Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells
Oksana Forostyak, Olena Butenko, Miroslava Anderova, Serhiy Forostyak, Eva Sykova, Alexei Verkhratsky, Govindan Dayanithi

To cite this version:
Oksana Forostyak, Olena Butenko, Miroslava Anderova, Serhiy Forostyak, Eva Sykova, et al.. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem cell research, Elsevier, 2016, 16 (3), pp.622-634. 10.1016/j.scr.2016.03.010. hal-02000086

HAL Id: hal-02000086
https://hal.umontpellier.fr/hal-02000086
Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells

Oksana Forostyak a,b, Olena Butenko c,1, Miroslava Anderovab, Serhiy Forostyak b,d, Eva Sykova b,d, Alexei Verkhratsky e,f,g, Govindan Dayanithi a,h,i,

a Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
b Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic
c Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
d University of Manchester, School of Biological Sciences, D4417 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
e ACHUCARRoCenter for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
f University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
g Institut National de la Santé et de la Recherche Médicale-U1198, Université Montpellier, Montpellier 34095, France
h Ecole Pratique des Hautes Etudes-Sorbonne, Les Patios Saint-Jacques, 4-14 rue Ferra, 75014 Paris, France
i Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic

Abstract

Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca²⁺ signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca²⁺ channels whereas both L- and P/Q-type channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca²⁺ stores, expressed ryanodin receptor-1 and -3, and exhibited spontaneous [Ca²⁺]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca²⁺]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca²⁺]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from ~40 to ~50 mV in cells in basal to ~80 mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K⁺ selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium formulation is associated with significant changes in their Ca²⁺ signaling and membrane properties.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Adherent, fibroblastic cells from different tissues (e.g., from bone marrow, adipose tissue, umbilical cord blood, placenta, Wharton jelly, etc.) are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These tissue-specific stem/progenitor cells share many biological features. However, they also display differences in molecular phenotype, growth rate, and their ability to differentiate into various phenotypes (Kern et al., 2006; Al-Nbaheen et al., 2013; Choudhery et al., 2013).

Calcium is a ubiquitous intracellular messenger that is a key regulator of the cell cycle, particularly during stem cell proliferation and modification. The Ca\(^{2+}\) signaling pathways have been studied in a variety of stem cell types including embryonic (Forostyak et al., 2013; Viero et al., 2014), fetal (Cocks et al., 2013) and adult stromal cells (Resende et al., 2010; Zippel et al., 2012; Kotova et al., 2014; Forostyak et al., 2016). Bone marrow stromal cells (BMSCs) have been shown to express L-type Ca\(^{2+}\) channels (Heubach et al., 2004; Li et al., 2006; Wen et al., 2012), glutamate receptors (Fox et al., 2010) and have been reported to generate spontaneous inositol 1,4,5-triphosphate (InsP\(_3\))-dependent Ca\(^{2+}\) oscillations (Kawano et al., 2002, 2003). Adipose tissue-derived stromal cells (often called mesenchymal stem cells). These tissue-specific stem/progenitor cells share many biological features. However, they also display differences in molecular phenotype, growth rate, and their ability to differentiate into various phenotypes (Kern et al., 2006; Al-Nbaheen et al., 2013; Choudhery et al., 2013).

2. Experimental procedures

2.1. Animals

All experiments were performed in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) regarding the use of animals in research, and were approved by the Ethics Committee of the Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czech Republic. The Sprague–Dawley rats were housed under standard laboratory conditions: a 12:12 h dark:light cycle, at 23 °C, with food and water supplied ad libitum. Bone marrow and adipose tissues used for cell isolation were collected from animals that were adequately anesthetized and subsequently euthanized.

2.2. Isolation of ADSCs

The isolation of stromal cells from adipose tissue was performed according to the protocol described previously (Arboleda et al., 2011). Adipose tissue from the inguinal pads was dissected, mechanically minced and treated with 0.2% (w/v) collagenase type I (Worthington Biochemicals, Lakewood, NJ) for 1 h at 37 °C. The isolated cellular fraction was then plated into culture flasks. Cells were harvested once they reached 90% confluence and re-plated up to the second passage. Cells from the second passage were used in their basal condition (bADSCs) or after growth in modified medium for further studies.

2.3. Isolation of BMSCs

As described previously (Forostyak et al., 2011), bone marrow (BM) was taken from femurs and tibias of 16-day-old rats. After cutting the epiphysis, BM was washed from the bones using a 2-ml syringe with a 21-gauge needle filled with DMEM containing high glucose, Glutamax 15 μl/ml (Gibco), 10% fetal calf serum and primocin 0.2%. The BM was gently dissociated and then plated into Petri dishes. The medium was changed after 24 h. When cells reached 75–90% confluence, they were detached by trypsin/EDTA treatment and transferred into culture flasks. Cells were used in their basal condition (bBMSCs) or after growth in modified medium for further studies.

2.4. Medium-modified ADSCs and BMSCs

Cultured bBMSCs or bADSCs (passage 2), after reaching 75–90% confluence, were plated at a density of 1 × 10\(^6\) cells on glass bottom Petri dishes. After the attachment of the cells, the culture medium was replaced with medium consisting of a Neurobasal medium with B27 supplements containing retinoic acid (RA), 40 ng/ml fibroblast growth factor-basic (bFGF) and 1% primocin. The cells were exposed to B27 with RA for 72 h, and then the culture media were replaced with Neurobasal medium containing B27 supplements (without RA), 40 ng/ml bFGF and 1% primocin, and kept in culture up to 1 week. Growth factors were added every second day. The cells were measured between day 3 and day 5. This process was selected based on previous studies that explored the possibility to differentiate ADSCs into neuronal cells. Although changes in gene expression were noted, differentiation into functional neurons was not achieved (Arboleda et al., 2011).

2.5. Measurements of [Ca\(^{2+}\)]\(i\) using the fast fluorescence photometry system

[Ca\(^{2+}\)]\(i\) measurements on single cells were performed according to previously reported methods (Dayanithi et al., 1996; Forostyak et al., 2013). The cells were plated on 24 mm glass-bottom dishes (WillCo Dishes BV, Amsterdam, Netherlands) coated with laminin (Sigma-Aldrich), were incubated with 2.5 μM Fura-2 AM (Invitrogen, Carlsbad, CA, USA) with 0.02% Pluronic F-127 (Molecular Probes, Eugene, OR, USA) in culture medium at 37 °C and 5% CO2 for 40 min. Loaded cells were then washed and the culture medium replaced with Normal Locke's buffer containing (in mM): NaCl, 140; KCl, 5; MgCl\(_2\), 1.2; CaCl\(_2\), 2.2; glucose, 10; HEPES-Tris, 10; pH 7.25, osmolality 298–300 mosmol/l\(^{-1}\) and kept at 37 °C throughout the time course of the experiment. Fluorescence measurements of [Ca\(^{2+}\)]\(i\), were performed with a fast fluorescence microspectrofluorimeter system based on an inverted microscope (Axiovert, Zeiss-Germany) equipped for epifluorescence (Plan-Neofluar 100\(\times\)/1.30 oil immersion objective). To achieve fast switching between different excitation wavelengths, a rotating filter wheel was mounted in the excitation light path. The cells were illuminated (200 Hz) alternately at 340 ± 10 and 380 ± 10 nm. In order to minimize the background noise of the Fura-2 signal, successive values were averaged to a final time resolution of 320 ms. The measuring/recording amplifier was synchronized to the filter wheel to measure the fluorescence intensities resulting from different wavelengths. The FFP software controlled the acquisition of the intensity data and provided functions for adjusting the signal values as well as the display and storage of the measured data. A CCD camera was used to visualize the cells. The [Ca\(^{2+}\)]\(i\) measurement values are expressed as the ratio units (RU) between the fluorescence obtained with two excitation wavelengths, 340 nm (A) and 380 nm (B). Fura-2 calibration was performed in these cells in vitro following the procedure described previously (Lambert et al., 1994; Komori et al., 2010; Forostyak et al., 2013), which yielded R\(_{\text{min}}\) = 0.08, R\(_{\text{max}}\) = 2.02, β = 1.757. The dissociation constant for Fura-2 at 37 °C was assumed as KD = 2.24 nM.
2.6. [Ca^{2+}]_i measurements using CCD video-imaging system

[Ca^{2+}]_i measurements on several cells were performed using video imaging system with an Axio Observer D1 (Zeiss) inverted microscope equipped with epifluorescence oil immersion objectives (Plan Neofluar 100 x 1.30, FLUOR 40 x/1.3 oil and FLUOR 20X0.75, Zeiss). The excitation light from a Xenon lamp passed through a Lambda D4 ultra-fast wavelength switching system (Sutter Instruments) with a maximum switching frequency of 500 Hz. The fluorescence intensity was detected by using a cooled CCD camera (AxioCam MRm, Zeiss) and the whole system was controlled by Zeiss ZEN Imaging software (2012-SP2/AxioVision SE64 Rel. 4.8.3). The fluorescence intensity was measured with excitations at 340 and 380 nm, and emission at 510 nm.

2.7. Drugs and solutions

Chemicals were obtained from the following companies: Sigma-Aldrich (St. Louis, MO, USA): cadmium chloride, nickel chloride, nicardipine hydrochloride, ATP, α,β-Methyleneadenosine 5′-triphosphate lithium salt (α,β-MeATP), pyridoxal phosphate-6-azo[benzene-2,4,6-disulfonic acid], tetrasodium salt hydrate (PPADS), 2′(3′)-O-(4-benzoylbenzoyl)adenosine 5′-triphosphate triethylammonium salt (BzATP), KN-62, g-glutamic acid potassium salt monohydrate, N-Methyl-D-aspartic acid (NMDA), γ-aminobutyric acid (GABA), adenosine, oxytocin acetate salt hydrate (OT), [Arg^{10}]-vasopressin acetate salt (AVP), and [deamino-Pen^1, O-Me-Tyr^2, Arg^10]-Vasopressin; Tocris Bioscience (Bristol, UK): MRS2179; NF279; Alomone Labs Ltd. (Jerusalem, Israel): ryanoidine, cyclopiazonic acid (CPA), o-conotoxin MVIIIC (MVIIIC), o-conotoxin GVIA (GVIA); Phoenix Pharmaceuticals Inc.: d(CH2)5-Tyr(Me)2-Orn8-[d(CH2)5OVT]. Concentrated stock solutions of nicardipine, glutamate, KN-62 and ryanoidine were prepared in DMSO, while the remaining stock solutions of agonists/antagonists were dissolved in dH2O. All concentrated stock solutions were stored at 20 °C. Test solutions were prepared daily using aliquots from frozen stocks to obtain the working concentrations. All buffers and solutions in this study were made explicitly using ion-free dH2O from Merck-Germany.

2.8. Drug application

As described previously (Dayanithi et al., 2006; Viero et al., 2006; Forostyak et al., 2013), the control and test solutions were applied using a temperature controlled multichannel polypyrrole capillary perfusion system 3 (Warner Instruments, Inc., USA). The temperature of all solutions was maintained at 37 °C. After each application of the tested drug, the cells were washed with control buffer. This method allowed for fast and reliable exchange of the solution surrounding the selected cell under observation without exposing the neighboring cells.

2.9. Patch-clamp recordings

Cell membrane currents were recorded 3–4 days after the onset of differentiation using the patch-clamp technique in the whole-cell configuration. Recording pipettes with a tip resistance of 8–10 MΩ were made from borosilicate capillaries (0.86 ID, Sutter Instruments Company, Novato, CA, USA) using a P-97 Brown-Flaming micropipette puller (Sutter Instruments, Novato, CA, USA). Recording pipettes were filled with a solution containing (in mM): KCl 130, CaCl2 0.5, MgCl2 2, EGTA 5, HEPES 10. The pH was adjusted with KOH to 7.2. To visualize the recorded cells, the intracellular solution contained Alexa-Fluor hydrazide 594 (Molecular Probes, Carlsbad, CA, USA). The labeled cells were used for further post-recording immunocytochemical identification. All recordings were made in artificial cerebrospinal fluid (aCSF) containing (in mM): NaCl 122, KCl 3.1, MgCl2 1.3, Na2HPO4 1.25, NaHCO3 28, d-glucose 10, osmolarity 300 ± 2 mosmol/l-1. The solution was continuously gassed with a mixture of 95% O2 and 5% CO2 to maintain a final pH of 7.4. All recordings were made on cover slips perfused with aCSF at room temperature. Electrophysiological data were measured with 10 kHz sample frequency using an EPC10 amplifier controlled by PatchMaster software (HEKA Elektronik, Lambrecht/Pfalz, Germany) and were filtered using a Bessel filter. The cover slips with cells were transferred to the recording chamber of an upright AxioScope microscope (Zeiss, Gottingen, Germany) equipped with electronic micromanipulators (Luigs & Neumann, Ratingen, Germany) and a high-resolution AxioCam HRc digital camera (Zeiss, Germany). The resting membrane potential (Vrest) was measured by switching the EPC-10 amplifier to the current-clamp mode.

The membrane resistance (RI) was calculated from the current elicited by a 10 mV test pulse depolarizing the cell membrane from the holding potential of −70 mV to −60 mV for 50 ms, 40 ms after the onset of the depolarizing pulse. Membrane capacitance (Cm) was determined automatically from the Lock-in protocol by PatchMaster. Current patterns were obtained by 50 ms hyper- and depolarizing the cell membrane from a holding potential of −70 mV to values ranging from −160 mV to +40 mV, at 10 mV intervals (Andereova et al., 2006; Neprasova et al., 2007). Electrophysiological data were analyzed using Fitmaster software (HEKA, Lambrecht, Germany). Membrane potentials were corrected for the liquid junction potential using JPCALCW software (Barry, 1994). After recording, the cover slips were fixed in phosphate buffer (0.2 M PB, pH 7.4) containing 4% paraformaldehyde for 15 min and then transferred to PBS (10 mM, pH 7.2).

2.10. Antibodies and immunocytochemistry

Cells plated onto laminin-coated cover slips were fixed and immunostained according to the protocol described previously (Forostyak et al., 2013). The primary and secondary antibodies used in the study are listed in Table 1. For each experiment a negative control was performed: following the same protocol, cells were blocked with normal goat serum and incubated only with secondary antibodies. To visualize the cell nuclei, following immunostaining the cover slips were incubated with 300 nM 4′,6-diamidino-2-phenylindole (DAPI) in PBS for 5 min at RT (24 °C), mounted using Aqua Poly/Mount and examined using a ZEISS LSM 510 DUO confocal microscope.

2.11. Data analysis and statistical methods

Origin 8.5.1 was employed for plotting and statistical procedures. The results are expressed as mean ± SEM. The sample size (n) given is the number of cells tested according to the same protocol (control, test drug, recovery) for each group. The figures (traces) show on-line single cell measurements of the [Ca^{2+}]_i levels before and after the application of test substances, while bar diagrams and numerical data are given as mean ± S.E.M. and present the peak amplitude of the [Ca^{2+}]_i increase as a ratio between the fluorescence values of 340/380 nm excitation wavelengths. Student’s unpaired t-test or one-way ANOVA for multiple comparisons were used to determine significant differences between the experimental groups. Values of *p < 0.05 and **p < 0.01, and ***p < 0.001 were considered significant.

3. Results

3.1. [Ca^{2+}]_i dynamics

The functional properties were studied using a minimum of 4 and a maximum of 10 independent cell culture preparations for both ADSCs and BMSCs. The resting level of [Ca^{2+}]_i in ADSCs was 303 ± 8 nM, n = 26, and it remained stable after medium modification, being 293 ± 4 nM, n = 82 in ADSCs. In contrast, the resting [Ca^{2+}]_i level in BMSCs was significantly (p = 0.012) higher (332 ± 4 nM, n = 26) compared with ADSCs, although after medium modification, it decreased to 302 ± 8 nM, n = 49, p = 0.012 and became similar to ADSCs.

In ADSCs and BMSCs, changes in [Ca^{2+}]_i were monitored in response to a high K+ concentration (50 mM), glutamate (100 μM), ATP
(100 μM), cyclopiazonic acid (CPA, 10 μM), oxytocin (OT, 100 nM and 1000 nM) and vasopressin (AVP, 100 nM). Both bADSCs and bBMSCs were sensitive to ATP and vasopressin, but not to the inhibitory neurotransmitters (glutamate and GABA), oxytocin or to depolarization by K⁺ (Table 1). bBMSCs, but not bADSCs, were sensitive to 10 μM CPA, sarco-endoplasmic reticulum Ca²⁺-ATPase pump inhibitor. A representative trace, showing a typical [Ca²⁺]ᵢ response to various agonists in bBMSCs is shown in Fig. 1.

3.2. Glutamate receptors

Both bADSCs and bBMSCs did not respond to 100 μM glutamate, suggesting the absence of functional glutamate receptors (Fig. 1). Likewise, the application of glutamate in mBMSCs had no effect, only one cell out of 11 showed a weak response to 100 μM glutamate. Only in mADSCs (4 out of 15 cells, 27%) glutamate at 100 mM concentration evoked a rapid [Ca²⁺]ᵢ increase with a mean amplitude of 1.02 ± 0.22 RU. Application of 100 μM NMDA in these cells had no effect.

3.3. Voltage-gated Ca²⁺ channels

An influx of Ca²⁺ through voltage-gated Ca²⁺ channels (VGCC) is typical for excitable cells. bBMSCs and bBMSCs did not respond to depolarization by 50 mM K⁺, suggesting the absence of functional VGCC in basal conditions (Table 1, Fig. 1), while after medium modification a subpopulation [46% of mADSCs (18 out of 39 cells) and 42% of mBMSCs (17 out of 41)] responded to the application of 50 mM K⁺ by a rise in [Ca²⁺]ᵢ (Table 1). The mean amplitude of this [Ca²⁺]ᵢ increase was 1.13 ± 0.17, n = 18 in mADSCs and 0.5 ± 0.12, n = 17 in mBMSCs. Pre-incubation with Cd²⁺ (100 μM), a non-specific blocker of high-voltage activated Ca²⁺ channels, together with Ni²⁺ (50 μM), a blocker of low-voltage activated Ca²⁺ channels, for 5 min completely blocked [Ca²⁺]ᵢ responses induced by 50 mM K⁺ both in mADSCs (Fig. 2A, C) and mBMSCs (Fig. 2B, C), indicating the contributions of voltage-activated Ca²⁺ channels. A selective L-type VGCC blocker, nicardipine (1 μM) completely blocked the [Ca²⁺]ᵢ responses in 4 out of 5 tested mADSCs, while in the remaining cell, the K⁺-induced [Ca²⁺]ᵢ increase was inhibited by 34% (Fig. 2C, D). Similarly, pre-incubation of mBMSCs with nicardipine effectively blocked [Ca²⁺]ᵢ responses in all 4 tested cells, suggesting the role for L-type Ca²⁺ channels (Fig. 2C, E). A specific P/Q-type blocker, ω-conotoxin MVIIC applied at 300 nM significantly inhibited (98% ± 0.3%) 50 mM ryanodine (which at this concentration activates RyRs) (Lanner et al., 2010) caused a [Ca²⁺]ᵢ increase in 63% of the mADSCs (5 out of 8), with a mean amplitude of 1.39 ± 0.3. Immunostaining against ryadonide receptor subtypes showed that bADSCs expressed all three types (RyR1, RyR2 and RyR3) of receptors, while bBMSCs expressed mostly RyR1 and RyR3 with only a few cells positive for RyR2 (Fig. 3A). The expression of RyR1 (Fig. 3A, B, E) and RyR3 (Fig. 3A, D, G) remained unchanged or even increased in mADSCs and mBMSCs, while the expression of RyR2 in mADSCs decreased and was undetectable in mBMSCs (Fig. 3A, C, F).

Both mADSCs and mBMSCs exhibited spontaneous [Ca²⁺]ᵢ oscillations, although only 12% of the bADSCs and none of the bBMSCs showed spontaneous [Ca²⁺]ᵢ oscillations. A subpopulation of mADSCs (11 out of 83 cells; 13%) exhibited [Ca²⁺]ᵢ oscillations (Fig. 3H); these were maintained after the removal of extracellular Ca²⁺. The mean amplitude of the spontaneous [Ca²⁺]ᵢ transients in mADSCs was 0.97 ± 0.15, the mean duration was 85.5 ± 19 s, and they appeared with a mean frequency of 4.76 MHz. About 25% of mBMSCs (14 out of 49) exhibited irregular oscillations (Fig. 3I). The mean amplitude of the spontaneous [Ca²⁺]ᵢ transients in mBMSCs was 0.6 ± 0.14, the mean duration was 59.7 ± 9 s, and they appeared at a mean frequency of 6.94 MHz. In contrast to mADSCs, these oscillations were significantly inhibited by the application of non-specific VGCC blockers, 100 μM Cd²⁺ and 50 μM Ni²⁺ which decreased the mean amplitude of oscillations by 53 ± 12%, p = 0.001, n = 6.

3.5. Purinergic receptors

The majority of cells in basal conditions [90% (n = 22) of bADSCs and 62% (n = 26) of bBMSCs], exhibited [Ca²⁺]ᵢ transients in response to the purinergic receptor agonist, 100 μM ATP (Table 1). The mean amplitude of [Ca²⁺]ᵢ increase in response to 100 μM ATP in bADSCs was 2.1 ± 0.16, n = 20 and in bBMSCs was 0.83 ± 0.16, n = 16. The increase in [Ca²⁺]ᵢ in all bBMSCs tested was significantly inhibited (98% ± 0.3%) by a non-selective P2 receptor antagonist, 10 μM PPADS (p = 0.0004, n = 5; Fig. 4A). On the contrary, in the majority of bADSCs (88%), PPADS had no effect (Fig. 4A), and only in 12% of cells tested, the ATP-

<table>
<thead>
<tr>
<th></th>
<th>ADSCs</th>
<th>BMSCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>Modified</td>
</tr>
<tr>
<td>K⁺ (50 mM)</td>
<td>0</td>
<td>46%</td>
</tr>
<tr>
<td>Glutamate (100 μM)</td>
<td>0</td>
<td>27%</td>
</tr>
<tr>
<td>GABA (50 μM)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ATP (100 μM)</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>CPA (1 μM)</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Vasopressin (100 nM)</td>
<td>75%</td>
<td>94%</td>
</tr>
<tr>
<td>Oxytocin (1000 nM)</td>
<td>0</td>
<td>87%</td>
</tr>
</tbody>
</table>
induced $[\text{Ca}^{2+}]_i$ rise was inhibited by 47% ± 4%. Other P2X antagonists KN-62 and NF279 had no effect in both bADSCs and bBMSCs. Application of 100 μM ATP in mADSCs induced a rapid increase in $[\text{Ca}^{2+}]_i$ with a mean amplitude of 1.55 ± 0.09 in all 43 cells tested (Fig. 4B). BzATP at a 20 μM concentration (Fig. 4B) appeared to be a less potent agonist than ATP, inducing a significantly smaller increase in $[\text{Ca}^{2+}]_i$ of 0.92 ± 0.12 in 88% of cells tested (14 out of 16; p = 0.001). In 24% (4 out of 17) of the cells, the least potent agonist, $\alpha_\text{β}$-meATP (100 μM), caused a significantly weaker $[\text{Ca}^{2+}]_i$ response compared to ATP with a mean amplitude of 0.7 ± 0.04 (p = 0.01; Fig. 4B). The application of adenosine (100 μM) had no effect. The application of 100 μM ATP in the absence of extracellular Ca$^{2+}$ caused the most potent activation of purinergic receptors, significantly higher compared to BzATP (p = 0.001) and $\alpha_\text{β}$-meATP (p = 0.01), but not to ATP (p = 0.4). ATP at low Ca$^{2+}$ induced a $[\text{Ca}^{2+}]_i$ increase of 1.87 ± 0.49 in all 4 tested cells. Increases in $[\text{Ca}^{2+}]_i$ induced by $\alpha_\text{β}$-meATP were significantly (by 98 ± 0.4%) inhibited by pre-incubation with PPADS in all 4 cells tested (Fig. 4C). Neither P2X$_1$-selective antagonist NF279 (1 μM) nor P2X$_7$-selective antagonist KN-62 (1 μM) affected BzATP-induced $[\text{Ca}^{2+}]_i$ increase (p = 0.7, n = 6). Another antagonist, MRS2179, selective for P2Y$_1$ receptors also did not affect the ATP-induced Ca$^{2+}$ responses (p = 0.28, n = 4).

The number of mBMSCs responsive to ATP increased (86%) when compared with bBMSCs (62%). mBMSCs were also sensitive to other agonists of purinergic receptors. Unlike mADSCs, where ATP was the most potent activator of purinoceptors, in mBMSCs the highest $[\text{Ca}^{2+}]_i$
responses were induced by BzATP. The amplitude of 20 μM BzATP-induced [Ca2+]i increase was 1.69 ± 0.14, n = 15, significantly higher compared to 100 μM ATP (0.94 ± 0.08, n = 25, p = 0.0005) and to 100 μM αβ3-meATP (0.64 ± 0.16, n = 6, p = 0.0003; Fig. 4B). Application of PPADS, a non-selective antagonist of P2X and P2Y2 receptors, had no effect (p = 0.94, n = 7). KN-62 (1 μM), a selective P2X receptor antagonist, completely blocked BzATP-induced [Ca2+]i increase in all cells tested (p = 0.01, n = 4) (Fig. 4D). Expression of P2X-R was also confirmed by immunocytochemical staining (Fig. 4E).

3.6. Vasopressin and oxytocin receptors

Application of 100 nM the neuropeptide vasopressin (AVP) increased [Ca2+]i in 75% of tested bADSCs (n = 12) and all bBMSCs (n = 19) with a mean amplitude of 1.97 ± 0.3 and 1.36 ± 0.1, respectively (Table 1). In order to test the specificity of AVP action, we used a selective AVP-V1 receptor antagonist, [deamino-Pen1, O-Me-Tyr2, Arg8]-vasopressin at 1 μM. Pre-incubation of cells with AVP-V1 antagonist completely blocked the AVP (100 nM)-induced [Ca2+]i response in all bADSCs and in 44% of bBMSCs. In the remaining 56% of bBMSCs, it suppressed the AVP (100 nM)-induced [Ca2+]i response by 40 ± 4.8%, n = 4 (p = 0.036; Fig. 5A). On the other hand, neither bADSCs nor bBMSCs responded to another neuropeptide, oxytocin (OT), applied at concentrations of 100 nM or 1000 nM.

Unlike cells in basal conditions, which were sensitive to AVP but not to OT, mADSCs and mBMSCs were sensitive to both OT and AVP. OT at 1000 nM induced an increase in [Ca2+]i in 87% of the mADSCs and 73% of mBMSCs tested (Table 1). This response did not desensitize during several sequential applications of OT (Fig. 5D, F) and was concentration-dependent (Fig. 5B). The mean amplitude of the [Ca2+]i response to various OT concentrations in mADSCs ranged, respectively, from 0.23 ± 0.03, n = 4 for 10 nM, 0.95 ± 0.3, n = 4 for 500 nM and 1.22 ± 0.19, n = 13, for 1000 nM (Fig. 5B). The amplitudes of the [Ca2+]i increase in mBMSCs were: 10 nM OT elicited 1 [Ca2+]i rise of 0.32 ± 0.07, n = 9; 100 nM OT, 0.18 ± 0.04, n = 4; 500 nM OT, 0.59 ± 0.14, n = 6; and 1000 nM OT, 1.02 ± 0.18, n = 8 (Fig. 5B). Incubation with 1 μM d(CH2)5OVT, an OT receptor antagonist, completely blocked the OT-induced [Ca2+]i rise in both mADSCs (n = 4, Fig. 5H) and mBMSCs (n = 4, Fig. 5I). Immunocytochemical staining with an oxytocin antibody confirmed the presence of OT in the cultured mADSCs (Fig. 5L) and mBMSCs (Fig. 5N).

Application of AVP evoked reproducible (Fig. 5E, G) and dose-dependent (Fig. 4C) increases in [Ca2+]i, in 94% of the mADSCs and all mBMSCs tested (Table 1). The mean amplitude of [Ca2+]i increase in mADSCs was 2.31 ± 0.23, n = 5 at 10 nM AVP; 2.17 ± 0.18, n = 17 at 100 nM AVP; 1.26 ± 0.31, n = 4 at 500 nM AVP and 1.16 ± 0.25, n = 6 for 1000 nM AVP (Fig. 5C). The amplitudes of the [Ca2+]i increase in mBMSCs were: 10 nM AVP elicited a [Ca2+]i rise of 0.32 ± 0.07, n = 9; 100 nM AVP, 0.18 ± 0.04, n = 4; 500 nM OT, 0.59 ± 0.14, n = 6; and 1000 nM OT, 1.02 ± 0.18, n = 8 (Fig. 5B). Incubation with 1 μM d(CH2)5OVT, an OT receptor antagonist, completely blocked the OT-induced [Ca2+]i rise in both mADSCs (n = 4, Fig. 5H) and mBMSCs (n = 4, Fig. 5I). Immunocytochemical staining with an oxytocin antibody confirmed the presence of OT in the cultured mADSCs (Fig. 5L) and mBMSCs (Fig. 5N).

Application of AVP evoked reproducible (Fig. 5E, G) and dose-dependent (Fig. 4C) increases in [Ca2+]i, in 94% of the mADSCs and all mBMSCs tested (Table 1). The mean amplitude of [Ca2+]i increase in mADSCs was 2.31 ± 0.23, n = 5 at 10 nM AVP; 2.17 ± 0.18, n = 17 at 100 nM AVP; 1.26 ± 0.31, n = 4 at 500 nM AVP and 1.16 ± 0.25, n = 6 for 1000 nM AVP (Fig. 5C). The amplitudes of the [Ca2+]i increase in mBMSCs were: 10 nM AVP elicited a [Ca2+]i rise of 0.32 ± 0.07, n = 9; 100 nM AVP, 0.18 ± 0.04, n = 4; 500 nM OT, 0.59 ± 0.14, n = 6; and 1000 nM OT, 1.02 ± 0.18, n = 8 (Fig. 5B). Incubation with 1 μM d(CH2)5OVT, an OT receptor antagonist, completely blocked the OT-induced [Ca2+]i rise in both mADSCs (n = 4, Fig. 5H) and mBMSCs (n = 4, Fig. 5I). Immunocytochemical staining with an oxytocin antibody confirmed the presence of OT in the cultured mADSCs (Fig. 5L) and mBMSCs (Fig. 5N).

4. Discussion

In this study, we investigated Ca2+ signaling and electrophysiologica properties of rat stromal cells obtained from adipose tissue and bone marrow. We analyzed the changes of functional properties under the same environmental conditions upon medium modification that were previously reported to elicit changes in ADSCs (Willingham and Pastan, 1975). We demonstrated that after medium modification, both ADSCs and BMSCs undergo a significant change in their membrane properties and in the expression of channels and receptors associated with generation of Ca2+ signals (Fig. 7). The resting [Ca2+]i level in mBMSCs significantly decreased after pre-differentiation and became almost the same as in ADSCs. The resting [Ca2+]i level in ADSCs remained unchanged after medium modification.

4.1. Voltage-gated Ca2+ channels

VGCCs were found in several preparations of stem cells. High voltage activated L-type Ca2+ channels were shown to enhance proliferation and osteogenic differentiation in rat BMSCs (Wen et al., 2012). Small dihydropyridine-sensitive currents were recorded in minor subpopulations of undifferentiated BMSCs from humans and rats (Kawano et al., 2002; Heubach et al., 2004; Li et al., 2005, 2006). We were not able to detect any VGCCs-mediated Ca2+ entry in BMSCs in basal conditions. This could be explained by differences in the techniques and culture conditions. However, after medium modification, almost half of the cells (42%) were sensitive to depolarization with 50 mM K+. In our experiments, nicardipine completely blocked high K+-induced [Ca2+]i responses confirming the functional expression of L-type Ca2+ channels both in mADSCs and mBMSCs (Fig. 2). In mBMSCs, α-conotoxin MVIIC, a selective P/Q-type Ca2+ channel blocker, significantly inhibited K+-induced [Ca2+]i increase, suggesting the additional activation of P/Q-type channels. To our knowledge, this is the first report showing the functional P/Q-type Ca2+ channels in rats BMSCs. We were not able to identify N-type Ca2+ channels in BMSCs, either functionally or at the protein expression level. In contrast, several studies demonstrated the (mRNA and protein) expression of CACNA1C (L-type) and CACNA1G (T-type) in ADSCs in basal and medium-modified conditions (Safford et al., 2004; Bai et al., 2007; Jang et al., 2010). Immunocytochemically, the presence of both the CACNA1C subunit of L-type Ca2+ channels and the CACNA1A subunit of P/Q-type Ca2+ channels was detected in mADSCs and mBMSCs.

In summary, depolarization of bBMSCs and bADSCs did not produce [Ca2+]i transients, likely indicating the absence of functional VGCCs. Conversely, almost half of the population of mBMSCs (46%) and mADSCs (42%) generated a [Ca2+]i increase in response to depolarization, almost the same as in ADSCs. The resting [Ca2+]i level in ADSCs remained unchanged after medium modification.

4.2. Spontaneous oscillations and intracellular Ca2+ stores

Spontaneous [Ca2+]i oscillations contribute to many cellular processes, such as secretion, fertilization, etc. (Berridge et al., 2000; Ye, 2010).
In our study, similarly to that of Ichikawa et al. (Ichikawa and Gemba, 2009), we did not observe spontaneous oscillations in BMSCs in basal conditions, although 29% of mBMSCs exhibited spontaneous $[\text{Ca}^{2+}]_i$ activity. Exposure to non-selective VGCC antagonists, Cd$^{2+}$ and Ni$^{2+}$, significantly inhibited the amplitude of spontaneous $[\text{Ca}^{2+}]_i$ increases, but did not block them completely, suggesting the role for intracellular...
Ca\(^{2+}\) stores and VGCC; these findings are in accordance with previous reports (Kawano et al., 2002, 2003). Spontaneous [Ca\(^{2+}\)]\(_i\) oscillations were also observed in a subpopulation of human ADSCs; although the numbers of responding cells differed remarkably from 2 to 5% (Kotova et al., 2014) to 70% (Sauer et al., 2011). In our case, in rat ADSCs spontaneous [Ca\(^{2+}\)]\(_i\) dynamics were not inhibited after removal of extracellular Ca\(^{2+}\), suggesting that intracellular [Ca\(^{2+}\)] stores underlie these oscillations. In addition, mADSCs were sensitive to the application of 2 \(\mu\)M ryanodine and 10 \(\mu\)M CPA, suggesting that mADSCs possess functional ER Ca\(^{2+}\) stores and ryanodine receptors.

4.3. Purinergic receptors

Purinergic signaling plays an important role during stem cell development, influencing proliferation and determining cell fate, although the effects of agonists depend on the receptor subtype (Forostyak et al., 2013). For example ATP, acting through P2X receptors, induces the proliferation of human hematopoietic stem cells (Glaser et al., 2012). BMSCs at early passages (P0–P5) spontaneously release ATP and inhibit cell proliferation. Inhibition of P2Y1 receptors led to increased proliferation (Coppi et al., 2007); the same P2Y1 receptors in human BMSCs also contributed to InsP3-induced spontaneous [Ca\(^{2+}\)]\(_i\) oscillations (Kawano et al., 2006). Here we also investigated the
Fig. 5. Oxytocin and vasopressin responses in ADSCs and BMSCs in basal and medium modified conditions. A. Bar diagram showing the percentage of the mean peak amplitude of [Ca^{2+}] increase before (AVP control) and after incubation with the 1 μM AVP-V1R antagonist, (d(CH2)5 Tyr(Me)2, Arg8)-vasopressin in bBMSCs and bADSCs (*p = 0.036, n = 4). Control AVP-induced [Ca^{2+}] increase was taken as 100%. B. Dose-dependent [Ca^{2+}] increase in response to application of increasing concentrations OT in mADSCs (blue curve) and mBMSCs (green curve). Similarly, C. Dose-dependent [Ca^{2+}] increase in response to the application of increasing concentrations of AVP in mADSCs (blue curve) and mBMSCs (green curve). The significance between various agonists among mADSCs and mBMSCs is shown by asterisks in blue and green, respectively. Data are mean ± S.E.M. *p < 0.05; **p < 0.01; ***p < 0.001. D–G. Representative traces of an individual mADSCs (D, E) or mBMSCs (F, G) subjected to successive 10 s applications 100 nM OT (D, F) or 100 nM AVP (E, G). H, J. Bar diagrams representing the peak amplitude [Ca^{2+}] (control percentage) response induced by 100 nM OT and a significant inhibition by the presence of OT-antagonist, 1 μM dOVT in mADSCs (H) and mBMSCs (J). I, K. Bar diagrams representing the peak amplitude [Ca^{2+}] (control percentage) response induced by 100 nM AVP and a significant inhibition by the presence of 1 μM AVP-V1R antagonist, in mADSCs (I) and mBMSCs (K). L–O. Immunohistochemical detection of OT and AVP in mADSCs and in mBMSCs. Confocal images showing mADSCs stained for OT (L), AVP (M) and nuclear DAPI staining. Similarly, confocal images showing mBMSCs stained for OT (N), AVP (O) and nuclear DAPI staining. Scale bars = 20 μm.
presence of P2Y2 receptors in mADSCs and mBMSCs, but were unable to
dissect P2Y2 receptors in mBMSCs, which could be explained by the dif-
fferent species from which the cells were obtained. In mADSCs, ATP-
induced [Ca2+]i responses were observed after the removal of Ca2+ from
an external medium and these responses were not blocked by MRS2179 (a selective P2Y2 antagonist) suggesting that mADSCs express P2Y2 receptors distinct from P2Y2Y. We found that 62% of bBMSCs and 90%
of bADSCs were sensitive to ATP, but not to other neurotransmitters,
possibly reflecting the fact that purinergic receptors are one of the first
neurotransmitter receptors expressed in development (Glaser et al., 2012). The number of cells sensitive to ATP increased to 86% in
mBMSCs and 100% in mADSCs). Neither ADSCs nor BMSCs were sensi-
tive to adenosine, thus excluding the role of P1 adenosine receptors.

The broad agonist BzATP can activate all P2X receptors. However,
P2X1 and P2X7 receptors exhibit sensitivity an order greater than to
ATP (Syed and Kennedy, 2012). The order of potency of P2 receptor ag-
onists in mBMSCs was as follows: BzATP > ATP > α,β- meATP. Selective
P2X7 antagonist KN-62 effectively blocked the BzATP-induced [Ca2+]i
increase in mBMSCs (but not in bBMSCs), confirming the activation of
P2X7 receptors. The number of cells more sensitive to ATP increased to 86% in
mBMSCs and 100% in mADSCs. Neither ADSCs nor BMSCs were sensi-
tive to adenosine, thus excluding the role of P1 adenosine receptors.

4.4. Oxytocin and vasopressin

OT and AVP control a wide range of functions in the central as well as in
peripheral nervous systems (Dayanithi et al., 2000, 2008, 2012; Hussy et al., 2001; Ueta et al., 2008; Suzuki et al., 2009; Fujihara et al.,
2009; Todoroki et al., 2010; Viero et al., 2010; Moriya et al., 2012, 2015). The primary cultures of neonatal rat cardiomyocytes express OT receptors (Florian et al., 2010). Recently OT has become a subject of increased atten-
dition due to its protective and metabolic effects on rats (male Sprague Dawley) BMSCs. Stimulated by pretreatment with OT, BMSCs have
demonstrated reduced apoptosis, and increase cellular proliferation and glucose uptake (Noiseux et al., 2012). OT was also shown to control
ADSC differentiation (Elabad et al., 2008; Jafarzadeh et al., 2014) and proliferation (Jafarzadeh et al., 2014). BADSCs and bBMSCs in
our study were not sensitive to OT, although most mBMSCs (73%) and
mADSCs (87%) responded to OT by an increase in [Ca2+]i. These responses were reproducible and dose-dependent (Fig. 5).

5. Conclusions

Together, as briefly summarized in Fig. 7, our results suggest that the
Ca2+ signaling, ion channel and ionotropic receptor expression profile of adult tissue-specific stem/progenitor cells depends not only on the
culture conditions but also on the source from which the cells were

Table 2
The passive membrane properties of ADSCs and BMSCs in basal and medium modified conditions.

<table>
<thead>
<tr>
<th></th>
<th>ADSCs</th>
<th>BMSCs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>Modified</td>
</tr>
<tr>
<td>V_rest [mV]</td>
<td>−33.9 ± 2.0</td>
<td>−77.5 ± 1.5**</td>
</tr>
<tr>
<td>E_mem [mV]</td>
<td>−33.2 ± 4.9</td>
<td>−71.8 ± 1.4***</td>
</tr>
<tr>
<td>C_m [pF]</td>
<td>59.2 ± 12.5</td>
<td>59.6 ± 4.4</td>
</tr>
<tr>
<td>IR [mV]</td>
<td>131.5 ± 14.5</td>
<td>53.3 ± 5.4</td>
</tr>
<tr>
<td>n</td>
<td>26</td>
<td>30</td>
</tr>
</tbody>
</table>

Asterisks indicate significant vs cells in basal conditions within the same cell line (⁎p < 0.05; **p < 0.01; ***p < 0.001).
isolated. The fate and functional properties of differentiated cells are driven by intrinsic mechanisms, which are independent of the culture protocol. Identifying their Ca^{2+} signaling, ion channel and ionotropic receptor expression profile as a function of external changes in their environment is essential to better utilize these cells in tissue engineering and regenerative medicine.
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.scr.2016.03.010.

Authors’ contributions

O.F. contributed to prepare experimental design, performed Ca2+ measurements, helped with data and statistical analysis, immunocytochemistry, confocal imaging, and contributed in manuscript writing.

O.B. performed patch-clamp experiments, helped with electrophysiological data analysis and related statistics, and contributed in manuscript writing on electrophysiological data.

M.A. supervised patch-clamp experiments, helped with electrophysiological data analysis and related statistics, and contributed in manuscript writing on electrophysiological data.

S.F. helped with preparing cell culture and confocal imaging experiments and imaging analysis.

E.S. participated in experimental design, organized logistics, and participated in manuscript writing.

A.V. provided experimental design, helped with electrophysiological data analysis and related statistics, and interpreting the data, and contributed in manuscript writing and editing.

G.D. provided concept and experimental design, project management, supervised the experiments, checked the data and statistical analysis and interpretation, and wrote the manuscript.

Disclosure of potential conflicts of interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the grants GACR 14-34077S, GACR P304/11/2373, GACR P304/12/G069 and GACR 10504P from the Grant Agency of the Czech Republic. This publication is partly a result of the “Advanced Bioimaging of Living Tissues” project, registration number #CZ.2.16/3.1.00/21527, which was financed from the budget of the European Regional Development Fund and public budgets of the Czech Republic through the Operational Programme Prague — Competitiveness. AV was supported by the Wellcome Trust, by the Alzheimer’s research foundation (UK) and by the grant (agreement from August 27, 2013 no. 02.B.49.21.0003) between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod, by the grant of the Russian Scientific Foundation no.14-15-00633 and by the Ministry of Education of the Russian Federation, unique identity number RFMEFI57814X0079. Govindan Dayanithi belongs to the “Centre National de la Recherche Scientifique—The French Ministry of Research and Higher Education—Paris”, France. We thank David Arboleda and Lenka Baranovicova for their participation in preliminary experiments. We are grateful to Kip Allan Baurersfeld, IEM ASCR, for critical reading and helpful comments on the manuscript.

References
