectivity	matrix	
(Figure	2b).

2.4 | Conversion to site- based variables

Pairwise	 geographic	 and	 dispersal	 distances	 were	 converted	 to	
site-	based	 variables	 used	 as	 explanatory	 variables	 in	 the	multiple	
regressions.	To	do	so,	we	used	distance-	based	Moran’s	eigenvector	
maps	 (db-	MEMs;	Dray,	Legendre,	&	Peres-	Neto,	2006),	 represent-
ing	geographic	 isolation	of	each	site	 (Figure	1b).	The	Euclidian	dis-
tances	were	decomposed	into	a	set	of	independent	spatial	variables	
(db-	MEMs)	using	a	PCA	and	eigenvector	computations.	We	used	a	
truncation	distance	of	4	times	the	largest	distance	between	sites,	as	

advised	in	Borcard	and	Legendre	(2002).	More	details	on	the	calcu-
lations	of	db-	MEMs	are	provided	 in	Appendix	S1.	These	eigenvec-
tors	were	used	as	spatial	predictors	in	regression	analyses.	db-	MEM	
analysis	was	performed	using	the	packages	“vegan”	(Oksanen	et	al.,	
2016),	“PCNM”	(Legendre,	Borcard,	Blanchet,	&	Dray,	2012),	“boot”	
(Canty	&	Ripley,	2015),	and	“packfor”	(Dray,	Legendre,	&	Blanchet,	
2013)	in	R	v.	3.2.3	(R	Core	Team	2015).

To	account	for	the	directionality	of	 larval	dispersal,	we	applied	
asymmetric	eigenvector	maps	(AEMs)	modeling	(Blanchet,	Legendre,	
&	Borcard,	2008a;	Figure	1b).	From	the	pairwise	larval	connectivity	
matrix,	we	constructed	a	connection	diagram	linking	the	47	sites	to	
one	another	according	to	the	larval	dispersal	probability	matrix	(i.e.,	
an	edge	is	present	if	the	probability	of	connection	between	two	sites	
is	different	from	0),	following	the	procedure	described	in	Blanchet,	
Legendre,	and	Borcard	(2008b).	This	diagram	was	converted	into	a	
sites-	by-	edges	matrix	E	in	which	each	row	is	a	site	and	each	column	
is	an	edge	(connection).	The	sites-	by-	edges	matrix	E	was	filled	with	
0s	and	1s	representing	the	absence	or	presence	of	the	various	edges	
linking	each	site	to	a	hypothetical	site	at	the	root	of	the	connection	
diagram	 (here	 located	 in	 the	Atlantic,	 as	 the	 surface	water	 flow	 is	
coming	from	the	Atlantic	into	the	Mediterranean).

F IGURE  2 Maps	of	sampling	and	larval	
dispersal	of	Mullus surmuletus.	(a)	Map	
of	the	Mediterranean	basin	showing	the	
location	of	the	47	sampling	sites	in	the	
eight	marine	ecoregions	of	the	world:	
Adriatic	Sea	(red;	two	sites),	Aegean	
Sea	(blue;	12	sites),	Alboran	Sea	(green;	
three	sites),	Ionian	Sea	(purple;	five	sites),	
Levantine	Sea	(orange;	six	sites),	Saharan	
Upwelling	(yellow;	one	site),	Tunisian	
Plateau/Gulf	of	Sidra	(brown;	two	sites),	
and	western	Mediterranean	(pink;	16	
sites).	The	color	gradient	indicates	the	
mean	sea	surface	salinity	at	each	site.	
(b)	Map	of	the	pairwise	probabilities	of	
receiving	larvae	between	sites.	The	color	
gradient	indicates	the	larval	dispersal	
probabilities	between	pairs	of	sites.	
Although	larval	dispersal	between	two	
sites	is	directional,	for	simplicity	only	
the	stronger	connection	probability	
is	represented	in	this	figure	(i.e.,	the	
fraction	of	larvae	originating	in	MPA	j	that	
ended	up	in	MPA	i).	The	larval	dispersal	
probabilities	identify	three	isolated	groups
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To	 construct	 the	 AEMs,	 a	 single	 value	 decomposition	 (SVD)	
was	then	computed	on	the	column	centered	E	matrix	 (Legendre	&	
Legendre,	2012),	and	the	resulting	matrix	of	site	coordinates	on	the	
SVD	axes	was	used	as	the	new	matrix	of	explanatory	variables	re-
flecting	larval	dispersal.	AEMs	were	computed	using	the	R	package	
“aem”	(Blanchet,	Legendre,	&	Gauthier,	2015).

The	db-	MEMs	and	AEMs	associated	with	 the	 largest	eigenval-
ues	 represent	 the	 large-	scale	 spatial	 structure	 in	 the	 data,	 while	
those	 associated	 with	 smaller	 eigenvalues	 reflect	 finer-	scale	 vari-
ations	 (Borcard	 &	 Legendre,	 2002;	 Dray	 et	al.,	 2006).	 The	 spatial	
scale	represented	by	each	db-	MEM	can	be	broadly	estimated	using	
the	 method	 described	 in	 Figure	3a.	 For	 example,	 db-	MEM	 1	 de-
scribes	spatial	relationship	among	the	study	sites	at	about	4,500	km	
(Figure	3b),	 and	 db-	MEM	 9	 describes	 the	 spatial	 relationship	 at	
about	600	km	(Figure	3c).

2.5 | Data analysis

2.5.1 | Variable selection

To	reduce	the	number	of	predictors	used	in	the	regressions,	we	first	
reduced	the	number	of	variable	within	each	type	of	spatial	predictors	
(db-	MEMs	and	AEMs).	As	we	have	a	high	number	of	SNP,	we	used	
the	loading	scores	of	the	47	sites	on	the	first	axis	of	a	PCA	computed	
on	all	SNP	allele	frequencies	as	a	response	variable.	The	spatial	pre-
dictors	were	 selected	using	both	 forward	 selection	 and	backward	
selection	based	on	the	Bayesian	information	criterion	(BIC)	using	the	
MASS	package	version	7.3.45	(Venables	&	Ripley,	2002).	This	step	
allowed	us	 to	build	 a	 set	 of	 seven	db-	MEMs	and	 six	AEMs.	Then,	
we	calculated	Pearson’s	correlation	coefficient	between	each	pair	of	
explanatory	variables	(db-	MEMs,	AEMs,	SST,	and	SSS)	and	removed	
one	of	the	variables	when	the	correlation	was	higher	than	0.5.	Three	
variables	were	eliminated,	leading	to	a	final	dataset	of	twelve	uncor-
related	predictors:	two	environmental	variables	(mean	SSS	and	SST),	
five	db-	MEMs,	and	five	AEMs.	Prior	to	further	analyses,	the	12	ex-
planatory	variables	were	standardized	between	0	and	1.

2.5.2 | Regression analyses

We	 performed	multiple	 linear	 regressions	 between	 the	 allele	 fre-
quency	at	each	SNP	and	the	twelve	explanatory	variables	account-
ing	for	the	respective	influence	of	environment,	geographic	isolation,	
and	 larval	 dispersal	 (Figure	1c).	 The	 explanatory	 power	 of	 a	 given	
model,	the	Akaike	weights	(AICw;	Burnham	&	Anderson,	2002), was 
calculated	from	all	possible	models	(i.e.,	using	all	possible	combina-
tions	 of	 the	 12	 explanatory	 variables).	 The	 relative	 importance	 of	
each	predictor	variable	at	explaining	allele	frequencies	of	each	SNP	
was	estimated	by	summing	 the	AICw	values	across	all	models	 that	
included	that	variable	and	averaged	over	the	1123	SNPs	to	obtain	
their	global	contribution	(ω).	Analyses	were	conducted	using	the	R	
package	MuMIn	version	1.15.6	 (Barton,	2016).	We	 tested	 the	 sig-
nificance	of	the	differences	in	mean	ω	among	the	twelve	predictors	
using	a	Kruskal–Wallis	test	(Hollander	&	Wolfe,	1973),	followed	by	

a	post	hoc	Dunn	test	(Dunn,	1961)	to	check	the	significance	of	pair-
wise	differences,	using	the	R	package	“dunn.test”	version	1.3.5.

To	 determine	 whether	 geographic	 isolation	 or	 larval	 dispersal	
had	a	larger	influence	on	spatial	distribution	of	allele	frequencies,	we	
used	the	likelihood	ratio	(LR)	tests.	This	test	compares	the	full	model	
(with	both	db-	MEMs	and	AEMs)	to	nested	models	that	consider	only	

F IGURE  3 Coordinates	of	the	sampling	sites	on	db-	MEMs	and	
the	spatial	scale	they	represent.	(a)	Theoretical	system	illustrating	
how	to	calculate	the	scale	represented	by	db-	MEMs.	The	system	
covers	the	same	longitudinal	extent	as	our	study	area	(4,500	km)	
and	is	constructed	from	63	sampling	points	spaced	by	an	equal	
distance	(the	smallest	distance	between	our	sampling	sites—47	km).	
The	graph	presents	the	coordinates	of	these	sites	on	the	sixth	
theoretical	db-	MEM.	The	scale	represented	by	the	vector	is	the	
ratio	of	the	longitudinal	extent	to	the	number	of	cycles	of	the	
sinusoid.	(b,c)	Bubble	plots	illustrating	the	db-	MEMs	1	(b)	and	9	(c)	
corresponding	to	the	potential	spatial	scales	of	variability	based	
on	the	geographic	distances	among	sites.	The	size	of	the	bubble	
reflects	the	coordinate	of	the	site	on	the	db-	MEM.	Contour	lines	(in	
red)	show	the	db-	MEM	scores.	The	bubble	plots	have	been	created	
using	the	“ordisurf”	function	of	the	“vegan”	R	package	version	2.4-	6	
(Oksanen	et	al.,	2016)
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geographic	 isolation	 (five	 db-	MEMs)	 or	 only	 larval	 dispersal	 (five	
AEMs).	The	LR	test	was	performed	only	on	the	best	models	(AICmin)	
for	each	SNP	with	at	least	one	significant	explanatory	variable	(693	
SNPs).	The	effect	of	environmental	variables	was	not	tested	in	these	
models	as	SST	and	SSS	showed	low	contribution	to	the	variation	in	
allele	frequencies.	We	computed	the	adjusted	R²	of	the	model	with	
AICmin	for	each	SNP	and	averaged	it	across	SNPs.

3  | RESULTS

3.1 | Variations in allele frequencies across the 
Mediterranean Sea

Pairwise FST	 ranged	 from	 0.018	 to	 0.065,	 with	 a	 mean	 of	 0.033,	
showing	weak	genetic	differentiation	between	sites	 (Figure	S3),	as	
expected	for	a	mobile	marine	species	(Waples,	1998).	The	first	row	
of	the	FST	matrix	indicates	strong	pairwise	differentiation	between	
Gibraltar	 (site	20)	and	all	 the	other	sites.	The	Alboran	Sea	(sites	3,	
4,	and	5)	also	displays	slightly	stronger	FST	values	with	 the	 rest	of	
the	Mediterranean	Sea.	The	Mantel	test	between	pairwise	FST and 
marine	 geographic	 least-	cost	 distances	 was	 significant	 (rM	=	0.30,	
p-	value	<	.001),	suggesting	a	pattern	of	isolation	by	distance	in	the	
data	(Figure	S4).

3.2 | Drivers of the spatial distribution of allele 
frequencies

The	sums	of	AICw	of	each	of	 the	12	variables	calculated	 from	the	
regression	 analysis	were	 averaged	 across	 all	 SNPs	 to	 obtain	 their	
global	contribution	ω.	Averaging	the	effect	of	the	explanatory	vari-
ables	over	all	loci	informs	about	general	genetic	patterns	at	the	scale	
of	the	whole	genome.	The	five	AEMs	(4,	7,	10,	18,	and	25)	and	three	
db-	MEMs	 (1,	9,	 and	10)	had	ω	 values	 significantly	higher	 than	 the	
remaining	predictors	 (Figure	4),	 showing	an	 influence	of	both	geo-
graphic	 isolation	and	 larval	dispersal	on	 the	variation	 in	M. surmu-
letus	 allele	 frequencies.	The	 two	environmental	variables	 (SSS	and	
SST)	 had	 statistically	 significantly	 smaller	 effect	 (respectively,	 9th	
and	11th	highest	ω	values;	Figure	4).

Considering	only	the	best	models	for	each	SNP	(AICmin),	on	av-
erage	larval	dispersal	and	geographic	isolation	explain,	respectively,	
11%	and	9.66%	of	 the	 variation	 in	 allele	 frequencies,	with	 no	 sig-
nificant	 difference	between	 the	 two	 types	of	 predictors	 (Table	1).	
Together,	geographic	isolation	and	dispersal	explain	19%	of	the	vari-
ation	in	allele	frequencies.	We	calculated	the	number	of	time	each	
predictor	was	selected	in	the	best	model	across	all	SNPs	(Figure	S5).	
There	was	no	significant	difference	in	the	number	of	selections	be-
tween	the	12	variables.

3.3 | Scale effect on the drivers of allele frequencies

To	disentangle	 the	effect	of	geographic	 isolation	versus	 larval	dis-
persal,	 we	 distinguished	 three	 spatial	 scales:	 broad,	 intermediate,	
and	 local.	 The	 db-	MEMs	 with	 the	 highest	 global	 contribution	 ω 

represented	mostly	broad	and	intermediate	spatial	scales	(db-	MEMs	
1,	9,	and	10;	Figure	4),	whereas	the	most	important	AEMs	described	
mainly	 intermediate	 to	 local	 scales	 (AEMs	 4,	 7,	 10,	 18,	 and	 25;	
Figure	4).	db-	MEM	1	described	spatial	relationship	among	the	study	
sites	at	about	4,500	km	and	suggests	three	clusters	with	longitudinal	
distribution:	the	western	basin	and	the	Adriatic	Sea	pooled	together,	
the	Aegean	Sea,	and	the	 last	cluster	made	of	the	six	most	eastern	
samples	(Figure	3b).

4  | DISCUSSION

4.1 | Drivers of genetic variation

To	explain	the	genetic	variation	of	M. surmuletus,	we	took	advantage	
of	an	extensive	(~4,500	km)	and	fine	resolution	(~100	km)	sampling	
covering	the	entire	Mediterranean	Sea.	We	show	that	larval	disper-
sal	is	the	major	variable	influencing	allele	frequency	variation	(mean	
adjusted	R²	 over	 all	 SNPs	=	11%)	 at	 small	 and	 intermediate	 spatial	
scales	 (<about	 1,000	km),	 while	 geographic	 isolation	 is	 the	 main	
driver	(mean	adjusted	R²	over	all	SNPs	=	9.6%)	at	larger	scale	(>about	
1,000	km).	Environmental	variables	(salinity	and	temperature)	have	
significantly	weaker	effects	on	the	variation	in	allele	frequencies	(re-
spectively,	9th	and	11th	highest	ω	value;	Figure	4).	The	effect	of	SSS	
and	SST	on	presumed	neutral	SNPs	could	be	due	to	adaptation:	 If	
the	movement	of	individuals	is	limited	because	of	strong	ecological	
selection,	adaptation	would	occur	in	a	form	that	could	impede	gene	
flow	via	high	mortality	of	immigrants	(isolation	by	adaptation;	Nosil	
et	al.,	2009).	In	this	case,	populations	would	diverge	at	both	adaptive	
and	neutral	loci	(Schoville	et	al.,	2012).

Our	findings	stress	the	importance	of	including	spatial	scale	to	
better	interpret	the	effects	of	the	drivers	of	genetic	variation.	The	

F IGURE  4  Importance	of	the	explanatory	variables	on	the	
variation	in	allele	frequencies	of	Mullus surmuletus.	Sum	of	
variables’	contributions	(ω)	over	all	models	including	that	variable	
averaged	across	all	SNPs.	ω	represents	the	importance	of	each	of	
the	12	variables	to	explain	variation	in	allele	frequencies.	The	two	
environmental	variables	(mean	sea	surface	temperature—SST	and	
mean	sea	surface	salinity—SSS)	are	represented	in	green,	the	five	
geographic	isolation	vectors	(db-	MEMs)	in	blue,	and	the	five	larval	
dispersal	vectors	(AEMs)	in	red.	Horizontal	segments	show	groups	
of	variables	not	significantly	different	according	to	Dunn’s	post	hoc	
test
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effect	of	larval	dispersal	on	genetic	variation	is	well	ascertained	for	
marine	organisms.	First	 for	benthic	 sessile	organisms,	with	adults	
relatively	immobile,	larval	dispersal	is	a	key	process	involved	in	pop-
ulation	connectivity	(Banks	et	al.,	2007).	Banks	et	al.	(2007)	showed	
that	fine-	scale	genetic	structure	of	the	sea	urchin	(Centrostephanus 
rodgersii)	was	influenced	by	sea	surface	temperature	(SST)	variabil-
ity	and	geography,	most	likely	due	to	dispersal	at	the	larval	stage.	
A	recent	study	based	on	SNPs	genotyping	of	the	greenlip	abalone	
(Haliotis laevigata)	showed	that	its	adaptive	genetic	structure	along	
southern	 Australian	 coast	 has	 been	 influenced	 by	 environmen-
tal	 heterogeneity.	 This	 pattern	 probably	 results	 from	 adaptation	
to	 minimum	 sea	 surface	 temperature	 and	 oxygen	 concentration	
(Sandoval-	Castillo,	 Robinson,	 Hart,	 Strain,	 &	 Beheregaray,	 2018).	
In	marine	fishes,	Schunter	et	al.	(2011),	Munguia-	Vega	et	al.	(2014),	
and	Young	et	al.	(2015)	showed	that	fish	larval	dispersal	is	a	better	
explanatory	factor	of	genetic	variation	than	geographic	distance	at	
spatial	scales	ranging	from	250	km	to	4,000	km.	Other	studies	high-
lighted	 that,	 beyond	 larval	 dispersal,	 some	 environmental	 factors	
determine	genetic	variation	of	marine	fishes.	For	 instance,	Selkoe	
et	al.	 (2010)	 showed	 that	 the	 main	 driver	 of	 genetic	 differentia-
tion	in	Paralabrax clathratus	is	kelp	coverage,	while	Teacher,	André,	
Jonsson,	and	Merilä	(2013)	detected	an	effect	of	temperature	and	
salinity	on	the	genetic	structure	of	Clupea harengus.	However,	none	
of	 these	 studies	 have	 investigated	 the	 combined	 effects	 of	 dis-
persal,	 geographic	 isolation,	 and	 environment	 at	 different	 spatial	
scales.

Our	 analytical	 framework	 offers	 a	 robust	 tool	 to	 quantify	 the	
importance	of	geographic	 isolation	and	larval	dispersal	 in	structur-
ing	the	variation	of	allele	frequencies	across	spatial	scales.	We	used	
node	 (i.e.,	 site)-	based	 analyses	 (Wagner	 &	 Fortin,	 2013),	 whereas	
population	genetic	 studies	usually	use	 link-	based	approaches	with	
genetic	 distances	 between	 pairs	 of	 sites.	Node-	based	 approaches	
allow	for	robust	inferences	based	on	multiple	regression	techniques	
and	Akaike	 information	 criteria	 (AIC)	while	 avoiding	 the	 problems	
of	nonindependency	between	data	arising	in	link-	based	approaches	
(Legendre,	Fortin,	&	Borcard,	2015).	Our	analyses	rely	on	the	decom-
position	of	directional	larval	dispersal	and	geographic	isolation	into	
several	 vectors	 representing	multiple	 spatial	 scales,	 using,	 respec-
tively,	 asymmetric	 eigenvector	 maps	 (AEMs)	 and	 distance-	based	
Moran’s	eigenvector	maps	(db-	MEMs).	This	framework	is	in	its	early	

stage	of	development	in	landscape	genetics	(Benestan	et	al.,	2016;	
Bothwell	et	al.,	2012)	and	opens	new	perspectives	to	interpret	the	
patterns	of	genetic	variation	and	 to	understand	 the	processes	be-
hind	the	observed	spatial	genetic	patterns	at	different	scales	(Manel	
&	Holderegger,	2013).

4.2 | Spatial scale associated with these drivers

Our	approach	based	on	Moran’s	eigenvector	decomposition	allowed	
us	 to	 identify	 the	 spatial	 scales	 associated	 with	 symmetric	 (db-	
MEMs)	 and	 asymmetric	 (AEMs)	 spatial	 variables.	 At	 our	 broadest	
spatial	 scale—about	 4,500	km—the	 first	 db-	MEM	 (db-	MEM	1)	 has	
the	highest	 contribution	 to	 allele	 frequency	variation	 (ω),	whereas	
no	broad-	scale	AEM	was	selected	by	the	stepwise	variable	selection	
procedure.	It	suggests	that	geographic	isolation	is	the	main	driver	of	
variation	 in	allele	 frequencies	at	 this	 scale.	As	no	 large-	scale	AEM	
was	detected	as	significant,	genetic	variation	at	broad	scale	cannot	
be	explained	by	passive	larval	dispersal.	At	such	scale,	genetic	con-
nectivity	could	result	from	processes	such	as	adult	mobility,	demo-
graphic	history,	or	multigenerational	stepping	stone	larval	dispersal	
(D’Aloia	 et	al.,	 2015)	 that	 were	 not	 tested	 in	 our	 analyses.	 Larval	
dispersal	 is	 therefore	 expected	 to	 be	 better	 correlated	 to	 genetic	
variation	at	smaller	scales,	corresponding	to	the	distances	larvae	can	
travel	during	30	days.

At	intermediate	spatial	scale,	both	geography	and	larval	disper-
sal	have	an	effect	on	allele	 frequencies,	with	AEMs	7	and	10,	and	
db-	MEMs	9	and	10	having	the	highest	contributions	(Figure	4).	For	
marine	 species	with	 a	 pelagic	 larval	 phase,	 such	 as	M. surmuletus,	
dispersal	capacity	is	primarily	determined	by	pelagic	larval	duration	
(PLD),	as	the	possible	distance	traveled	by	larvae	increases	with	PLD	
(Andrello	et	al.,	2013;	Selkoe	&	Toonen,	2011).	For	example,	larvae	of	
the	dusky	grouper	(Epinephelus marginatus),	which	has	a	similar	PLD	
as M. surmuletus	 (30	days),	disperse	over	distances	of	about	90	km	
on	average	(Andrello	et	al.,	2013).	At	such	scale,	oceanic	circulation,	
and	thus	 larval	dispersal,	 is	expected	to	differ	 from	Euclidian	geo-
graphic	distances	due	to	the	existence	of	small-	scale	features	such	
as	gyres	and	fronts.	In	addition	to	oceanic	features,	the	very	tortu-
ous	coast	of	the	Mediterranean	Sea	is	likely	to	limit	larval	dispersal.

AEM	 18	 and	 AEM	 25,	 representing	 small	 spatial	 scales,	 also	
display	high	ω	values,	whereas	no	db-	MEM	describing	small	scales	

# SNPs % of SNPs
Mean 
adjusted R² Mean AIC LR test

Null 1123 100 0 −229.6

Geography 574 51 .096 −231.54 51.47

Dispersal 577 51 .113 −232.03 50.85

Geography	+	Dispersal 693 62 .187 −235.76

We	considered	only	the	best	models	for	each	SNP	(AICmin)	and	only	the	SNPs	for	which	the	best	
model	was	better	than	a	model	with	just	an	intercept	(i.e.,	null	model;	ΔAIC	>	2;	693	SNPs).	The	ef-
fect	of	environmental	variables	was	not	tested	in	these	models	as	both	variables	showed	low	contri-
bution	 to	 the	 variation	 in	 allele	 frequencies.	 The	 table	 gives	 an	 averaged	 value	 overall	 SNPs	 of	
adjusted	R²,	AIC,	and	likelihood	ratio	test	comparing,	respectively,	geographic	isolation	and	dispersal	
to	the	full	model.

TABLE  1 Parameters	used	in	
multivariate	regressions	including	
geographic	isolation	(db-	MEMs)	alone,	
larval	dispersal	(AEMs)	alone,	and	both	
geography	and	dispersal	as	explanatory	
variables	of	genetic	variation	(SNPs	allele	
frequencies)	of	Mullus surmuletus
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was	 selected	 by	 the	 stepwise	 variable	 selection	 (Figure	4).	 This	
result	 indicates	that	 larval	dispersal	 is	more	 important	than	geo-
graphic	isolation	to	explain	local-	scale	variations	in	allele	frequen-
cies.	Both	AEM	18	and	AEM	25	show	a	strong	differentiation	of	
one	to	three	populations,	 located	 in	 the	Balearic	 Islands	and	the	
Alboran	Sea.	Interestingly,	this	corroborates	the	FST	values	(Figure	
S3),	which	 show	a	 slight	 differentiation	of	 the	Alboran	Sea	with	
the	 rest	 of	 the	Western	Mediterranean	 basin,	 probably	 induced	
by	 a	 well-	documented	 barrier	 due	 to	 oceanic	 circulation,	 the	
Almeria–Oran	 front	 (Galarza	 et	al.,	 2009;	 Schunter	 et	al.,	 2011).	
Processes	implicated	in	the	neutral	genetic	structuration	at	small	
scale	are	related	to	local	oceanic	circulation	and	limited	dispersal	
due	 to	 larval	 retention.	 Several	 studies	 show	very	high	 levels	of	
larval	retention	and	self-	recruitment	in	fish	species	with	long	PLD	
(D’Aloia	et	al.,	2013;	Taylor	&	Hellberg,	2003),	which	can	be	due	
to	active	swimming	of	 larvae	toward	the	coast	or	 local	hydrody-
namic	retention	mechanisms	not	captured	by	our	dispersal	model.	
Differentiation	at	local	scale	can	also	result	from	founding	(prior-
ity)	effects	that	occur	when	the	first	dispersers	colonizing	a	new	
area	can	influence	the	success	of	following	settlers	(Fraser,	Banks,	
&	Waters,	2015).

4.3 | Limitation of the methods

The	power	of	detecting	a	significant	effect	of	larval	dispersal	on	the	
distribution	of	allele	frequencies	may	be	reduced	by	the	loss	of	in-
formation	on	 larval	dispersal	probabilities	 in	 the	AEMs.	Larval	dis-
persal	probabilities	were	summarized	in	a	node-	by-	edge	matrix	(E),	
used	to	build	the	AEMs.	E	was	a	binary	matrix	of	connection	(i.e., 1 
when	there	is	a	connection,	and	0	when	there	is	not),	which	ignored	
the	strength	of	the	connections.	This	representation	is	required	for	
the	computation	of	AEMs,	but	it	provides	coarse	information	for	lar-
val	dispersal	models,	 in	which	dispersal	probabilities	vary	between	
connections	 (Figure	2b).	 Thus,	 the	 main	 effect	 of	 larval	 dispersal	
on	the	variation	in	allele	frequencies	can	be	captured	by	our	analy-
ses,	but	the	power	of	the	regressions	may	be	limited	by	this	binary	
representation.

MEM	and	AEM	analyses	 are	 recognized	 as	 a	 relevant	way	 to	
capture	the	spatial	structure	in	data	(Legendre,	Borcard,	&	Peres-	
Neto,	 2005)	 while	 accounting	 for	 different	 scales	 of	 spatial	 de-
pendence	 (Borcard	&	Legendre,	2002).	However,	MEM	and	AEM	
analyses	 sometimes	overestimate	 the	 importance	of	 spatial	 vari-
ables	when	the	eigenvectors	account	for	random	spatial	variations	
(Gilbert	&	Bennett,	2010).	In	our	regression	analyses,	we	used	the	
same	number	of	db-	MEMs	and	AEMs;	thus,	we	do	not	expect	over-
estimation	of	geographic	versus	dispersal	variables.	However,	the	
importance	of	environmental	predictors	compared	to	that	of	geo-
graphic	 and	dispersal	 ones	 could	be	underestimated	 in	our	 anal-
yses,	especially	as	environmental	variables	show	some	degree	of	
correlation	with	specific	AEMs	or	db-	MEMs	(up	to	r²	=	.41	between	
SSS	and	AEM	7).	Thus,	we	cannot	focus	our	work	on	the	relative	
importance	of	environmental	versus	geographic	or	dispersal	vari-
ables,	but	more	on	determining	which	are	the	spatial	scales	where	

geographic	isolation	and	larval	dispersal	influence	the	variation	in	
allele	frequencies.

5  | CONCLUSION

Given	that	genetic	variation	is	closely	related	to	the	adaptive	and	
resilience	potential	of	populations	 (Kokko	et	al.,	2017),	 the	man-
agement	 of	 fisheries	 and	 marine	 protected	 areas	 (MPAs)	 would	
benefit	from	a	better	understanding	of	the	processes	and	spatial	
scales	influencing	genetic	variation	of	marine	species.	Larval	dis-
persal	 is	a	key	ecological	process	driving	population	source–sink	
dynamics	 and	 gene	 flow	 (Selkoe	 et	al.,	 2016).	 Specifically,	 gene	
flow	 and	 demographic	 connectivity	 maintain	 genetic	 diversity	
(Baguette,	Blanchet,	Legrand,	Stevens,	&	Turlure,	2013),	thus	pro-
moting	 population	 resilience	 after	 disturbance	 (Baguette	 et	al.,	
2013;	Hughes	&	Stachowicz,	 2004).	A	 recent	modeling	 study	of	
Magris	et	al.	(2018)	showed	the	importance	of	integrating	hydro-
dynamics	 and	 larval	dispersal	 in	 the	design	of	MPA	networks	 to	
enhance	their	effectiveness	in	terms	of	species	persistence.	Funk,	
Mckay,	 Hohenlohe,	 and	 Allendorf	 (2012)	 argued	 that	 genomic	
information,	 both	 neutral	 and	 adaptive,	 can	 greatly	 improve	 the	
delineation	 of	 conservation	 units.	 Sandoval-	Castillo	 et	al.	 (2018)	
provided	 an	 example	 of	marine	 genomic	 and	 connectivity	 infor-
mation	being	directly	used	by	a	government	for	management	and	
conservation	purposes.

We	 show	 that	 larval	 dispersal	 influences	 genetic	 variation	 at	
small	and	intermediate	scales,	but	not	at	broad	scale	where	simple	
geographic	 distances	 primarily	 explain	 observed	 allele	 frequency	
variation,	which	may	result	from	other	processes	such	as	adult	mo-
bility,	 demographic	 history,	 or	 multigenerational	 stepping-	stone	
dispersal.	 In	order	 to	maintain	genetic	variations	 in	populations	of	
M. surmuletus,	and	more	generally	in	populations	of	demersal	fishes,	
particular	attention	should	be	given	to	the	spacing	of	MPAs.	Indeed,	
a	 network	 of	 reserves	 that	 can	 be	 connected	 by	 larval	 dispersal	
would	efficiently	protect	gene	flow	between	protected	areas.	Such	
a	network	is	thus	likely	to	conserve	the	genetic	diversity	and	adap-
tive	potential	of	species,	and	 to	support	 renewal	of	 fishery	stocks	
(Olds	et	al.,	2016).
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