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Abstract
Genetic variation, as a basis of evolutionary change, allows species to adapt and per-
sist in different climates and environments. Yet, a comprehensive assessment of the 
drivers of genetic variation at different spatial scales is still missing in marine ecosys-
tems. Here, we investigated the influence of environment, geographic isolation, and 
larval dispersal on the variation in allele frequencies, using an extensive spatial sam-
pling (47 locations) of the striped red mullet (Mullus surmuletus) in the Mediterranean 
Sea. Univariate multiple regressions were used to test the influence of environment 
(salinity and temperature), geographic isolation, and larval dispersal on single nucleo-
tide polymorphism (SNP) allele frequencies. We used Moran’s eigenvector maps (db-
MEMs) and asymmetric eigenvector maps (AEMs) to decompose geographic and 
dispersal distances in predictors representing different spatial scales. We found that 
salinity and temperature had only a weak effect on the variation in allele frequencies. 
Our results revealed the predominance of geographic isolation to explain variation in 
allele frequencies at large spatial scale (>1,000 km), while larval dispersal was the 
major predictor at smaller spatial scale (<1,000 km). Our findings stress the 
importance of including spatial scales to understand the drivers of spatial genetic 
variation. We suggest that larval dispersal allows to maintain gene flows at small to 
intermediate scale, while at broad scale, genetic variation may be mostly shaped by 
adult mobility, demographic history, or multigenerational stepping-stone dispersal. 
These findings bring out important spatial scale considerations to account for in the 
design of a protected area network that would efficiently enhance protection and 
persistence capacity of marine species.

K E Y W O R D S

connectivity, ecological genetics, marine fish, Mediterranean Sea, Mullus surmuletus, seascape 
genetics, single nucleotide polymorphism

www.wileyonlinelibrary.com/journal/eva
http://orcid.org/0000-0002-8969-8243
http://creativecommons.org/licenses/by/4.0/
mailto:alicia.dalongeville@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1111%2Feva.12638&domain=pdf&date_stamp=2018-06-05


1438  |     DALONGEVILLE et al.

1  | INTRODUC TION

Genetic variation is both the outcome and the basis of evolution-
ary change (Kokko et al., 2017), allowing species to adapt to novel 
environmental conditions and persist in different climates and en-
vironments. Describing the spatial patterns of genetic variation can 
help to better understand the underlying processes of evolution and 
is one of the main focuses of landscape genetics (Manel, Schwartz, 
Luikart, & Taberlet, 2003). Studying the spatial distribution of ge-
netic variation requires both characterizing the genetic structure 
of populations and detecting the variables influencing its spatial 
organization.

Geographic isolation, barriers to gene flow, and environmental 
or landscape features can generate spatial genetic patterns such as 
isolation by distance (IBD; Kimura & Weiss, 1964), isolation by resis-
tance (IBR), or adaptive genetic isolation (Nosil, Egan, & Funk, 2008). 
Barriers and resistance to movement are directly related to dispersal 
of individuals at various life stages. Yet, in marine landscapes (i.e., 
seascapes), dispersal of most organisms occurs during the pelagic 
larval stage and depends on oceanic currents that can transport 
propagules over large distances (White et al., 2010). Larval disper-
sal is then expected to influence seascape genetic variations, and 
the resulting genetic patterns often differ from the classical theory 
of isolation by distance (Selkoe et al., 2016). Hence, a comprehen-
sive assessment of the drivers of spatial genetic variation in marine 
populations needs to include in a same framework environmental 
heterogeneity, geographic isolation, and larval dispersal (D’Aloia, 
Bogdanowicz, Harrison, & Buston, 2014; Selkoe et al., 2016). To this 
aim, large-scale datasets and novel analytical methods are required 
(Manel & Holderegger, 2013).

White et al. (2010) were among the first to show that larval 
dispersal was a better driver of genetic structure than geography 
measured as the mere Euclidean distance. Selkoe et al. (2010) more-
over demonstrated the importance of considering other ecological 
and environmental factors to explain seascape genetic patterns. In 
their study, they showed that habitat (i.e., kelp coverage) was the 
main variable shaping genetic structure for three fish species, thus 
demonstrating that beyond larval dispersal, the survival capacity 
within a given habitat also affects gene flow. Seascape genetic pat-
terns can also be shaped by other environmental variables such as 
temperature or salinity through isolation by adaptation (Nosil, Funk, 
& Ortiz-Barrientos, 2009). Environmental gradients may influence 
both adaptive and neutral genetic variations if the movement of 
individuals is limited by a strong ecological selection against immi-
grants (Nosil et al., 2009). Historical events such as demographic 
fluctuations and colonization are also expected to influence spatial 
genetic variation (Lowe & Allendorf, 2010). It is now well established 
that several processes structure genetic variation, but there is still 
much to be learned about the drivers of seascape genetic patterns 
(Selkoe et al., 2016). In particular, the relative importance and the 
spatial scale associated with these drivers are rarely discussed in 
seascape studies (Riginos, Crandall, Liggins, Bongaerts, & Treml, 
2016).

Here, we defined three spatial scales for which we expect differ-
ent processes to affect fish spatial genetic variation (Jombart, Dray, 
& Dufour, 2009; Wagner & Fortin, 2013): (i) broad scale where we 
assume a preponderant effect of colonization, migration, or isolation 
by adaptation; (ii) intermediate scale at which larval dispersal and 
adult dispersal are expected to occur; and (iii) local scale, expected 
to be dominated by processes such as local retention of larvae and 
local adaptation. We thus hypothesize that geographic isolation 
primarily shapes genetic structure at large scale, while the influ-
ence of dispersal and gene flow may become more prevalent when 
downscaling (Almany et al., 2013; D’Aloia, Bogdanowicz, Majoris, 
Harrison, & Buston, 2013).

Here, we used the Mediterranean Sea as the archetypal situa-
tion where larval dispersal distance and geographic distance may 
be weakly correlated owing to a very tortuous coastline, several 
physical barriers (oceanic fronts and gyres), and heterogeneous sea 
currents (Galarza et al., 2009). This study characterizes the spatial 
genetic pattern of a heavily exploited species, the striped red mullet 
(Mullus surmuletus). The striped red mullet is a demersal fish species 
inhabiting coastal shelf ecosystems from 0 to ~100 m depth. This 
species is widely distributed in the eastern North Atlantic Ocean, 
from the British Isles in the North to Senegal in the South, including 
the Mediterranean and Black Sea (Tserpes et al., 2002). It is among 
the most economically valuable species in the Mediterranean Sea. 
Spawning occurs from May to July and produces larvae with a pe-
lagic stage lasting for approximately 25–35 days (Macpherson & 
Raventos, 2006). A change in distribution of the species toward 
deeper waters during spring, just before the spawning season, has 
been shown by Machias, Somarakis, and Tsimenides (1998). In most 
demersal fish species, larval dispersal is presumed to play an import-
ant role in shaping the genetic variation of M. surmuletus. However, 
the magnitude of its effect relative to other processes and the spatial 
scales of its action remain poorly known. Hence, we tested the in-
fluence of environmental variables, geographic isolation, and larval 
dispersal to explain the genetic variation of M. surmuletus (Figure 1).

2  | MATERIAL S AND METHODS

2.1 | Study area, sampling design, and 
environmental variables

The study area covers the entire Mediterranean coastline, includ-
ing islands. A total of 727 adults of M. surmuletus were collected be-
tween April and November 2014 in 47 sites embracing the whole 
range of the Mediterranean Sea at a fine resolution (≈100 km be-
tween sampling locations on average) (Figure 2a; Table S1). The 
mean distance between our sampling sites was about 100 km. 
Specimens were obtained from small-scale fishery landings in each 
site: The local origin of the samples was confirmed by the fishermen. 
Fish samples consisted of fin clips of pectoral and caudal fins con-
served in 96% ethanol prior to storage at 4°C.

Sea surface temperature (SST) and sea surface salinity (SSS) were 
computed in each site from the oceanographic model NEMOMED8 
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(Somot, Sevault, & Deque, 2006), which has a spatial resolution of 
1/8° (Albouy et al., 2015) from the period 1990–2013. The daily data 
were averaged over the whole period for both SST and SSS to infer 
the mean values. The SSS values of each site are shown in Figure 2a 
and the SST values in Figure S1.

2.2 | Genetic data and analyses

Extraction of genomic DNA was undertaken using the DNeasy Blood 
& Tissue Kit (Qiagen) according to the manufacturer’s protocol. DNA 
quality was assessed by running 3 μl of each DNA sample on 1% 
agarose gels. DNA concentration was determined using NanoDrop 
8000. A total of 558 DNA samples that fulfilled the quality and 
quantity criteria (DNA of high molecular weight, with at least 40 μl of 

DNA available at a concentration >10 ng/μl) were then sequenced. 
Individuals were genotyped using genotyping-by-sequencing tech-
nique (GBS) based on the use of restriction enzyme digestion to 
sequence a reduced portion of the genome (Elshire et al., 2011). 
Libraries were constructed using restriction enzyme ApeKI (recogni-
tion site: GCWGC) following a protocol modified from Elshire et al. 
(2011). Six 96-plex GBS libraries were prepared and sequenced at 
the Institute of Genomic Diversity at Cornell University using the 
Illumina HiSeq 2500 (100 bp, single-end reads). Each library was se-
quenced on a separate HiSeq flowcell lane.

Raw read sequences were filtered according to quality base 
calling, removing sequences with average Phred quality below 25. 
Trimming was performed to remove low-quality bases at the extrem-
ities of the reads (Phred quality below 20). Sequences shorter than 
60 bp were discarded from the dataset. For each sequenced library, 
the number of raw reads and filtered data are provided in Table S1. 
SNP calling per pool was performed using the Tassel 3.0 Universal 
Network-Enabled Analysis Kit (UNEAK; Lu et al., 2013). We refiltered 
the individual raw sequences with Stacks software (Catchen, Amores, 
Hohenlohe, Cresko, & Postlethwait, 2011), which confirmed the low 
coverage and high rate of missing data for individual genotype calling. 
To overcome this bias, we considered pools of individuals sampled at 
the same site rather than the individual genotype information. This 
strategy produced a dataset of 47 “pools” (i.e., sampling sites) con-
taining between nine and eighteen individuals (Table S1), and whose 
sequence coverage was >10× at 1153 SNPs. The parameters used in 
both UNEAK and Stacks are detailed in Appendix S1. We verified that 
the uneven sample sizes did not influence the estimations of allele 
frequencies in the 47 pools (see Figure S2).

To remove the potential confounding effect of SNPs under se-
lection, we eliminated candidate SNPs (see Dalongeville, Benestan, 
Mouillot, Lobreaux, & Manel, 2018). Six genome scan methods were 
applied to detect selection signal, and the sequences of all the out-
lier SNPs were blasted on known annotated genes in the NCBI’s nr 
database (NCBI Resource Coordinators, 2017). The blast analysis 
identified 30 sequences corresponding to genes. We removed the 
30 SNPs corresponding to these sequences to produce the final al-
lele frequencies at 1123 SNPs in 47 sites for subsequent analyses.

Genetic differentiation between the pairs of 47 sites was quan-
tified by the Wright’s pairwise FST, calculated using the R package 
“polysat” (Clark & Jasieniuk, 2011). To test for isolation by distance 
(IBD), we performed a Mantel test between pairwise FST computed 
from allele frequencies and marine geographic distances, computed 
as least-cost path distances with infinite resistance values assigned 
to landmasses. The Mantel test was performed using the R pack-
age “vegan” (Oksanen et al., 2016) and its significance using 10,000 
randomizations.

2.3 | Spatial and dispersal distances

Geographic isolation was measured as Euclidian distances be-
tween pair of sites: We converted degrees latitude and longitude to 
Cartesian coordinates, and computed the Euclidian distance matrix.

F IGURE  1 Analytical framework used to test the influence 
of environment, geographic isolation, and larval dispersal on the 
genetic variation of Mullus surmuletus and their associated spatial 
scales. (a) The study area, the Mediterranean Sea. (b) The response 
(SNP allele frequencies) and explanatory variables (environment, 
geographic isolation, and larval dispersal). Distance-based Moran’s 
eigenvector maps (db-MEMs) were used to calculate node-based 
predictors of geographic isolation. See Borcard and Legendre 
(2002) for more detailed explanation on the construction of db-
MEMs. Similarly, asymmetric eigenvector maps (AEMs) were used 
to calculate node-based predictors of larval dispersal; construction 
of AEMs is detailed in Blanchet et al. (2008a). (c) Multiple linear 
regressions and the Akaike weight used to estimate the relative 
effect of each type of variable on variation in allele frequencies, 
and at which spatial scale they are mainly associated
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Larval dispersal was quantified using the biophysical model of 
Andrello, Jacobi, Manel, Thuiller, and Mouillot (2015), which es-
timates the probability of larval connection between each pair of 
sites. The model was parameterized with a pelagic larval duration of 
30 days and release of larvae every 3 days from the May 1 until the 
May 28, which corresponds to the spawning season of the species in 
Mediterranean waters. Larvae were released in 1/10th-degree cells, 
and probabilities of dispersal were averaged over the cells belonging 
to each of the 47 sites, providing a 47 × 47 larval connectivity matrix 
(Figure 2b).

2.4 | Conversion to site-based variables

Pairwise geographic and dispersal distances were converted to 
site-based variables used as explanatory variables in the multiple 
regressions. To do so, we used distance-based Moran’s eigenvector 
maps (db-MEMs; Dray, Legendre, & Peres-Neto, 2006), represent-
ing geographic isolation of each site (Figure 1b). The Euclidian dis-
tances were decomposed into a set of independent spatial variables 
(db-MEMs) using a PCA and eigenvector computations. We used a 
truncation distance of 4 times the largest distance between sites, as 

advised in Borcard and Legendre (2002). More details on the calcu-
lations of db-MEMs are provided in Appendix S1. These eigenvec-
tors were used as spatial predictors in regression analyses. db-MEM 
analysis was performed using the packages “vegan” (Oksanen et al., 
2016), “PCNM” (Legendre, Borcard, Blanchet, & Dray, 2012), “boot” 
(Canty & Ripley, 2015), and “packfor” (Dray, Legendre, & Blanchet, 
2013) in R v. 3.2.3 (R Core Team 2015).

To account for the directionality of larval dispersal, we applied 
asymmetric eigenvector maps (AEMs) modeling (Blanchet, Legendre, 
& Borcard, 2008a; Figure 1b). From the pairwise larval connectivity 
matrix, we constructed a connection diagram linking the 47 sites to 
one another according to the larval dispersal probability matrix (i.e., 
an edge is present if the probability of connection between two sites 
is different from 0), following the procedure described in Blanchet, 
Legendre, and Borcard (2008b). This diagram was converted into a 
sites-by-edges matrix E in which each row is a site and each column 
is an edge (connection). The sites-by-edges matrix E was filled with 
0s and 1s representing the absence or presence of the various edges 
linking each site to a hypothetical site at the root of the connection 
diagram (here located in the Atlantic, as the surface water flow is 
coming from the Atlantic into the Mediterranean).

F IGURE  2 Maps of sampling and larval 
dispersal of Mullus surmuletus. (a) Map 
of the Mediterranean basin showing the 
location of the 47 sampling sites in the 
eight marine ecoregions of the world: 
Adriatic Sea (red; two sites), Aegean 
Sea (blue; 12 sites), Alboran Sea (green; 
three sites), Ionian Sea (purple; five sites), 
Levantine Sea (orange; six sites), Saharan 
Upwelling (yellow; one site), Tunisian 
Plateau/Gulf of Sidra (brown; two sites), 
and western Mediterranean (pink; 16 
sites). The color gradient indicates the 
mean sea surface salinity at each site. 
(b) Map of the pairwise probabilities of 
receiving larvae between sites. The color 
gradient indicates the larval dispersal 
probabilities between pairs of sites. 
Although larval dispersal between two 
sites is directional, for simplicity only 
the stronger connection probability 
is represented in this figure (i.e., the 
fraction of larvae originating in MPA j that 
ended up in MPA i). The larval dispersal 
probabilities identify three isolated groups
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To construct the AEMs, a single value decomposition (SVD) 
was then computed on the column centered E matrix (Legendre & 
Legendre, 2012), and the resulting matrix of site coordinates on the 
SVD axes was used as the new matrix of explanatory variables re-
flecting larval dispersal. AEMs were computed using the R package 
“aem” (Blanchet, Legendre, & Gauthier, 2015).

The db-MEMs and AEMs associated with the largest eigenval-
ues represent the large-scale spatial structure in the data, while 
those associated with smaller eigenvalues reflect finer-scale vari-
ations (Borcard & Legendre, 2002; Dray et al., 2006). The spatial 
scale represented by each db-MEM can be broadly estimated using 
the method described in Figure 3a. For example, db-MEM 1 de-
scribes spatial relationship among the study sites at about 4,500 km 
(Figure 3b), and db-MEM 9 describes the spatial relationship at 
about 600 km (Figure 3c).

2.5 | Data analysis

2.5.1 | Variable selection

To reduce the number of predictors used in the regressions, we first 
reduced the number of variable within each type of spatial predictors 
(db-MEMs and AEMs). As we have a high number of SNP, we used 
the loading scores of the 47 sites on the first axis of a PCA computed 
on all SNP allele frequencies as a response variable. The spatial pre-
dictors were selected using both forward selection and backward 
selection based on the Bayesian information criterion (BIC) using the 
MASS package version 7.3.45 (Venables & Ripley, 2002). This step 
allowed us to build a set of seven db-MEMs and six AEMs. Then, 
we calculated Pearson’s correlation coefficient between each pair of 
explanatory variables (db-MEMs, AEMs, SST, and SSS) and removed 
one of the variables when the correlation was higher than 0.5. Three 
variables were eliminated, leading to a final dataset of twelve uncor-
related predictors: two environmental variables (mean SSS and SST), 
five db-MEMs, and five AEMs. Prior to further analyses, the 12 ex-
planatory variables were standardized between 0 and 1.

2.5.2 | Regression analyses

We performed multiple linear regressions between the allele fre-
quency at each SNP and the twelve explanatory variables account-
ing for the respective influence of environment, geographic isolation, 
and larval dispersal (Figure 1c). The explanatory power of a given 
model, the Akaike weights (AICw; Burnham & Anderson, 2002), was 
calculated from all possible models (i.e., using all possible combina-
tions of the 12 explanatory variables). The relative importance of 
each predictor variable at explaining allele frequencies of each SNP 
was estimated by summing the AICw values across all models that 
included that variable and averaged over the 1123 SNPs to obtain 
their global contribution (ω). Analyses were conducted using the R 
package MuMIn version 1.15.6 (Barton, 2016). We tested the sig-
nificance of the differences in mean ω among the twelve predictors 
using a Kruskal–Wallis test (Hollander & Wolfe, 1973), followed by 

a post hoc Dunn test (Dunn, 1961) to check the significance of pair-
wise differences, using the R package “dunn.test” version 1.3.5.

To determine whether geographic isolation or larval dispersal 
had a larger influence on spatial distribution of allele frequencies, we 
used the likelihood ratio (LR) tests. This test compares the full model 
(with both db-MEMs and AEMs) to nested models that consider only 

F IGURE  3 Coordinates of the sampling sites on db-MEMs and 
the spatial scale they represent. (a) Theoretical system illustrating 
how to calculate the scale represented by db-MEMs. The system 
covers the same longitudinal extent as our study area (4,500 km) 
and is constructed from 63 sampling points spaced by an equal 
distance (the smallest distance between our sampling sites—47 km). 
The graph presents the coordinates of these sites on the sixth 
theoretical db-MEM. The scale represented by the vector is the 
ratio of the longitudinal extent to the number of cycles of the 
sinusoid. (b,c) Bubble plots illustrating the db-MEMs 1 (b) and 9 (c) 
corresponding to the potential spatial scales of variability based 
on the geographic distances among sites. The size of the bubble 
reflects the coordinate of the site on the db-MEM. Contour lines (in 
red) show the db-MEM scores. The bubble plots have been created 
using the “ordisurf” function of the “vegan” R package version 2.4-6 
(Oksanen et al., 2016)
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geographic isolation (five db-MEMs) or only larval dispersal (five 
AEMs). The LR test was performed only on the best models (AICmin) 
for each SNP with at least one significant explanatory variable (693 
SNPs). The effect of environmental variables was not tested in these 
models as SST and SSS showed low contribution to the variation in 
allele frequencies. We computed the adjusted R² of the model with 
AICmin for each SNP and averaged it across SNPs.

3  | RESULTS

3.1 | Variations in allele frequencies across the 
Mediterranean Sea

Pairwise FST ranged from 0.018 to 0.065, with a mean of 0.033, 
showing weak genetic differentiation between sites (Figure S3), as 
expected for a mobile marine species (Waples, 1998). The first row 
of the FST matrix indicates strong pairwise differentiation between 
Gibraltar (site 20) and all the other sites. The Alboran Sea (sites 3, 
4, and 5) also displays slightly stronger FST values with the rest of 
the Mediterranean Sea. The Mantel test between pairwise FST and 
marine geographic least-cost distances was significant (rM = 0.30, 
p-value < .001), suggesting a pattern of isolation by distance in the 
data (Figure S4).

3.2 | Drivers of the spatial distribution of allele 
frequencies

The sums of AICw of each of the 12 variables calculated from the 
regression analysis were averaged across all SNPs to obtain their 
global contribution ω. Averaging the effect of the explanatory vari-
ables over all loci informs about general genetic patterns at the scale 
of the whole genome. The five AEMs (4, 7, 10, 18, and 25) and three 
db-MEMs (1, 9, and 10) had ω values significantly higher than the 
remaining predictors (Figure 4), showing an influence of both geo-
graphic isolation and larval dispersal on the variation in M. surmu-
letus allele frequencies. The two environmental variables (SSS and 
SST) had statistically significantly smaller effect (respectively, 9th 
and 11th highest ω values; Figure 4).

Considering only the best models for each SNP (AICmin), on av-
erage larval dispersal and geographic isolation explain, respectively, 
11% and 9.66% of the variation in allele frequencies, with no sig-
nificant difference between the two types of predictors (Table 1). 
Together, geographic isolation and dispersal explain 19% of the vari-
ation in allele frequencies. We calculated the number of time each 
predictor was selected in the best model across all SNPs (Figure S5). 
There was no significant difference in the number of selections be-
tween the 12 variables.

3.3 | Scale effect on the drivers of allele frequencies

To disentangle the effect of geographic isolation versus larval dis-
persal, we distinguished three spatial scales: broad, intermediate, 
and local. The db-MEMs with the highest global contribution ω 

represented mostly broad and intermediate spatial scales (db-MEMs 
1, 9, and 10; Figure 4), whereas the most important AEMs described 
mainly intermediate to local scales (AEMs 4, 7, 10, 18, and 25; 
Figure 4). db-MEM 1 described spatial relationship among the study 
sites at about 4,500 km and suggests three clusters with longitudinal 
distribution: the western basin and the Adriatic Sea pooled together, 
the Aegean Sea, and the last cluster made of the six most eastern 
samples (Figure 3b).

4  | DISCUSSION

4.1 | Drivers of genetic variation

To explain the genetic variation of M. surmuletus, we took advantage 
of an extensive (~4,500 km) and fine resolution (~100 km) sampling 
covering the entire Mediterranean Sea. We show that larval disper-
sal is the major variable influencing allele frequency variation (mean 
adjusted R² over all SNPs = 11%) at small and intermediate spatial 
scales (<about 1,000 km), while geographic isolation is the main 
driver (mean adjusted R² over all SNPs = 9.6%) at larger scale (>about 
1,000 km). Environmental variables (salinity and temperature) have 
significantly weaker effects on the variation in allele frequencies (re-
spectively, 9th and 11th highest ω value; Figure 4). The effect of SSS 
and SST on presumed neutral SNPs could be due to adaptation: If 
the movement of individuals is limited because of strong ecological 
selection, adaptation would occur in a form that could impede gene 
flow via high mortality of immigrants (isolation by adaptation; Nosil 
et al., 2009). In this case, populations would diverge at both adaptive 
and neutral loci (Schoville et al., 2012).

Our findings stress the importance of including spatial scale to 
better interpret the effects of the drivers of genetic variation. The 

F IGURE  4  Importance of the explanatory variables on the 
variation in allele frequencies of Mullus surmuletus. Sum of 
variables’ contributions (ω) over all models including that variable 
averaged across all SNPs. ω represents the importance of each of 
the 12 variables to explain variation in allele frequencies. The two 
environmental variables (mean sea surface temperature—SST and 
mean sea surface salinity—SSS) are represented in green, the five 
geographic isolation vectors (db-MEMs) in blue, and the five larval 
dispersal vectors (AEMs) in red. Horizontal segments show groups 
of variables not significantly different according to Dunn’s post hoc 
test
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effect of larval dispersal on genetic variation is well ascertained for 
marine organisms. First for benthic sessile organisms, with adults 
relatively immobile, larval dispersal is a key process involved in pop-
ulation connectivity (Banks et al., 2007). Banks et al. (2007) showed 
that fine-scale genetic structure of the sea urchin (Centrostephanus 
rodgersii) was influenced by sea surface temperature (SST) variabil-
ity and geography, most likely due to dispersal at the larval stage. 
A recent study based on SNPs genotyping of the greenlip abalone 
(Haliotis laevigata) showed that its adaptive genetic structure along 
southern Australian coast has been influenced by environmen-
tal heterogeneity. This pattern probably results from adaptation 
to minimum sea surface temperature and oxygen concentration 
(Sandoval-Castillo, Robinson, Hart, Strain, & Beheregaray, 2018). 
In marine fishes, Schunter et al. (2011), Munguia-Vega et al. (2014), 
and Young et al. (2015) showed that fish larval dispersal is a better 
explanatory factor of genetic variation than geographic distance at 
spatial scales ranging from 250 km to 4,000 km. Other studies high-
lighted that, beyond larval dispersal, some environmental factors 
determine genetic variation of marine fishes. For instance, Selkoe 
et al. (2010) showed that the main driver of genetic differentia-
tion in Paralabrax clathratus is kelp coverage, while Teacher, André, 
Jonsson, and Merilä (2013) detected an effect of temperature and 
salinity on the genetic structure of Clupea harengus. However, none 
of these studies have investigated the combined effects of dis-
persal, geographic isolation, and environment at different spatial 
scales.

Our analytical framework offers a robust tool to quantify the 
importance of geographic isolation and larval dispersal in structur-
ing the variation of allele frequencies across spatial scales. We used 
node (i.e., site)-based analyses (Wagner & Fortin, 2013), whereas 
population genetic studies usually use link-based approaches with 
genetic distances between pairs of sites. Node-based approaches 
allow for robust inferences based on multiple regression techniques 
and Akaike information criteria (AIC) while avoiding the problems 
of nonindependency between data arising in link-based approaches 
(Legendre, Fortin, & Borcard, 2015). Our analyses rely on the decom-
position of directional larval dispersal and geographic isolation into 
several vectors representing multiple spatial scales, using, respec-
tively, asymmetric eigenvector maps (AEMs) and distance-based 
Moran’s eigenvector maps (db-MEMs). This framework is in its early 

stage of development in landscape genetics (Benestan et al., 2016; 
Bothwell et al., 2012) and opens new perspectives to interpret the 
patterns of genetic variation and to understand the processes be-
hind the observed spatial genetic patterns at different scales (Manel 
& Holderegger, 2013).

4.2 | Spatial scale associated with these drivers

Our approach based on Moran’s eigenvector decomposition allowed 
us to identify the spatial scales associated with symmetric (db-
MEMs) and asymmetric (AEMs) spatial variables. At our broadest 
spatial scale—about 4,500 km—the first db-MEM (db-MEM 1) has 
the highest contribution to allele frequency variation (ω), whereas 
no broad-scale AEM was selected by the stepwise variable selection 
procedure. It suggests that geographic isolation is the main driver of 
variation in allele frequencies at this scale. As no large-scale AEM 
was detected as significant, genetic variation at broad scale cannot 
be explained by passive larval dispersal. At such scale, genetic con-
nectivity could result from processes such as adult mobility, demo-
graphic history, or multigenerational stepping stone larval dispersal 
(D’Aloia et al., 2015) that were not tested in our analyses. Larval 
dispersal is therefore expected to be better correlated to genetic 
variation at smaller scales, corresponding to the distances larvae can 
travel during 30 days.

At intermediate spatial scale, both geography and larval disper-
sal have an effect on allele frequencies, with AEMs 7 and 10, and 
db-MEMs 9 and 10 having the highest contributions (Figure 4). For 
marine species with a pelagic larval phase, such as M. surmuletus, 
dispersal capacity is primarily determined by pelagic larval duration 
(PLD), as the possible distance traveled by larvae increases with PLD 
(Andrello et al., 2013; Selkoe & Toonen, 2011). For example, larvae of 
the dusky grouper (Epinephelus marginatus), which has a similar PLD 
as M. surmuletus (30 days), disperse over distances of about 90 km 
on average (Andrello et al., 2013). At such scale, oceanic circulation, 
and thus larval dispersal, is expected to differ from Euclidian geo-
graphic distances due to the existence of small-scale features such 
as gyres and fronts. In addition to oceanic features, the very tortu-
ous coast of the Mediterranean Sea is likely to limit larval dispersal.

AEM 18 and AEM 25, representing small spatial scales, also 
display high ω values, whereas no db-MEM describing small scales 

# SNPs % of SNPs
Mean 
adjusted R² Mean AIC LR test

Null 1123 100 0 −229.6

Geography 574 51 .096 −231.54 51.47

Dispersal 577 51 .113 −232.03 50.85

Geography + Dispersal 693 62 .187 −235.76

We considered only the best models for each SNP (AICmin) and only the SNPs for which the best 
model was better than a model with just an intercept (i.e., null model; ΔAIC > 2; 693 SNPs). The ef-
fect of environmental variables was not tested in these models as both variables showed low contri-
bution to the variation in allele frequencies. The table gives an averaged value overall SNPs of 
adjusted R², AIC, and likelihood ratio test comparing, respectively, geographic isolation and dispersal 
to the full model.

TABLE  1 Parameters used in 
multivariate regressions including 
geographic isolation (db-MEMs) alone, 
larval dispersal (AEMs) alone, and both 
geography and dispersal as explanatory 
variables of genetic variation (SNPs allele 
frequencies) of Mullus surmuletus
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was selected by the stepwise variable selection (Figure 4). This 
result indicates that larval dispersal is more important than geo-
graphic isolation to explain local-scale variations in allele frequen-
cies. Both AEM 18 and AEM 25 show a strong differentiation of 
one to three populations, located in the Balearic Islands and the 
Alboran Sea. Interestingly, this corroborates the FST values (Figure 
S3), which show a slight differentiation of the Alboran Sea with 
the rest of the Western Mediterranean basin, probably induced 
by a well-documented barrier due to oceanic circulation, the 
Almeria–Oran front (Galarza et al., 2009; Schunter et al., 2011). 
Processes implicated in the neutral genetic structuration at small 
scale are related to local oceanic circulation and limited dispersal 
due to larval retention. Several studies show very high levels of 
larval retention and self-recruitment in fish species with long PLD 
(D’Aloia et al., 2013; Taylor & Hellberg, 2003), which can be due 
to active swimming of larvae toward the coast or local hydrody-
namic retention mechanisms not captured by our dispersal model. 
Differentiation at local scale can also result from founding (prior-
ity) effects that occur when the first dispersers colonizing a new 
area can influence the success of following settlers (Fraser, Banks, 
& Waters, 2015).

4.3 | Limitation of the methods

The power of detecting a significant effect of larval dispersal on the 
distribution of allele frequencies may be reduced by the loss of in-
formation on larval dispersal probabilities in the AEMs. Larval dis-
persal probabilities were summarized in a node-by-edge matrix (E), 
used to build the AEMs. E was a binary matrix of connection (i.e., 1 
when there is a connection, and 0 when there is not), which ignored 
the strength of the connections. This representation is required for 
the computation of AEMs, but it provides coarse information for lar-
val dispersal models, in which dispersal probabilities vary between 
connections (Figure 2b). Thus, the main effect of larval dispersal 
on the variation in allele frequencies can be captured by our analy-
ses, but the power of the regressions may be limited by this binary 
representation.

MEM and AEM analyses are recognized as a relevant way to 
capture the spatial structure in data (Legendre, Borcard, & Peres-
Neto, 2005) while accounting for different scales of spatial de-
pendence (Borcard & Legendre, 2002). However, MEM and AEM 
analyses sometimes overestimate the importance of spatial vari-
ables when the eigenvectors account for random spatial variations 
(Gilbert & Bennett, 2010). In our regression analyses, we used the 
same number of db-MEMs and AEMs; thus, we do not expect over-
estimation of geographic versus dispersal variables. However, the 
importance of environmental predictors compared to that of geo-
graphic and dispersal ones could be underestimated in our anal-
yses, especially as environmental variables show some degree of 
correlation with specific AEMs or db-MEMs (up to r² = .41 between 
SSS and AEM 7). Thus, we cannot focus our work on the relative 
importance of environmental versus geographic or dispersal vari-
ables, but more on determining which are the spatial scales where 

geographic isolation and larval dispersal influence the variation in 
allele frequencies.

5  | CONCLUSION

Given that genetic variation is closely related to the adaptive and 
resilience potential of populations (Kokko et al., 2017), the man-
agement of fisheries and marine protected areas (MPAs) would 
benefit from a better understanding of the processes and spatial 
scales influencing genetic variation of marine species. Larval dis-
persal is a key ecological process driving population source–sink 
dynamics and gene flow (Selkoe et al., 2016). Specifically, gene 
flow and demographic connectivity maintain genetic diversity 
(Baguette, Blanchet, Legrand, Stevens, & Turlure, 2013), thus pro-
moting population resilience after disturbance (Baguette et al., 
2013; Hughes & Stachowicz, 2004). A recent modeling study of 
Magris et al. (2018) showed the importance of integrating hydro-
dynamics and larval dispersal in the design of MPA networks to 
enhance their effectiveness in terms of species persistence. Funk, 
Mckay, Hohenlohe, and Allendorf (2012) argued that genomic 
information, both neutral and adaptive, can greatly improve the 
delineation of conservation units. Sandoval-Castillo et al. (2018) 
provided an example of marine genomic and connectivity infor-
mation being directly used by a government for management and 
conservation purposes.

We show that larval dispersal influences genetic variation at 
small and intermediate scales, but not at broad scale where simple 
geographic distances primarily explain observed allele frequency 
variation, which may result from other processes such as adult mo-
bility, demographic history, or multigenerational stepping-stone 
dispersal. In order to maintain genetic variations in populations of 
M. surmuletus, and more generally in populations of demersal fishes, 
particular attention should be given to the spacing of MPAs. Indeed, 
a network of reserves that can be connected by larval dispersal 
would efficiently protect gene flow between protected areas. Such 
a network is thus likely to conserve the genetic diversity and adap-
tive potential of species, and to support renewal of fishery stocks 
(Olds et al., 2016).
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