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Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progeni-
tor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on
their fibroblastic nature, but also exhibit differences inmolecular phenotype, growth rate, and their ability to dif-
ferentiate into various cell phenotypes. Themechanisms underlying these differences remain poorly understood.
We analyzed Ca2+ signals andmembrane properties in rat adipose-derived stromal cells (ADSCs) and bonemar-
row stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors
known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca2+ channels whereas both L-
and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic
reticulum Ca2+ stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca2+]i oscillations.
The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not
P2Y1) receptors. Both types of stromal cells exhibited [Ca2+]i responses to vasopressin (AVP) and expressed V1

type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and
BMSCs. AVP and OT-induced [Ca2+]i responses were dose-dependent and were blocked by their respective spe-
cific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated themembrane
conductance in ADSCs and BMSCs. Mediummodification led to a significant shift in the reversal potential of pas-
sive currents from−40 to−50mV in cells in basal to−80mV inmodified cells. Hencemembrane conductance
was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it
was associated with K+-selective channels. Our results indicate that modification of ADSCs and BMSCs by alter-
ation in medium formulation is associated with significant changes in their Ca2+ signaling and membrane
properties.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Adherent, fibroblastic cells from different tissues (e.g., from bone
marrow, adipose tissue, umbilical cord blood, placenta, Wharton jelly,
etc.) are thought to contain subsets of tissue-specific stem/progenitor
cells (often called mesenchymal stem cells). These tissue-specific
stem/progenitor cells share many biological features. However, they
also display differences in molecular phenotype, growth rate, and
their ability to differentiate into various phenotypes (Kern et al., 2006;
Al-Nbaheen et al., 2013; Choudhery et al., 2013).

Calcium is a ubiquitous intracellular messenger that is a key regulator
of the cell cycle, particularly during stem cell proliferation and modifica-
tion. The Ca2+ signaling pathways have been studied in a variety of
stem cell types including embryonic (Forostyak et al., 2013; Viero et al.,
2014), fetal (Cocks et al., 2013) and adult stromal cells (Resende et al.,
2010; Zippel et al., 2012; Kotova et al., 2014; Forostyak et al., 2016).
Bone marrow stromal cells (BMSCs) have been shown to express L-type
Ca2+ channels (Heubach et al., 2004; Li et al., 2006;Wen et al., 2012), glu-
tamate receptors (Fox et al., 2010) and have been reported to generate
spontaneous inositol 1,4,5-triphosphate (InsP3)-dependent Ca2+ oscilla-
tions (Kawano et al., 2002, 2003). Adipose tissue-derived stromal cells
(ADSCs), were found to express adrenoceptors, InsP3 receptors (InsP3Rs),
purinoceptors andwere reported to generate Ca2+-induced Ca2+ release
(Kotova et al., 2014). BMSCs have also been shown to express specific K+

channels including Ca2+-activated K+ channels (IKCa), delayed rectifier
K+ current (IKDR), and transient outward K+ current (Ito) (Li et al.,
2006). In human BMSCs in basal conditions (bBMSCs) large conductance
voltage- and Ca2+-activated K+ channels have been identified (Heubach
et al., 2004). To the best of our knowledge, an in depth analysis of ion
channels and receptors in ADSCs and BMSCs that have been harvested
under the same environmental conditions has not been performed. In
this study, we compared the functional properties of these two types of
cells in basal conditions (bADSCs and bBMSCs) and after their modifica-
tion (mADSCs andmADSC) inducedby switching to amediumcontaining
factors known to alter their characteristics.

2. Experimental procedures

2.1. Animals

All experiments were performed in accordance with the European
Communities Council Directive of 24 November 1986 (86/609/EEC) re-
garding the use of animals in research, andwere approved by the Ethics
Committee of the Institute of Experimental Medicine, Academy of Sci-
ences of the Czech Republic (ASCR), Prague, Czech Republic. The
Sprague–Dawley rats were housed under standard laboratory condi-
tions: a 12:12 h dark:light cycle, at 23 °C, with food and water supplied
ad libitum. Bonemarrow and adipose tissues used for cell isolationwere
collected from animals that were adequately anesthetized and subse-
quently euthanized.

2.2. Isolation of ADSCs

The isolation of stromal cells from adipose tissue was performed ac-
cording to the protocol described previously (Arboleda et al., 2011). Ad-
ipose tissue from the inguinal pads was dissected, mechanically minced
and treated with 0.2% (w/v) collagenase type I (Worthington Biochem-
icals, Lakewood, NJ) for 1 h at 37 °C. The isolated cellular fractionwas re-
suspended in a proliferationmedium, consisting of Dulbecco's modified
Eagle's medium-DMEM/F12 + Glutamax (Gibco) supplemented with
10% fetal bovine serum and 0.2% antibiotics (primocin), and was then
plated into culture flasks. Cells were harvested once they reached 90%
confluence and re-plated up to the second passage. Cells from the sec-
ond passage were used in their basal condition (bADSCs) or after
growth in modified medium for further studies.
2.3. Isolation of BMSCs

As described previously (Forostyak et al., 2011), bone marrow (BM)
was taken from femurs and tibias of 16-day-old rats. After cutting the
epiphysis, BM was washed from the bones using a 2-ml syringe with a
21-gauge needle filled with DMEM containing high glucose, Glutamax
15 μl/ml (Gibco), 10% fetal calf serum and primocin 0.2%. The BM was
gently dissociated and then plated into Petri dishes. The medium was
changed after 24 h. When cells reached 75–90% confluence, they were
detached by trypsin/EDTA treatment and transferred into culture flasks.
Cells were used in their basal condition (bBMSCs) or after growth in
modified medium for further studies.

2.4. Medium-modified ADSCs and BMSCs

Cultured bBMSCs or bADSCs (passage 2), after reaching 75–90% con-
fluence, were plated at a density of 1 × 105 cells on glass bottom Petri
dishes. After the attachment of the cells, the culturemediumwas replaced
with medium consisting of a Neurobasal medium with B27 supplements
containing retinoic acid (RA), 40 ng/ml, fibroblast growth factor-basic
(bFGF) and 1% primocin. The cells were exposed to B27 with RA for
72 h, and then the culturemediawere replacedwithNeurobasalmedium
containing B27 supplements (without RA), 40 ng/ml, bFGF and 1%
primocin, and kept in culture up to 1 week. Growth factors were added
every second day. The cells were measured between day 3 and day 5.
This process was selected based on previous studies that explored the
possibility to differentiate ADSCs into neuronal cells. Although changes
in gene expression were noted, differentiation into functional neurons
was not achieved (Arboleda et al., 2011).

2.5. Measurements of [Ca2+]i using the fast fluorescence photometry
system

[Ca2+]i measurements on single cells were performed according to
previously reported methods (Dayanithi et al., 1996; Forostyak et al.,
2013). The cells were plated on 24 mm glass-bottom dishes (WillCo
Dishes BV, Amsterdam, Netherlands) coated with laminin (Sigma-Al-
drich), were incubated with 2.5 μM Fura-2 AM (Invitrogen, Carlsbad, CA,
USA) with 0.02% Pluronic F-127 (Molecular Probes, Eugene, OR, USA) in
culture medium at 37 °C and 5% CO2 for 40 min. Loaded cells were then
washed and the culture medium replaced with Normal Locke's buffer
containing (in mM): NaCl, 140; KCl, 5; MgCl2, 1.2; CaCl2, 2.2; glucose,
10; HEPES-Tris, 10; pH 7.25, osmolarity 298–300 mosmol/l−1) and kept
at 37 °C throughout the time course of the experiment. Fluorescence
measurements of [Ca2+]i were performed with a fast fluorescence
microspectrofluorimetry system based on an inverted microscope
(Axiovert, Zeiss-Germany) equipped for epifluorescence (Plan-Neofluar
100×/1.30 oil immersion objective). To achieve fast switching between
different excitation wavelengths, a rotating filter wheel was mounted in
the excitation light path. The cells were illuminated (200 Hz) alternately
at 340 ± 10 and 380 ± 10 nm. In order to minimize the background
noise of the Fura-2 signal, successive values were averaged to a final
time resolution of 320 ms. The measuring/recording amplifier was syn-
chronized to the filter wheel to measure the fluorescence intensities
resulting from different wavelengths. The FFP software controlled the ac-
quisition of the intensity data and provided functions for adjusting the
signal values as well as the display and storage of the measured data. A
CCD camera was used to visualize the cells. The [Ca2+]i measurement
values are expressed as the ratio units (RU) between thefluorescence ob-
tained with two excitation wavelengths, 340 nm (A) and 380 nm (B).
Fura-2 calibrationwas performed in these cells in vitro following the pro-
cedure described previously (Lambert et al., 1994; Komori et al., 2010;
Forostyak et al., 2013), which yielded Rmin = 0.08, Rmax = 2.02, β =
1.757. The dissociation constant for Fura-2 at 37 °C was assumed as
KD = 224 nM.
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2.6. [Ca2+]i measurements using CCD video-imaging system

[Ca2+]i measurements on several cells were performed using video
imaging system with an Axio Observer D1 (Zeiss) inverted microscope
equipped with epifluorescence oil immersion objectives (Plan Neofluar
100× 1.30, FLUAR 40×/1.3 oil and FLUOR20X0.75, Zeiss). The excitation
light from a Xenon lamp passed through a Lambda D4 ultra-fast
wavelength switching system (Sutter Instruments) with a maximum
switching frequency of 500 Hz. The fluorescence intensity was detected
by using a cooled CCD camera (AxioCam MRm, Zeiss) and the whole
system was controlled by Zeiss ZEN Imaging software (2012-SP2/Axio-
Vision SE64 Rel. 4.8.3). The fluorescence intensity was measured with
excitations at 340 and 380 nm, and emission at 510 nm.

2.7. Drugs and solutions

Chemicals were obtained from the following companies: Sigma-
Aldrich (St. Louis, MO, USA): cadmium chloride, nickel chloride,
nicardipine hydrochloride, ATP, α,β-Methyleneadenosine 5′-triphos-
phate lithium salt (α,β-MeATP), pyridoxal phosphate-6-azo(benzene-
2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), 2′(3′)-O-(4-
benzoylbenzoyl)adenosine 5′-triphosphate triethylammonium salt
(BzATP), KN-62, L-glutamic acid potassium salt monohydrate, N-
Methyl-D-aspartic acid (NMDA), γ-aminobutyric acid (GABA), adeno-
sine, oxytocin acetate salt hydrate (OT), [Arg8]-vasopressin acetate salt
(AVP), and [deamino-Pen1, O-Me-Tyr2, Arg8]-Vasopressin; Tocris Bio-
science (Bristol, UK): MRS2179; NF279; Alomone Labs Ltd. (Jerusalem,
Israel): ryanodine, cyclopiazonic acid (CPA), ω-conotoxin MVIIC
(MVIIC), ω-conotoxin GVIA (GVIA); Phoenix Pharmaceuticals Inc.:
[d(CH2)5,Tyr(Me)2,Orn8]-vasotocin (d(CH2)5OVT). Concentrated stock so-
lutions of nicardipine, glutamate, KN-62 and ryanodine were prepared in
DMSO, while the remaining stock solutions of agonists/antagonists were
dissolved in dH2O. All concentrated stock solutions were stored at
−20 °C. Test solutions were prepared daily using aliquots from frozen
stocks to obtain the working concentrations. All buffers and solutions in
this studyweremade explicitly using ion-free dH2O fromMerck-Germany.

2.8. Drug application

As described previously (Dayanithi et al., 2006; Viero et al., 2006;
Forostyak et al., 2013), the control and test solutions were applied
using a temperature controlled multichannel polypropylene capillary
perfusion system 3 (Warner Instruments, Inc., USA). The temperature
of all solutions was maintained at 37 °C. After each application of the
tested drug, the cells were washed with control buffer. This method
allowed for fast and reliable exchange of the solution surrounding the
selected cell under observation without exposing the neighboring cells.

2.9. Patch-clamp recordings

Cell membrane currents were recorded 3–4 days after the onset of
differentiation using the patch-clamp technique in the whole-cell con-
figuration. Recording pipettes with a tip resistance of 8–10 MΩ were
made from borosilicate capillaries (0.86 ID, Sutter Instruments Compa-
ny, Novato, CA, USA) using a P-97 Brown-Flaming micropipette puller
(Sutter Instruments, Novato, CA, USA). Recording pipettes were filled
with a solution containing (in mM): KCl 130, CaCl2 0.5, MgCl2 2, EGTA
5, HEPES 10. The pH was adjusted with KOH to 7.2. To visualize the re-
corded cells, the intracellular solution contained Alexa-Fluor hydrazide
594 (Molecular Probes, Carlsbad, CA, USA). The labeled cells were used
for further post-recording immunocytochemical identification. All re-
cordings were made in artificial cerebrospinal fluid (aCSF) containing
(in mM): NaCl 122, KCl 3, CaCl2 1.5, MgCl2 1.3, Na2HPO4 1.25, NaHCO3

28, D-glucose10, osmolarity 300±2mosmol/l−1. The solutionwas con-
tinuously gassedwith amixture of 95%O2 and 5% CO2 tomaintain afinal
pH of 7.4. All recordings were made on cover slips perfused with aCSF at
room temperature. Electrophysiological dataweremeasuredwith 10 kHz
sample frequency using an EPC10 amplifier controlled by PatchMaster
software (HEKA Elektronik, Lambrecht/Pfalz, Germany) andwere filtered
using a Bessel filter. The coverslips with cells were transferred to the re-
cording chamber of an upright Axioscope microscope (Zeiss, Gottingen,
Germany) equipped with electronic micromanipulators (Luigs & Neu-
mann, Ratingen, Germany) and a high-resolution AxioCam HRc digital
camera (Zeiss, Germany). The resting membrane potential (Vrest) was
measured by switching the EPC-10 amplifier to the current-clampmode.

The membrane resistance (IR) was calculated from the current elic-
ited by a 10 mV test pulse depolarizing the cell membrane from the
holding potential of −70 mV to −60 mV for 50 ms, 40 ms after the
onset of the depolarizing pulse. Membrane capacitance (Cm) was deter-
mined automatically from the Lock-in protocol by PatchMaster. Current
patterns were obtained by 50 ms hyper- and depolarizing the cell
membrane from a holding potential of −70 mV to values ranging
from −160 mV to +40 mV, at 10 mV intervals (Anderova et al., 2006;
Neprasova et al., 2007). Electrophysiological data were analyzed using
Fitmaster software (HEKA, Lambrecht, Germany).Membrane potentials
were corrected for the liquid junction potential using JPCALCWsoftware
(Barry, 1994). After recording, the coverslips were fixed in phosphate
buffer (0.2 M PB, pH 7.4) containing 4% paraformaldehyde for 15 min
and then transferred to PBS (10 mM, pH 7.2).

2.10. Antibodies and immunocytochemistry

Cells plated onto laminin-coated coverslips were fixed and immuno-
stained according to the protocol described previously (Forostyak et al.,
2013). The primary and secondary antibodies used in the study are listed
in Table 1. For each experiment a negative controlwas performed: follow-
ing the same protocol, cells were blockedwith normal goat serum and in-
cubated only with secondary antibodies. To visualize the cell nuclei,
following immunostaining the coverslips were incubated with 300 nM
4′,6-diamidino-2-phenylindole (DAPI) in PBS for 5 min at RT (24 °C),
mounted using Aqua Poly/Mount and examined using a ZEISS LSM 510
DUO confocal microscope.

2.11. Data analysis and statistical methods

Origin 8.5.1 was employed for plotting and statistical procedures.
The results are expressed as mean ± SEM. The sample size (n) given
is the number of cells tested according to the same protocol (control,
test drug, recovery) for each group. The figures (traces) show on-line
single cellmeasurements of the [Ca2+]i levels before and after the appli-
cation of test substances, while bar diagrams and numerical data are
given as mean ± S.E.M. and present the peak amplitude of the [Ca2+]i
increase as a ratio between the fluorescence values of 340/380 nm exci-
tation wavelengths. Student's unpaired t-test or one-way ANOVA for
multiple comparisons were used to determine significant differences
between the experimental groups. Values of *p b 0.05 and **p b 0.01,
and ***p b 0.001 were considered significant.

3. Results

3.1. [Ca2+]i dynamics

The functional properties were studied using a minimum of 4 and a
maximum of 10 independent cell culture preparations for both ADSCs
and BMSCs. The resting level of [Ca2+]i in bADSCs was 303 ± 8 nM,
n = 26, and it remained stable after medium modification, being
293 ± 4 nM, n = 82 in mADSCs. In contrast, the resting [Ca2+]i level in
bBMSCswas significantly (p=0.012) higher (332±4nM, n=26) com-
pared with bADSCs, although after mediummodification, it decreased to
300 ± 8 nM, n = 49, p = 0.012 and became similar to bADSCs.

In bADSCs and bBMSCs, changes in [Ca2+]i were monitored in re-
sponse to a high K+ concentration (50 mM), glutamate (100 μM), ATP
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(100 μM), cyclopiasonic acid (CPA, 10 μM), oxytocin (OT, 100 nM and
1000 nM) and vasopressin (AVP, 100 nM). Both bADSCs and bBMSCs
were sensitive to ATP and vasopressin, but not to the inhibitory neuro-
transmitters (glutamate and GABA), oxytocin or to depolarization by K+

(Table 1). bBMSCs, but not bADSCs, were sensitive to 10 μM CPA, sarco-
endoplasmic reticulum Ca2+-ATPase pump inhibitor. A representative
trace, showing a typical [Ca2+]i response to various agonists in bBMSCs
is shown in Fig. 1.
Fig. 1. Ca2+ measurements in BMSCs in basal conditions. A representative trace of the
Ca2+ measurements recorded from a single bBMSC shows the typical [Ca2+]i increase in
response to various physiological stimuli: high K+ (50 mM), ATP (100 μM), glutamate
(100 μM), CPA (10 μM), vasopressin (AVP, 100 nM) and oxytocin (OT, 1000 nM).
3.2. Glutamate receptors

Both bADSCs and bBMSCs did not respond to 100 μMglutamate, sug-
gesting the absence of functional glutamate receptors (Fig. 1). Likewise
the application of glutamate in mBMSCs had no effect, only one cell out
of 11 showed aweak response to 100 μMglutamate. Only inmADSCs (4
out of 15 cells, 27%) glutamate at 100mM concentration evoked a rapid
[Ca2+]i increase with a mean amplitude of 1.02 ± 0.22 RU. Application
of 100 μM NMDA in these cells had no effect.
3.3. Voltage-gated Ca2+ channels

An influx of Ca2+ through voltage-gated Ca2+ channels (VGCC) is
typical for excitable cells. bAMSCs and bBMSCs did not respond to depo-
larization by 50 mM K+, suggesting the absence of functional VGCC in
basal conditions (Table 1, Fig. 1), while after medium modification a
subpopulation [46% of mADSCs (18 out of 39 cells) and 42% of mBMSCs
(17 out of 41)] responded to the application of 50 mM K+ by a rise in
[Ca2+]i (Table 1). The mean amplitude of this [Ca2+]i increase was
1.13 ± 0.17, n = 18 in mADSCs and 0.5 ± 0.12, n = 17 in mBMSCs.
Pre-incubation with Cd2+ (100 μM), a non-specific blocker of high-
voltage activated Ca2+ channels, together with Ni2+ (50 μM), a blocker
of low-voltage activated Ca2+ channels, for 5 min completely blocked
[Ca2+]i transients induced by 50 mM K+ both in mADSCs (Fig. 2A, C)
andmBMSCs (Fig. 2B, C), indicating the contributions of voltage activat-
ed Ca2+ channels. A selective L-type VGCC blocker, nicardipine (1 μM)
completely blocked the [Ca2+]i responses in 4 out of 5 tested mADSCs,
while in the remaining cell, the K+-induced [Ca2+]i increase was
inhibited by 34% (Fig. 2C, D). Similarly, pre-incubation of mBMSCs
with nicardipine effectively blocked [Ca2+]i responses in all 4 tested
cells, suggesting the role for L-type Ca2+ channels (Fig. 2C, E). A specific
P/Q-type blocker, ω-conotoxin MVIIC applied at 300 nM significantly
decreased the K+-induced [Ca2+]i rise in all 6 mBMSCs tested by
61 ± 15%, p = 0.01 (Fig. 2C, G), while in mADSCs the inhibition was
not significant (Fig. 2C, F). A specific N-type channel blocker ω-
conotoxin GVIA (1 μM) had no effect at all both in ADSCs and BMSCs,
suggesting the absence of functional N-type Ca2+ channels (Fig. 2C).
Immunocytochemical staining revealed positive staining for L-
(Fig. 2H, J, L) and P/Q-types (Fig. 2I, K, L), but not N-type VGCC
(Fig. 2L) both in mADSCs and mBMSCs.
Table 1
Proportion (in %) of cells, responding to various physiological stimuli by a rise of [Ca2+]i in
ADSCs and BMSCs in basal and medium modified conditions.

ADSCs BMSCs

Basal Modified Basal Modified

K+ (50 mM) 0 46% 0 42%
Glutamate (100 μM) 0 27% 0 9%
GABA (50 μM) 0 0 0 0
ATP (100 μM) 90% 100% 62% 86%
CPA (1 μM) 0 100% 80% 95%
Vasopressin (100 nM) 75% 94% 100% 100%
Oxytocin (1000 nM) 0 87% 0 73%
3.4. Ca2+ release from intracellular stores and spontaneous [Ca2+]i
oscillations

To check the functional role of intracellular Ca2+ stores, we used a
reversible inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase
pump, CPA, at 10 μM. None of the 14 tested bADSCs responded to CPA,
while after medium modification all 4 mADSCs tested responded to
CPA by a rise of [Ca2+]i with the mean amplitude of 0.62 ± 0.08
(Table 1). In contrast, both bBMSCs and mBMSCs were sensitive to
CPA: 80% (16 out of 20) of bBMSCs and 92% (11 out of 12) of mBMSCs
generated [Ca2+]i increase (Table 1). Themean amplitude of [Ca2+]i in-
creasewas 0.36±0.05 (n=16) in bBMSCs and 0.41±0.04 (n=11) in
mBMSCs, respectively. Application of 2 μM ryanodine (which at this
concentration activates RyRs) (Lanner et al., 2010) caused a [Ca2+]i
rise in 63% of the mADSCs (5 out of 8), with a mean amplitude of
1.39 ± 0.3. Immunostaining against ryanodine receptor subtypes
showed that bADSCs expressed all three types (RyR1, RyR2 and RyR3)
of receptors, while bBMSCs expressed mostly RyR1 and RyR3 with
only a few cells positive for RyR2 (Fig. 3A). The expression of RyR1
(Fig. 3A, B, E) and RyR3 (Fig. 3A, D, G) remained unchanged or even in-
creased in mADSCs and mBMSCs, while the expression of RyR2 in
mADSCs decreased and was undetectable in mBMSCs (Fig. 3A, C, F).

Both mADSCs and mBMSCs exhibited spontaneous [Ca2+]i oscilla-
tions, although only 12% of the bADSCs and none of the bBMSCs showed
spontaneous [Ca2+]i oscillations. A subpopulation of mADSCs (11 out of
83 cells; 13%) exhibited [Ca2+]i oscillations (Fig. 3H); these were main-
tained after the removal of extracellular Ca2+. The mean amplitude of
the spontaneous [Ca2+]i transients in mADSCs was 0.97 ± 0.15, the
mean durationwas 85.5±19 s, and they appearedwith amean frequen-
cy of 4.76 mHz. About 29% of mBMSCs (14 out of 49) exhibited irregular
oscillations (Fig. 3I). Themean amplitude of the spontaneous [Ca2+]i tran-
sients in mBMSCs was 0.6± 0.14, themean durationwas 59.7± 9 s, and
they appeared at a mean frequency of 6.94 mHz. In contrast to mADSCs,
these oscillations were significantly inhibited by the application of non-
specific VGCC blockers, 100 μM Cd2+ and 50 μM Ni2+ which decreased
the mean amplitude of oscillations by 53 ± 12%, p = 0.001, n = 6.

3.5. Purinergic receptors

The majority of cells in basal conditions (90% (n = 22) of bADSCs
and 62% (n = 26) of bBMSCs), exhibited [Ca2+]i transients in response
to the purinergic receptor agonist, 100 μMATP (Table 1). Themean am-
plitude of [Ca2+]i increase in response to 100 μM ATP in bADSCs was
2.1±0.16, n=20 and in bBMSCswas 0.83±0.16, n=16. The increase
in [Ca2+]i in all bBMSCs tested was significantly inhibited (98%± 0.3%)
by a non-selective P2 receptor antagonist, 10 μM PPADS (p = 0.0004,
n = 5; Fig. 4A). On the contrary, in the majority of bADSCs (88%),
PPADS had no effect (Fig. 4A), and only in 12% of cells tested, the ATP-



Fig. 2. Voltage-gated Ca2+ channels in medium-modified mADSCs and mBMSCs. Representative traces from individual mADSCs (A, D, F) and mBMSCs (B, E, G), subjected to 10 s
applications 50 mM K+ in the absence (as control stimulus) or presence (5 min duration) of Ca2+ channel blockers (bars) 100 μM Cd2+ and 50 μM Ni2+ (A, B), 1 μM nicardipine (D,
E), 300 nM ω-conotoxin MVIIC (F, G). After the washing of blockers, the same cells were again challenged with a high K+. C. The bar diagram represents the cumulative values
(evoked peak amplitude, mean ± S.E.M) obtained from 4 to 6 cells in each of the experimental conditions, expressed as the percentage of K+-evoked [Ca2+]i responses in the absence
(control) and presence of different blockers. Peak amplitude of K+-induced [Ca2+]i responses was taken as 100% (control). *p b 0.05; **p b 0.01; ***p b 0.001. Confocal images of
mADSCs (H, I) and mBMSCs (J, K), co-stained for vimentin (red) and L-type or P/Q-type VGCC (green). Cell nuclei were visualized with DAPI staining. Scale bars = 20 μm. L.
Table showing the expression of Ca2+ channels in basal and medium-modified ADSCs and BMSCs.
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induced [Ca2+]i rise was inhibited by 47% ± 4%. Other P2X antagonists
KN-62 and NF279 had no effect in both bADSCs and bBMSCs.

Application of 100 μM ATP in mADSCs induced a rapid increase in
[Ca2+]i with a mean amplitude of 1.55 ± 0.09 in all 43 cells tested
(Fig. 4B). BzATP at a 20 μM concentration (Fig. 4B) appeared to be a less
potent agonist than ATP, inducing a significantly smaller increase in
[Ca2+]i of 0.92 ± 0.12 in 88% of cells tested (14 out of 16; p = 0.001).
In 24% (4 out of 17) of the cells, the least potent agonist, α,β-meATP
(100 μM), caused a significantly weaker [Ca2+]i response compared to
ATP with a mean amplitude of 0.7 ± 0.04 (p = 0.01; Fig. 4B). The appli-
cation of adenosine (100 μM) had no effect. The application of 100 μM
ATP in the absence of extracellular Ca2+ caused the most potent activa-
tion of purinergic receptors, significantly higher compared to BzATP
(p = 0.001) and α,β-meATP (p = 0.01), but not to ATP (p = 0.4). ATP
at low Ca2+ induced a [Ca2+]i increase of 1.87 ± 0.49 in all 4 tested cells.

Increases in [Ca2+]i induced by α,β-meATP were significantly (by
98 ± 0.4%) inhibited by pre-incubation with PPADS in all 4 cells tested
(Fig. 4C). Neither P2X1-selective antagonist NF279 (1 μM) nor P2X7-
selective antagonist KN-62 (1 μM) affected BzATP-induced [Ca2+]i in-
crease (p = 0.7, n = 6). Another antagonist, MRS2179, selective for
P2Y1 receptors also did not affect the ATP-induced Ca2+ responses
(p = 0.28, n = 4).

The number of mBMSCs responsive to ATP increased (86%) when
comparedwith bBMSCs (62%).mBMSCswere also sensitive to other ag-
onists of purinergic receptors. UnlikemADSCs, where ATPwas themost
potent activator of purinoceptors, in mBMSCs the highest [Ca2+]i
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responses were induced by BzATP. The amplitude of 20 μM BzATP-
induced [Ca2+]i increase was 1.69 ± 0.14, n = 15, significantly higher
compared to 100 μM ATP (0.94 ± 0.08, n = 25, p = 0.00005) and to
100 μM α,β-meATP (0.64 ± 0.16. n = 6, p = 0.0003; Fig. 4B). Applica-
tion of PPADS, a non-selective antagonist of P2X and P2Y2,4 receptors,
had no effect (p= 0.94, n= 7). KN-62 (1 μM), a selective P2X7 antago-
nist, completely blocked BzATP-induced [Ca2+]i increase in all cells test-
ed (p= 0.01, n = 4) (Fig. 4D). Expression of P2X7R was also confirmed
by immunocytochemical staining (Fig. 4E).

3.6. Vasopressin and oxytocin receptors

Application of 100 nM the neuropeptide vasopressin (AVP) in-
creased [Ca2+]i in 75% of tested bADSCs (n = 12) and all bBMSCs
(n = 19) with a mean amplitude of 1.97 ± 0.3 and 1.36 ± 0.1, respec-
tively (Table 1). In order to test the specificity of AVP action, we used
a selective AVP-V1 receptor antagonist, [deamino-Pen1, O-Me-Tyr2,
Arg8]-vasopressin at 1 μM. Pre-incubation of cells with AVP-V1 antago-
nist completely blocked the AVP (100 nM)-induced [Ca2+]i response in
all bADSCs and in 44% of bBMSCs. In the remaining 56% of bBMSCs, it
suppressed the AVP (100 nM)-induced [Ca2+]i response by 40 ± 4.8%,
n = 4 (p = 0.036; Fig. 5A). On the other hand, neither bADSCs nor
bBMSCs responded to another neuropeptide, oxytocin (OT), applied at
concentrations of 100 nM or 1000 nM.

Unlike cells in basal conditions, which were sensitive to AVP but not
to OT, mADSCs and mBMSCs were sensitive to both OT and AVP. OT at
1000 nM induced an increase in [Ca2+]i in 87% of the mADSCs and
73% of mBMSCs tested (Table 1). This response did not desensitize dur-
ing several sequential applications of OT (Fig. 5D, F) and was
concentration-dependent (Fig. 5B). The mean amplitude of the [Ca2+]i
response to various OT concentrations in mADSCs ranged, respectively,
from 0.23 ± 0.03, n = 4 for 10 nM, 0.95 ± 0.3, n = 4 for 500 nM and
1.22 ± 0.19, n = 13, for 1000 nM (Fig. 5B). The amplitudes of the
[Ca2+]i increase in mBMSCs were: 10 nM OT elicited a [Ca2+]i rise of
0.32 ± 0.07, n = 9; 100 nM OT, 0.18 ± 0.04, n = 4; 500 nM OT,
0.59 ± 0.14, n= 6; and 1000 nMOT, 1.02± 0.18, n= 8 (Fig. 5B). Incu-
bation with 1 μM d(CH2)5OVT, an OT receptor antagonist, completely
blocked the OT-induced [Ca2+]i rise in both mADSCs (n = 4, Fig. 5H)
and mBMSCs (n = 4, Fig. 5J). Immunocytochemical staining with an
oxytocin antibody confirmed the presence of OT in the cultured
mADSCs (Fig. 5L) and mBMSCs (Fig. 5N).

Application of AVP evoked reproducible (Fig. 5E, G) and dose-
dependent (Fig. 4C) increases in [Ca2+]i in 94% of the mADSCs and all
mBMSCs tested (Table 1). The mean amplitude of [Ca2+]i increase in
mADSCs was 2.31 ± 0.23, n = 5 at 10 nM AVP; 2.17 ± 0.18, n = 17 at
100 nM AVP; 1.26 ± 0.31, n = 4 at 500 nM AVP and 1.16 ± 0.25, n =
6 for 1000 nM AVP (Fig. 5C). In mBMSCs the amplitude of [Ca2+]i in-
creases was 1.03 ± 0.14, n = 7 in response to 100 nM AVP; 0.91 ±
0.17, n=6 in response to 500nMAVP and 0.63±0.07, n=7 in response
to 1000 nMAVP (Fig. 5C). Unlike OT,which in high concentrations caused
a higher [Ca2+]i increases, AVPwhen applied at a high dose inhibited AVP
receptors. Application of V1 selective antagonist [deamino-Pen1, O-Me-
Tyr2, Arg8]-vasopressin completely blocked AVP-induced [Ca2+]i in-
creases in all 9 mADSCs tested (Fig. 5I) and significantly inhibited by
95 ± 0.7% in all 5 tested mBMSCs (p = 0.0005, Fig. 5K), confirming that
functional AVP-V1 receptors are present in all mADSCs and mBMSCs. Im-
munocytochemical staining with a vasopressin antibody revealed the
presence of AVP both in mADSCs (Fig. 5M) and mBMSCs (Fig. 5O).

3.7. Membrane properties of ADSCs and BMSCs

The passive membrane properties of bADSCs and bBMSCs are listed
in Table 2. Most notable, mADSCs and mBMSCs exhibited a significant
hyperpolarizing shift of resting membrane potential. In the voltage-
clamp settings bADSCs and bBMSCs displayed, in response to de- and
hyperpolarizing test pulses, symmetrical currents that decayed during
the voltage steps. These currents had a linear current–voltage relation-
ship with Erev at −33.2 ± 4.9 mV (n = 26) for bADSCs and −57.1 ±
8.7 mV (n = 23) for bBMSCs (Fig. 6A, B). An increase in extracellular
K+ from 3 mM to 30 mM caused a positive shift in reversal potential
in bADSCs by 14 ± 6.7 mV (n = 6) and in bBMSCs by 28 ± 3.1, mV
(n=7). Inmediummodified cells, voltage pulses similarly evoked sym-
metric currents, which however were mainly time-independent. The
voltage–current relation for these currents was linear with reversal po-
tential at−71.8 + 1.4 mV (n = 30) for p ADSCs and −71.5 + 1.5 mV
(n= 22) for mBMSCs (Fig. 6C, D). Both, bADSCs and bBMSCs expressed
vimentin, the marker of progenitor cells (Fig. 6E).

4. Discussion

In this study, we investigated Ca2+ signaling and electrophysiologi-
cal properties of rat stromal cells obtained from adipose tissue and bone
marrow. We analyzed the changes of functional properties under the
same environmental conditions upon medium modification that were
previously reported to elicit changes in ADSCs (Willingham and
Pastan, 1975). We demonstrated that after medium modification, both
ADSCs and BMSCs undergo a significant change in their membrane
properties and in the expression of channels and receptors associated
with generation of Ca2+ signals (Fig. 7). The resting [Ca2+]i level in
mBMSCs significantly decreased after pre-differentiation and became
almost the same as in ADSCs. The resting [Ca2+]i level in ADSCs
remained unchanged after mediummodification.

4.1. Voltage-gated Ca2+ channels

VGCCswere found in several preparations of stem cells. High voltage
activated L-type Ca2+ channels were shown to enhance proliferation
and osteogenic differentiation in rat BMSCs (Wen et al., 2012). Small
dihydropyridine-sensitive currents were recorded in minor subpopula-
tions of undifferentiated BMSCs from humans and rats (Kawano et al.,
2002; Heubach et al., 2004; Li et al., 2005, 2006). We were not able to
detect any VGCCs-mediated Ca2+ entry in BMSCs in basal conditions.
This could be explained by differences in the techniques and culture
conditions. However, after medium modification, almost half of the
cells (42%) were sensitive to depolarization with 50 mM K+. In our ex-
periments, nicardipine completely blocked high K+-induced [Ca2+]i re-
sponses confirming the functional expression of L-type Ca2+ channels
both in mADSCs and mBMSCs (Fig. 2). In mBMSCs, ω-conotoxin
MVIIC, a selective P/Q-type Ca2+ channel blocker, significantly inhibited
K+-induced [Ca2+]i increase, suggesting the additional activation of P/
Q-type channels. To our knowledge, this is the first report showing the
functional P/Q-type Ca2+ channels in rats BMSCs. We were not able to
identify N-type Ca2+ channels in BMSCs, either functionally or at the
protein expression level. In contrast, several studies demonstrated the
(mRNA and protein) expression of CACNA 1 C (L-type) and CACNA 1
G (T-type) in ADSCs in basal and medium-modified conditions
(Safford et al., 2004; Bai et al., 2007; Jang et al., 2010). Immunocyto-
chemically, the presence of both the CACNA 1 C subunit of L-type
Ca2+ channels and the CACNA 1 A subunit of P/Q-type Ca2+ channels
was detected in mADSCs and mBMSCs.

In summary, depolarization of bBMSCs and bADSCs did not produce
[Ca2+]i transients, likely indicating the absence of functional VGCCs.
Conversely, almost half of the population of mBMSCs (42%) and
mADSCs (46%) generated a [Ca2+]i increase in response to depolariza-
tion. mBMSCs and mADSCs expressed functional L-type Ca2+ channels
and a small population of mADSCs (but not mBMSCs) expressed P/Q-
type Ca2+ channels as well.

4.2. Spontaneous oscillations and intracellular Ca2+ stores

Spontaneous [Ca2+]i oscillations contribute to many cellular process-
es, such as secretion, fertilization, etc. (Berridge et al., 2000; Ye, 2010).
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In our study, (similarly to that of Ichikawa et al. (Ichikawa and Gemba,
2009)), we did not observe spontaneous oscillations in BMSCs in basal
conditions, although 29% of mBMSCs exhibited spontaneous [Ca2+]i
activity. Exposure to non-selective VGCC antagonists, Cd2+ andNi2+, sig-
nificantly inhibited the amplitude of spontaneous [Ca2+]i increases, but
did not block them completely, suggesting the role for intracellular



Fig. 4. Purinergic responses in ADSCs and BMSCs under basal and medium modified conditions. A. Bar diagram showing the percentage of the mean peak amplitude of [Ca2+]i increase
before (ATP control) and after incubation with the 10 μM PPADS in bBMSCs and bADSCs (***p = 0.0004, n = 5). Control ATP-induced [Ca2+]i increase was taken as 100%. B. Bar
diagrams showing the evoked mean amplitude of [Ca2+]i increase (fluorescence ratio units) in response to various purinergic receptor agonists in mADSCs (blue) and mBMSCs
(green). Data are mean ± S.E.M. The cells were exposed to 100 μM ATP, 20 μM BzATP and 100 μM α,β-meATP. The significance between mADSCs and mBMSCs is shown by asterisks
in black; between various agonists among mADSCs in blue; and between various agonists among mBMSCs in green. C. Bar diagram showing the percentage of mean peak amplitude of
the [Ca2+]i increase before (α,β-meATP control) and after incubation with the 10 μM PPADS in mADSCs. Control α,β-meATP-induced [Ca2+]i increase was taken as 100%. D. mBMSCs.
Bar diagram showing the percentage mean peak amplitude of the [Ca2+]i increase before (BzATP as control) and after incubation with the P2X7 receptor blocker KN-62. Control
BzATP-induced [Ca2+]i increase was taken as 100%. *p b 0.05; **p b 0.01; ***p b 0.001. E. Confocal image showing mBMSCs co-stained for P2X7 receptor (green) and βIII tubulin (red).
Cell nuclei are visualized with DAPI staining. Single P2X7 staining is shown on the left panel. Scale bars = 20 μm.
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Ca2+ stores and VGCC; these findings are in accordance with previous
reports (Kawano et al., 2002, 2003). Spontaneous [Ca2+]i oscillations
were also observed in a subpopulation of human ADSCs; although the
numbers of responding cells differed remarkably from 2 to 5% (Kotova
et al., 2014) to 70% (Sauer et al., 2011). In our case, in rat ADSCs sponta-
neous [Ca2+]i oscillations were observed only in a small subpopulation
(12% of bADSCs and 13% of mADSCs). These spontaneous [Ca2+]i dy-
namics were not inhibited after removal of extracellular Ca2+, suggest-
ing that intracellular [Ca2+]i stores underlie these oscillations. In
addition, mADSCs were sensitive to the application of 2 μM ryanodine
and 10 μM CPA, suggesting that mADSCs possess functional ER Ca2+

stores and ryanodine receptors.
Fig. 3. Spontaneous [Ca2+]i transients and immunocytochemical analysis for ryanodine receptor
andmedium-modifiedADSCs and BMSCs. Confocal images showing the co-localization of immu
1 (RyR1, green) in mADSCs (B) and mBMSCs (E). C, and F show co-localization of βIII tubulin
localization of the markers for vimentin proliferation (red) and ryanodine receptor-3 (RyR
visualized with DAPI staining. Scale bars = 20 μm. H, I. The representative traces showing spon
4.3. Purinergic receptors

Purinergic signaling plays an important role during stem cell devel-
opment, influencing proliferation and determining cell fate, although
the effects of agonists depend on the receptor subtype (Forostyak
et al., 2013). For example ATP, acting through P2X receptors, induces
the proliferation of human hematopoietic stem cells (Glaser et al.,
2012). BMSCs at early passages (P0–P5) spontaneously release ATP
and inhibit cell proliferation. Inhibition of P2Y1 receptors led to in-
creased proliferation (Coppi et al., 2007); the same P2Y1 receptors in
human BMSCs also contributed to InsP3-induced spontaneous [Ca2+]i
oscillations (Kawano et al., 2006). Here we also investigated the
s in ADSCs and BMSCs. A. Table showing the expression of ryanodine receptors 1–3 in basal
nocytochemical staining for cytoskeletalmarkerβIII tubulin (red) and ryanodine receptor-
(red) and ryanodine receptor-2 (RyR2, green) in mADSCs (C) and mBMSCs (F). The co-
3, green) in mADSCs and mBMSCs is shown in D and G, respectively. Cell nuclei were
taneous [Ca2+]i oscillations observed in mADSCs (H) and mBMSCs (I).



Fig. 5.Oxytocin and vasopressin responses in ADSCs and BMSCs in basal andmediummodified conditions. A. Bar diagram showing the percentage of themean peak amplitude of [Ca2+]i
increase before (AVP control) and after incubation with the 1 μM AVP-V1R antagonist, (d(CH2)51, Tyr(Me)2, Arg8)-vasopressin in bBMSCs and bADSCs (*p = 0.036, n = 4). Control AVP-
induced [Ca2+]i increase was taken as 100%. B. Dose-dependent [Ca2+]i increase in response to application of increasing concentrations OT in mADSCs (blue curve) and mBMSCs (green
curve). Similarly, C. Dose-dependent [Ca2+]i increase in response to the application of increasing concentrations of AVP in mADSCs (blue curve) and mBMSCs (green curve). The
significance between various agonists among mADSCs and mBMSCs is shown by asterisks in blue and green, respectively. Data are mean ± S.E.M. *p b 0.05; **p b 0.01; ***p b 0.001.
D–G. Representative traces of an individual mADSCs (D, E) or mBMSCs (F, G) subjected to successive 10 s applications 100 nM OT (D, F) or 100 nM AVP (E, G). H, J. Bar diagrams
representing the peak amplitude [Ca2+]i (control percentage) response induced by 100 nM OT and a significant inhibition by the presence of OT-antagonist, 1 μM dOVT in mADSCs
(H) and mBMSCs (J). I, K. Bar diagrams representing the peak amplitude [Ca2+]i (control percentage) response induced by 100 nM AVP and a significant inhibition by the presence of
1 μM AVP-V1R antagonist, in mADSCs (I) and mBMSCs (K). K–N. Immunohistochemical detection of OT and AVP in mADSCs and in mBMSCs. Confocal images showing mADSCs
stained for OT (L), AVP (M) and nuclear DAPI staining. Similarly, confocal images showing mBMSCs stained for OT (N), AVP (O) and nuclear DAPI staining. Scale bars = 20 μm.
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Table 2
The passive membrane properties of ADSCs and BMSCs in basal and medium modified
conditions.

ADSCs BMSCs

Basal Modified Basal Modified

Vrest [mV] −33.9 ± 2.0 −77.5 ± 1.5*** −49.7 ± 3.6 −77.9 ± 1.6***
Erev [mV] −33.2 ± 4.9 −71.8 ± 1.4*** −57.1 ± 8.7 −71.5 ± 1.7
Cm [pF] 59.2 ± 12.5 59.6 ± 4.4 66.1 ± 9.3 54.0 ± 4.1
IR [MΩ] 131.5 ± 14.5 53.3 ± 5.4 140.5 ± 29.6 56.7 ± 5.1**
n 26 30 23 22

Asterisks indicate significant vs cells in basal conditions within the same cell line
(*p ≥ 0.05; **p ≥ 0.01; ***p ≥ 0.001).
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presence of P2Y1 receptors inmADSCs andmBMSCs, but were unable to
dissect P2Y receptors in mBMSCs, which could be explained by the dif-
ferent species from which the cells were obtained. In mADSCs, ATP-
induced [Ca2+]i responses were observed after the removal of Ca2+

from an external medium and these responses were not blocked by
MRS2179 (a selective P2Y1 antagonist) suggesting thatmADSCs express
P2Y receptors distinct fromP2Y1.We found that 62% of bBMSCs and 90%
of bADSCs were sensitive to ATP, but not to other neurotransmitters,
possibly reflecting the fact that purinergic receptors are one of the
first neurotransmitter receptors expressed in development (Glaser
et al., 2012). The number of cells sensitive to ATP increased to 86% in
mBMSCs and 100% in mADSCs). Neither ADSCs nor BMSCs were sensi-
tive to adenosine, thus excluding the role of P1 adenosine receptors.

The broad agonist BzATP can activate all P2X receptors. However,
P2X1 and P2X7 receptors exhibit sensitivity an order greater than to
ATP (Syed and Kennedy, 2012). The order of potency of P2 receptor ag-
onists in mBMSCs was as follows: BzATP ˃ ATP ˃ α,β-meATP. Selective
P2X7 antagonist KN-62 effectively blocked the BzATP-induced [Ca2+]i
increase in mBMSCs (but not in bBMSCs), confirming the activation of
P2X7 receptors. The mADSCs were more sensitive to ATP (the potency
order ATP ˃ BzATP ˃ α,β-meATP), and KN-62 had no effect, suggesting
the absence of functional P2X7 receptors. Instead, an α,β-meATP-in-
duced [Ca2+]i increase in mADSCs was effectively blocked by PPADS, a
non-selective blocker of P2X receptors. Since PPADS is ineffective on
P2X4 and KN-62 had no effect, we suggest thatmADSCs express P2X re-
ceptors, but not P2X4 or P2X7. The presence of P2X7 receptors in
mBMSCs, but not inmADSCs, was also confirmed by immunocytochem-
ical studies (Fig. 4). We conclude that although both mADSCs and
mBMSCs express P2 receptors, the BMSCs expressed only P2X7 recep-
tors, ADSCs expressed both P2X (but not P2X7) and P2Y (but not
P2Y1) receptors.
4.4. Oxytocin and vasopressin

OT and AVP control a wide range of functions in the central as well as
in the peripheral nervous systems (Dayanithi et al., 2000, 2008, 2012;
Hussy et al., 2001; Ueta et al., 2008; Suzuki et al., 2009; Fujihara et al.,
2009; Todoroki et al., 2010; Viero et al., 2010; Moriya et al., 2012, 2015).
The primary cultures of neonatal rat cardiomyocytes express OT receptors
(Florian et al., 2010). Recently OThas become a subject of increased atten-
tion due to its protective and metabolic effects on rats (male Sprague
Dawley) BMSCs. Stimulated by pretreatment with OT, BMSCs have
been shown to reduce apoptosis, and increase cellular proliferation
and glucose uptake (Noiseux et al., 2012). OT was also shown to con-
trol ADSC differentiation (Elabd et al., 2008; Jafarzadeh et al., 2014)
and proliferation (Jafarzadeh et al., 2014). bADSCs and bBMSCs in
our study were not sensitive to OT, although most mBMSCs (73%)
and mADSCs (87%) responded to OT by an increase in [Ca2+]i.
These responses were reproducible and dose-dependent (Fig. 5).
These findings are in accordance with previous reports confirming
the role of OT during the differentiation of both human BMSCs and
ADSCs (Elabd et al., 2008; Jafarzadeh et al., 2014).
There are few reports on the role of AVP in the life of stem cells, al-
though it has been shown that AVP contributes to myogenic differenti-
ation (Scicchitano et al., 2005) and cardiac development by inducing the
differentiation of atrial and ventricular precursor cells (Gassanov et al.,
2007). To our knowledge there are no reports on the role of AVP in
ADSCs and BMSCs. We observed that both bBMSCs and mBMSCs were
sensitive to AVP. Similarly, the majority of bADSCs (75%) and mADSCs
(94%), responded to AVP by an increase in [Ca2+]i. This increase was
dose-dependent and high doses of AVP (1000 nM and 500 nM) induced
a significantly lower [Ca2+]i rise compared to low doses (10 nM and
100 nM), suggesting the inhibitory role of higher concentrations of
AVP (Fig. 5). AVP-induced [Ca2+]i increases were mediated by the V1-
type AVP receptor. The expression of V1a-type of AVP receptors was
also demonstrated in human ADSCs (Tran et al., 2015). Previously, it
was reported that AVP promotes the proliferation of rat cardiac fibro-
blast through V1 receptors (Yang et al., 2003). Tran et al. have reported
that AVP-V1a receptor gene expression in hASCs andAVP inhibits adipo-
genesis in this stem cell type (Tran et al., 2015).

4.5. Glutamate

We found that neither bBMSCs nor mBMSCs were sensitive to the
application of glutamate. In contrast, a subpopulation (27%) of mADSCs
were sensitive to glutamate, but not to NMDA, suggesting the activation
of glutamate receptors distinct from NMDA receptors. A glutamate-
induced [Ca2+]i increase was observed previously in a very small popu-
lation of ADSCs (3.6%) (Kotova et al., 2014).

4.6. Ion channels and membrane properties

mADSCs and mBMSCs displayed a remarkable shift in the nature of
their membrane conductances. In cells cultured in basal conditions,
the predominant passive conductance reversed at ~−40 to −50 mV;
that is, at levels much more positive than the EK (calculated at
−84mV) for given experimental conditions. Furthermore, a 10-fold in-
crease in extracellular K+ produced a relatively minor shift in Erev
(14 mV and 28 mV for bAMSCs and bBMSCs respectively), which was
much less than the theoretically predicted shift of 59 mV for K+ selec-
tive conductance. This indicates the non-selective nature of the resting
membrane conductance, which may be mediated by the mixture of
non-selective, K+ and possibly even anion channels. In mADSCs and
mBMSCs, in contrast, the reversal potential for passive currents was
very close to the EK, indicating predominance of K+ conductance. This
shift from non-selective conductance to K+ conductance explains well
the much more hyperpolarized resting potential of mADSCs and
mBMSCs.

Different types of channels have been reported in adherent, fibro-
blastic stem/progenitor cells of different origins and in different culture
conditions from both humans and rats (Forostyak et al., 2016). For ex-
ample, undifferentiated BMSCswere shown to display large K+ conduc-
tance (Zhu et al., 2015), mediated by inward rectifying and delayed
rectifying K+ channels as well as by Ca2+−activated K+ currents
(Deng et al., 2006). In contrast, the membrane conductance of adipo-
cytes was mainly mediated by non-selective cationic channels and Cl−

channels (Bentley et al., 2014), although two-pore domain K+ channels
K3 (KCNK3, TASK-1) were described in human adipocytes (Shinoda
et al., 2015). Precise identifications of ion channel types expressed in tis-
sue specific stem/progenitor cells at various differentiated stages re-
quire further investigation.

5. Conclusions

Together, as briefly summarized in Fig. 7, our results suggest that the
Ca2+ signaling, ion channel and ionotropic receptor expression profile
of adult tissue-specific stem/progenitor cells depends not only on the
culture conditions but also on the source from which the cells were
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isolated. The fate and functional properties of differentiated cells are
driven by intrinsic mechanisms, which are independent of the culture
protocol. Identifying their Ca2+ signaling, ion channel and ionotropic
receptor expression profile as a function of external changes in their en-
vironment is essential to better utilize these cells in tissue engineering
and regenerative medicine.



Fig. 7. Schematic drawing showing the change in functional expression of Ca2+ channels and receptors linked to Ca2+ signaling in ADSCs and BMSCs followingmediummodification. Both
ADSCs and BMSCs were subjected to the same culture conditions. The function of voltage-gated Ca2+ channels, as well as ryanodine, purinergic, glutamate, vasopressin and oxytocin
receptors were analyzed and compared in ADSCs and BMSCs before and after medium modification.
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Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2016.03.010.
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Fig. 6. Ion current profiles obtained from basal and medium-modified ADSCs and BMSCs. The c
holding potential,−70mV (see the insets). A, B. current traces and current to voltage relations o
are−33.2+4.9mV (n=26) for bADSCs and−57.1+8.7mV (n=23) for bBMSCs. C, D. Curre
potentials are indicated by arrows; the Erev are−71.8 + 1.4 mV (n = 30) for mADSCs and −7
stromal cell in basal conditions, taken by a digital camera immediately after patch-clamp record
shows the co-localization of vimentin with Alexa594.
Acknowledgments

This work was supported by the grants GACR 14-34077S, GACR
P304/11/2373, GACR P304/12/G069 and GACR 10504P from the Grant
Agency of the Czech Republic. This publication is partly a result of
the “Advanced Bioimaging of Living Tissues” project, registration
number #CZ.2.16/3.1.00/21527, which was financed from the bud-
get of the European Regional Development Fund and public budgets
of the Czech Republic through the Operational Programme Prague —
Competitiveness. AV was supported by the Wellcome Trust, by the
Alzheimer's research foundation (UK) and by the grant (agreement
from August 27, 2013 no. 02.В.49.21.0003) between The Ministry of
Education and Science of the Russian Federation and Lobachevsky State
University of Nizhny Novgorod, by the grant of the Russian Scientific
Foundation no.14-15-00633 and by the Ministry of Education of the
Russian Federation, unique identity number RFMEFI57814X0079.
Govindan Dayanithi belongs to the “Centre National de la Recherche
Scientifique—The French Ministry of Research and Higher Education-
Paris”, France. We thank David Arboleda and Lenka Baranovicova for
their participation in preliminary experiments. We are grateful to Kip
Allan Bauersfeld, IEM ASCR, for critical reading and helpful comments
on the manuscript.
References

Al-Nbaheen, M., Vishnubalaji, R., Ali, D., et al., 2013. Human stromal (mesenchymal) stem
cells from bonemarrow, adipose tissue and skin exhibit differences inmolecular phe-
notype and differentiation potential. Stem Cell Rev. 9, 32–43.
urrent families were obtained in response to hyper- and depolarizing test pulses from the
btained frombADSCs and bBMSCs. The reversal potentials are indicated by arrows; the Erev
nt traces and current to voltage relations obtained frommADSCs andmBMSCs. The reversal
1.5 + 1.7 mV (n = 22) for mBMSCs. E. An image of Alexa594-loaded an adipose-derived
ing and the same cell immunostained with antibody against vimentin. The overlay image

http://dx.doi.org/10.1016/j.scr.2016.03.010
http://dx.doi.org/10.1016/j.scr.2016.03.010


634 O. Forostyak et al. / Stem Cell Research 16 (2016) 622–634
Anderova, M., Kubinova, S., Jelitai, M., et al., 2006. Transplantation of embryonic
neuroectodermal progenitor cells into the site of a photochemical lesion: Immuno-
histochemical and electrophysiological analysis. J. Neurobiol. 66 (10), 1084–1100.

Arboleda, D., Forostyak, S., Jendelova, P., et al., 2011. Transplantation of predifferentiated
adipose-derived stromal cells for the treatment of spinal cord injury. Cell. Mol.
Neurobiol. 31, 1113–1122.

Bai, X., Ma, J., Pan, Z., et al., 2007. Electrophysiological properties of human adipose tissue-
derived stem cells. Am. J. Physiol. Cell. Physiol. 293, C1539–C1550.

Barry, P.H., 1994. JPCalc, a software package for calculating liquid junction potential cor-
rections in patch-clamp, intracellular, epithelial and bilayer measurements and for
correcting junction potential measurements. J. Neurosci. Methods 51, 107–116.

Bentley, D.C., Pulbutr, P., Chan, S., et al., 2014. Etiology of the membrane potential of rat
white fat adipocytes. Am. J. Physiol. Endocrinol. Metab. 307, E161–E175.

Berridge, M.J., Lipp, P., Bootman, M.D., 2000. The versatility and universality of calcium
signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21.

Choudhery, M.S., Badowski, M., Muise, A., et al., 2013. Comparison of human mesenchy-
mal stem cells derived from adipose and cord tissue. Cytotherapy 15, 330–343.

Cocks, G., Romanyuk, N., Amemori, T., et al., 2013. Conditionally immortalized stem cell
lines from human spinal cord retain regional identity and generate functional v2a in-
terneurons and motorneurons. Stem Cell Res. Ther. 4, 69.

Coppi, E., Pugliese, A.M., Urbani, S., et al., 2007. ATP modulates cell proliferation and elicits
two different electrophysiological responses in human mesenchymal stem cells.
Stem Cells 25, 1840–1849.

Dayanithi, G., Forostyak, O., Ueta, Y., et al., 2012. Segregation of calcium signalling mech-
anisms in magnocellular neurones and terminals. Cell Calcium 51, 293–299.

Dayanithi, G., Mechaly, I., Viero, C., et al., 2006. Intracellular Ca2+ regulation in rat moto-
neurons during development. Cell Calcium 39, 237–246.

Dayanithi, G., Sabatier, N.,Widmer, H., 2000. Intracellular calcium signalling inmagnocellular
neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms.
Exp. Physiol. 75S–84S 85 Spec No.

Dayanithi, G., Viero, C., Shibuya, I., 2008. The role of calcium in the action and release of
vasopressin and oxytocin from CNS neurones/terminals to the heart. J. Physiol.
Pharmacol. 59 (Suppl. 8), 7–26.

Dayanithi, G., Widmer, H., Richard, P., 1996. Vasopressin-induced intracellular Ca2+ in-
crease in isolated rat supraoptic cells. J. Physiol. 490 (Pt 3), 713–727.

Deng, X.L., Sun, H.Y., Lau, C.P., et al., 2006. Properties of ion channels in rabbit mesenchy-
mal stem cells from bone marrow. Biochem. Biophys. Res. Commun. 348, 301–309.

Elabd, C., Basillais, A., Beaupied, H., et al., 2008. Oxytocin controls differentiation of human
mesenchymal stem cells and reverses osteoporosis. Stem Cells 26, 2399–2407.

Florian, M., Jankowski, M., Gutkowska, J., 2010. Oxytocin increases glucose uptake in neo-
natal rat cardiomyocytes. Endocrinology 151, 482–491.

Forostyak, O., Forostyak, S., Kortus, S., et al., 2016. Physiology of ca signalling in stem cells
of different origins and differentiation stages. Cell Calcium http://dx.doi.org/10.1016/
j.ceca.2016.02.001 (in Press).

Forostyak, S., Jendelova, P., Kapcalova, M., et al., 2011. Mesenchymal stromal cells prolong
the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13, 1036–1046.

Forostyak, O., Romanyuk, N., Verkhratsky, A., et al., 2013. Plasticity of calcium signaling
cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev.
22, 1506–1521.

Fox, L.E., Shen, J., Ma, K., et al., 2010. Membrane properties of neuron-like cells generated
from adult human bone-marrow-derived mesenchymal stem cells. Stem Cells Dev.
19, 1831–1841.

Fujihara, H., Ueta, Y., Suzuki, H., et al., 2009. Robust up-regulation of nuclear red
fluorescent-tagged fos marks neuronal activation in green fluorescent vasopressin
neurons after osmotic stimulation in a double transgenic rat. Endocrinology 150,
5633–5638.

Gassanov, N., Jankowski, M., Danalache, B., et al., 2007. Arginine vasopressin-mediated
cardiac differentiation: insights into the role of its receptors and nitric oxide signal-
ing. J. Biol. Chem. 282, 11255–11265.

Glaser, T., Cappellari, A.R., Pillat, M.M., et al., 2012. Perspectives of purinergic signaling in
stem cell differentiation and tissue regeneration. Purinergic Signal 8, 523–537.

Heubach, J.F., Graf, E.M., Leutheuser, J., et al., 2004. Electrophysiological properties of
human mesenchymal stem cells. J. Physiol. 554, 659–672.

Hussy, N., Bres, V., Rochette, M., et al., 2001. Osmoregulation of vasopressin secretion via
activation of neurohypophysial nerve terminals glycine receptors by glial taurine.
J. Neurosci. 21, 7110–7116.

Ichikawa, J., Gemba, H., 2009. Cell density-dependent changes in intracellular Ca2+ mo-
bilization via the p2y2 receptor in rat bone marrow stromal cells. J. Cell. Physiol. 219,
372–381.

Jafarzadeh, N., Javeri, A., Khaleghi, M., et al., 2014. Oxytocin improves proliferation and
neural differentiation of adipose tissue-derived stem cells. Neurosci. Lett. 564,
105–110.

Jang, S., Cho, H.H., Cho, Y.B., et al., 2010. Functional neural differentiation of human adi-
pose tissue-derived stem cells using bfgf and forskolin. BMC Cell Biol. 11, 25.

Kawano, S., Otsu, K., Kuruma, A., et al., 2006. Atp autocrine/paracrine signaling induces
calcium oscillations and nfat activation in human mesenchymal stem cells. Cell Calci-
um 39, 313–324.

Kawano, S., Otsu, K., Shoji, S., et al., 2003. Ca(2+) oscillations regulated by Na(+)-Ca(2+)
exchanger and plasmamembrane Ca(2+) pump induce fluctuations of membrane cur-
rents and potentials in human mesenchymal stem cells. Cell Calcium 34, 145–156.

Kawano, S., Shoji, S., Ichinose, S., et al., 2002. Characterization of Ca(2+) signaling path-
ways in human mesenchymal stem cells. Cell Calcium 32, 165–174.
Kern, S., Eichler, H., Stoeve, J., et al., 2006. Comparative analysis of mesenchymal stem
cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24,
1294–1301.

Komori, Y., Tanaka, M., Kuba, M., et al., 2010. Ca(2+) homeostasis, Ca(2+) signalling and
somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell
Calcium 48, 324–332.

Kotova, P.D., Sysoeva, V.Y., Rogachevskaja, O.A., et al., 2014. Functional expression of
adrenoreceptors in mesenchymal stromal cells derived from the human adipose tis-
sue. Biochim. Biophys. Acta 1843, 1899–1908.

Lambert, R.C., Dayanithi, G., Moos, F.C., et al., 1994. A rise in the intracellular Ca2+ con-
centration of isolated rat supraoptic cells in response to oxytocin. J. Physiol. 478 (Pt
2), 275–287.

Lanner, J.T., Georgiou, D.K., Joshi, A.D., et al., 2010. Ryanodine receptors: structure, expres-
sion, molecular details, and function in calcium release. Cold Spring Harb. Perspect.
Biol. 2, a003996.

Li, G.R., Deng, X.L., Sun, H., et al., 2006. Ion channels in mesenchymal stem cells from rat
bone marrow. Stem Cells 24, 1519–1528.

Li, G.R., Sun, H., Deng, X., et al., 2005. Characterization of ionic currents in human mesen-
chymal stem cells from bone marrow. Stem Cells 23, 371–382.

Moriya, T., Kayano, T., Kitamura, N., et al., 2012. Vasopressin-induced intracellular Ca2+

concentration responses in non-neuronal cells of the rat dorsal root ganglion. Brain
Res. 1483, 1–12.

Moriya, T., Shibasaki, R., Kayano, T., et al., 2015. Full-length transient receptor potential
vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception
in vasopressin neurones in the rat supraoptic nucleus. Cell Calcium 57, 25–37.

Neprasova, H., Anderova, M., Petrik, D., et al., 2007. Changes in voltage-dependent
K+ and Na+ currents and volume regulation in astrocytes exposed to elevated
K+. Pflugers Arch. 453 (6), 839–849.

Noiseux, N., Borie, M., Desnoyers, A., et al., 2012. Preconditioning of stem cells by oxytocin
to improve their therapeutic potential. Endocrinology 153, 5361–5372.

Resende, R.R., da Costa, J.L., Kihara, A.H., et al., 2010. Intracellular Ca2+ regulation during
neuronal differentiation of murine embryonal carcinoma and mesenchymal stem
cells. Stem Cells Dev. 19, 379–394.

Safford, K.M., Safford, S.D., Gimble, J.M., et al., 2004. Characterization of neuronal/glial differ-
entiation of murine adipose-derived adult stromal cells. Exp. Neurol. 187, 319–328.

Sauer, H., Sharifpanah, F., Hatry, M., et al., 2011. NOS inhibition synchronizes calcium os-
cillations in human adipose tissue-derived mesenchymal stem cells by increasing
gap-junctional coupling. J. Cell. Physiol. 226, 1642–1650.

Scicchitano, B.M., Spath, L., Musaro, A., et al., 2005. Vasopressin-dependent myogenic cell
differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcine-
urin pathways. Mol. Biol. Cell 16, 3632–3641.

Shinoda, K., Luijten, I.H., Hasegawa, Y., et al., 2015. Genetic and functional characterization
of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394.

Suzuki, H., Kawasaki, M., Ohnishi, H., et al., 2009. Exaggerated response of a vasopressin-
enhanced green fluorescent protein transgene to nociceptive stimulation in the rat.
J. Neurosci. 29, 13182–13189.

Syed, N., Kennedy, C., 2012. Pharmacology of P2X receptors. Wiley Interdiscip. Rev.
Membr. Transp. Signal. 1, 16–30.

Todoroki, M., Fujihara, H., Otsubo, H., et al., 2010. Induction of the arginine vasopressin-
enhanced green fluorescent protein fusion gene in the locus coeruleus in these trans-
genic rats. Stress 13, 281–291.

Tran, T.D., Yao, S., Hsu, W.H., et al., 2015. Arginine vasopressin inhibits adipogenesis in
human adipose-derived stem cells. Mol. Cell. Endocrinol. 406, 1–9.

Ueta, Y., Fujihara, H., Dayanithi, G., et al., 2008. Specific expression of optically active re-
porter gene in arginine vasopressin-secreting neurosecretory cells in the
hypothalamic-neurohypophyseal system. J. Neuroendocrinol. 20, 660–664.

Viero, C., Forostyak, O., Sykova, E., et al., 2014. Getting it right before transplantation: ex-
ample of a stem cell model with regenerative potential for the cns. Front. Cell. Dev.
Biol. 2, 36.

Viero, C., Mechaly, I., Aptel, H., et al., 2006. Rapid inhibition of Ca2+ influx by
neurosteroids in murine embryonic sensory neurones. Cell Calcium 40, 383–391.

Viero, C., Shibuya, I., Kitamura, N., et al., 2010. Review: oxytocin: crossing the bridge be-
tween basic science and pharmacotherapy. CNS Neurosci. Ther. 16, e138–e156.

Wen, L., Wang, Y., Wang, H., et al., 2012. L-type calcium channels play a crucial role in the
proliferation and osteogenic differentiation of bonemarrowmesenchymal stem cells.
Biochem. Biophys. Res. Commun. 424, 439–445.

Willingham, M.C., Pastan, I., 1975. Cyclic amp and cell morphology in cultured fibroblasts.
Effects on cell shape, microfilament and microtubule distribution, and orientation to
substratum. J. Cell Biol. 67, 146–159.

Yang, X.D., Zhao, L.Y., Zheng, Q.S., et al., 2003. Effects of arginine vasopressin on growth of
rat cardiac fibroblasts: role of v1 receptor. J. Cardiovasc. Pharmacol. 42, 132–135.

Ye, B., 2010. Ca2+ oscillations and its transporters in mesenchymal stem cells. Physiol.
Res. 59, 323–329.

Zhu, T., Yu, D., Feng, J., et al., 2015. Gdnf and nt-3 induce progenitor bone mesenchymal
stem cell differentiation into neurons in fetal gut culture medium. Cell. Mol.
Neurobiol. 35, 255–264.

Zippel, N., Limbach, C.A., Ratajski, N., et al., 2012. Purinergic receptors influence the differ-
entiation of human mesenchymal stem cells. Stem Cells Dev. 21, 884–900.

http://dx.doi.org/10.1016/j.ceca.2016.02.001 (in Press)
http://dx.doi.org/10.1016/j.ceca.2016.02.001 (in Press)

	Specific profiles of ion channels and ionotropic receptors define adipose-� and bone marrow derived stromal cells
	1. Introduction
	2. Experimental procedures
	2.1. Animals
	2.2. Isolation of ADSCs
	2.3. Isolation of BMSCs
	2.4. Medium-modified ADSCs and BMSCs
	2.5. Measurements of [Ca2+]i using the fast fluorescence photometry system
	2.6. [Ca2+]i measurements using CCD video-imaging system
	2.7. Drugs and solutions
	2.8. Drug application
	2.9. Patch-clamp recordings
	2.10. Antibodies and immunocytochemistry
	2.11. Data analysis and statistical methods

	3. Results
	3.1. [Ca2+]i dynamics
	3.2. Glutamate receptors
	3.3. Voltage-gated Ca2+ channels
	3.4. Ca2+ release from intracellular stores and spontaneous [Ca2+]i oscillations
	3.5. Purinergic receptors
	3.6. Vasopressin and oxytocin receptors
	3.7. Membrane properties of ADSCs and BMSCs

	4. Discussion
	4.1. Voltage-gated Ca2+ channels
	4.2. Spontaneous oscillations and intracellular Ca2+ stores
	4.3. Purinergic receptors
	4.4. Oxytocin and vasopressin
	4.5. Glutamate
	4.6. Ion channels and membrane properties

	5. Conclusions
	Authors' contributions
	Disclosure of potential conflicts of interest
	Acknowledgments
	References


