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Abstract—Crop host-pathogen interaction have
been a main issue for decades, in particular for food
security. In this paper, we focus on the modeling
and long term behavior of soil-borne pathogens. We
first develop a new compartmental temporal model,
which exhibits bi-stable asymptotical dynamics. To
investigate the long term behavior, we use LaSalle
Invariance Principle to derive sufficient conditions
for global asymptotic stability of the pathogen
free equilibrium and monotone dynamical systems
theory to provide sufficient conditions for perma-
nence of the system. Finally, we develop a partially
degenerate reaction diffusion system, providing a
numerical exploration based on the results obtained
for the temporal system. We show that a traveling
wave solution may exist where the speed of the wave
follows a power law.

Keywords-Host-pathogen; bi-stability; monotone
dynamical system; LaSalle Invariance Principle;
partially degenerate reaction-diffusion; traveling
wave

I. INTRODUCTION

The global food supply is currently experiencing
pressure from climate change and ever increasing
demand. Another major concern is the increasing
impact of pathogens. An estimated 16% of the
global crop yield is lost to various pathogens an-
nually [3], [10], [14]. Consequently there has been
an increase in research of botanical pathogens and
the resulting diseases, with foliar pathogens being
the focus of the majority of published work. One
important difference between foliar and soil-borne
pathogens is the environment wherein each occurs.
Foliar pathogens have to contend with external
factors such as wind, radiation and varying tem-
peratures. However, the soil environment dampens
the effects of such factors, although the inherent
opacity of soil poses a number of challenges of
its own. Added to these are challenges relating
to capturing the direct and indirect influence of
the environment on processes such as survival,
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dispersal and germination of pathogens, tissue
growth, spatial distribution and susceptibility of
hosts [12].

To some extent this paper is motivated by
an early work of Gilligan [6], [7], [8], where
he proposed a SEIR type compartmental model
for the propagation of a soil-borne plant disease.
This model includes a diffusion term, suggest-
ing movement of infectious individuals. Although
correct in certain contexts, this is unlikely in
plant populations. In the model proposed here we
consider compartments for the pathogen, where in-
fection/infestation occurs when pathogen attaches
to susceptible roots. In the spatio-temporal model
we consider diffusion of the unattached pathogen,
which we believe is a more biologically realistic
assumption.

The paper is organized as follows. In the next
section we construct the temporal host-pathogen
model highlighting the assumptions on which it
is based. Section 3 deals with the equilibria of
the system. Sufficient conditions for extinction
and persistence of the pathogen are presented in
Section 4 and 5 respectively. The spatio-temporal
model is numerically considered in Section 6.

II. THE HOST-PATHOGEN MODEL

We consider a population of susceptible host
plants with a constant recruitment rate Λ, and
a pathogen present in the soil. As usual, the
compartments of susceptible and infective/infested
hosts are denoted by S and I , respectively, and
N = S + I is the total host population. The
natural decay rate of the host is d per time unit,
and infected hosts have an addition decay rate of
α per time unit. We assume that the pathogen
is dependent on its host for nutrients or energy,
and as such has an expected off–host death rate δ
per time units. After coming into contact with a
susceptible host it attaches at rate ρ, and grows
at intrinsic growth rate of λ, restricted by the
carrying capacity γI of the infected/infested roots.
The attached pathogen (compartment A) detaches
from their hosts at a rate of σ per time unit. The
unattached or free pathogen (compartment F ) is
responsible for new infections/infestations. It is

assumed that if the population of free pathogen
is large, the transmission rate from S to I de-
pends solely on a constant β and the level of
susceptible hosts present. This type of incidence is
called saturation incidence and we use the specific
form βF

M+F . Using a saturating infestation rate is
motivated by biological observations that increas-
ing the free pathogen beyond a certain level no
longer increases infestation proportionally. From
a mathematical point of view, if only mass action
principle is applied e.g. βFS, then, since F can
potentially be very large, S would decrease very
rapidly, which is unrealistic. For simplicity, the
attachment rate (transfer from F to A is just
mass action principle, namely ρFS. However, the
growth in the A compartment is limited through
the carrying capacity γI = γ(N − S). Since
S cannot decrease unrealistically quickly then A
cannot increase unrealistically quickly. The flow

Fig. 1. Flow chart of the host-pathogen model

chart is given in Figure 1. The model is a system
of ODEs presented below:

dA

dt
= λA(γI −A)− σA+ ρFS

dF

dt
= −δF + σA− ρFS

dS

dt
= Λ− dS − βF

M + F
S

dI

dt
=

βF

M + F
S − (α+ d)I

(1)

Using the notation x = (A,F, S, I)T the model
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(1) is written as

ẋ = f(x) (2)

with

f(x) =


λA(γI −A)− σA+ ρFS
−δF + σA− ρFS
Λ− dS − βF

M+F S
βF
M+F S − (α+ d)I

 .

The local existence and uniqueness of solutions
of (1) in R4

+ = {x ∈ R4 : x ≥ 0} follows from the
fact that f is continuously differentiable on R4

+.
The vector field defined by f points inwards on the
boundary of R4

+. Hence, R4
+ is positively invariant.

In order to obtain global existence of solutions it
remains to show that all solutions initiated in R4

+

are bounded. Adding the equations for
dS

dt
and

dI

dt
we have the inequalities

Λ−(d+α)(S+I)≤ d(S+I)

dt
≤ Λ−d(S+I), (3)

which do not depend on the other coordinates of x.
Hence, for any solution we have that the interval[

Λ

α+ d
,
Λ

d

]
is a global attractor for S(t) + I(t).

More precisely, we have

Λ

α+ d
≤ lim inf

t→+∞
(S(t) + I(t))

≤ lim sup
t→+∞

(S(t) + I(t)) ≤ Λ

d
. (4)

Since S and I are also nonnegative, they are
bounded. Using (4) it is easy to obtain that the
rest of the coordinates of any solution x(t) are
also bounded. In fact, since the bounds in (4) do
not depend on the initial condition, one obtains
that (1) defines a dynamical system on R4

+, which
is dissipative.

III. EQUILIBRIA

In the absence of pathogen the population of the
host is S and it is governed by the third equation in
the model (1). It has an asymptotically stable equi-

librium at
Λ

d
with basin of attraction S ∈ [0,+∞).

The resulting equilibrium of the model (1) we call
Pathogen Free Equilibrium (PFE), that is,

PFE =

(
0, 0,

Λ

d
, 0

)
. (5)

The basic reproduction number/ratio, R0, is a
threshold quantity, which is often used to char-
acterize the properties of epidemiological models.
It is popularly defined as the number of new
infections caused by a single infectious individual
in a wholly susceptible population. Its precise
definition is that it is the spectral radius of the next
generation matrix calculated at an asymptotically
stable equilibrium of the population in the absence
of disease, [17]. Such equilibrium is usually re-
ferred to as Disease Free Equilibrium. Due to the
nature of the model in this paper, and as mentioned
above, we use the term Pathogen Free Equilibrium
(PFE). The model (1) has a unique Pathogen Free
Equilibrium given by (5).

Following the method in [17] for the compu-
tation of R0, the compartment vector x in the
model (1) is decomposed into three-dimensional
vector of pathogen related compartments y =
(A,F, I)T and one pathogen free compartment S
and we have

ẏ = F(y, S)− V(y, S),

where

F(y, S) =

λA(γI −A) + ρSF
0

βFS
M+F

 ,

V(y, S) =

 σA
δF − σA+ ρFS

(α+ d)I

 .

The next generation matrix is

∂F
∂y

(
0,

Λ

d

)(
∂V
∂y

(
0,

Λ

d

))−1

=
1

M(δ + ρΛ
d )

ρM Λ
d ρM Λ

d 0
0 0 0

β Λ
d β Λ

d 0

 .

Thus
R0 =

ρΛ

dδ + ρΛ
.

Biomath 8 (2019), 1901029, http://dx.doi.org/10.11145/j.biomath.2019.01.029 Page 3 of 17

http://dx.doi.org/10.11145/j.biomath.2019.01.029


R. Anguelov, R. Bekker, Y. Dumont, Bi-stable dynamics of a host-pathogen model

It is clear that R0 < 1 regardless of the values
of the parameters (as long as they are positive).
Therefore, it follows from [17, Theorem 2] that the
PFE is always asymptotically stable. The asymp-
totic behavior of the solutions of (1) depends
on the existence of pathogen-endemic equilibria
or other invariant sets and their properties. It is
interesting to remark that for the model under
consideration R0 is not a threshold quantity at all.

In order to obtain all equilibria, we set right
hand side in model (1) equal to zero,

λA(γI −A)− σA+ ρFS =0,

−δF + σA− ρFS =0,

Λ− dS − βF

M + F
S =0,

βF

M + F
S − (α+ d)I =0.

(6)

From the third equation in (6) we obtain an
expression for S in terms of F :

S =
Λ(M + F )

(d+ β)F + dM
. (7)

Then, using (7), from the second equation in (6)
we obtain an expression for A:

A = σ−1(δ + ρS)F

= σ−1

(
δ +

ρΛ(M + F )

(d+ β)F + dM

)
F. (8)

Similarly, using (7), the fourth equation in (6)
gives an expression for I in terms of F :

I =
βFS

(α+ d)(M + F )

=
ΛβF

(α+ d)((d+ β)F + dM)
. (9)

Substituting these expressions into the first equa-
tion and excluding the case F = 0, we obtain a
cubic equation about F in the form

−a1F
3 + a2F

2 + a3F − a4 = 0, (10)

where

a1 = λ(α+ d)[δ(d+ β) + ρΛ]2,

a2 = −2λ(α+ d)[δ(d+ β) + ρΛ](δd+ ρΛ)M

−δ(α+ d)(d+ β)2σ2

+λγΛσβ[δ(d+ β) + ρΛ],

a3 = λγσΛβ(δd+ρΛ)M−2δ(α+d)(d+β)dMσ2

−λ(α+ d)(δd+ ρΛ)2M2,

a4 = δ(α+ d)σ2d2M2.

Clearly, a1 > 0 and a4 > 0, while the signs
of a2 and a3 may vary depending on the values
of the parameters. However, it is easy to see
that for any signs of a2 and a3 there are always
either two sign changes in the sequence of the
coefficients of (10) or no sign changes at all. Hence
the equation has either two positive roots or no
positive roots. When these roots exist we denote
them by F1 and F2, with F1 ≤ F2. The respective
equilibria of the model (10) are denoted by EE1 =
(A1, F1, S1, I1)T and EE2 = (A2, F2, S2, I2)T .
From the expressions (7), (8) and (9) we see
that EE1 > 0 and EE2 > 0. Further, we can
also see from the expressions (7)–(9) that S is
a decreasing function of F , while I and A are
increasing functions of F . Hence we have

A1 ≤ A2, I1 ≤ I2 and S1 ≥ S2. (11)

The two positive roots of (10) appear simultane-
ously as a double root F1 = F2, which then splits
into two simple roots. Hence, in the bifurcation
state when F1 = F2, the equilibrium EE1 = EE2

appears and then splits into the two distinct equi-
libria EE1 and EE2. Since the constant term of
(10) is strictly positive, this bifurcation is bounded
away from the PFE. The PFE does not undergo
any bifurcation and, as mentioned above, it is
always asymptotically stable.

We perform numerical simulations using non-
standard finite difference schemes [2] to solve
systems (1) and (33).

In all numerical simulations of model (1) we
observe two qualitatively different cases and the
transition (bifurcation) from one to the other. The
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one case is when PFE is the only equilibrium of
the system. In this case we observe that all solution
converge to PFE, that is PFE is globally asymp-
totically stable on R4

+. An illustrative example is
given Figure 2 with value of the parameters given
in Table I.

TABLE I
PARAMETER VALUES USED IN FIGURE 2

Parameter Value Parameter Value
Λ 1.1000 λ 0.5000
γ 0.5000 β 1.0000
σ 0.4000 ρ 0.2000
δ 0.1000 M 10.000
α 0.5100 d 0.5000

The second case is when the model has two
positive equilibria. In the simulations presented in
Figure 3, EE2 is stable and attracting, while EE1

is unstable (saddle point). Table II contains the pa-
rameter values used for the simulations in Figure 3.
The solutions that are initiated below EE1 in the
(A,F, I)-space converge to the PFE. Solutions φ1

and φ2 are initiated at EE1 with altered value of S,
S0 = 2 and S0 = 20 respectively. These values are
below and above the PFE value of S, respectively.
We observe that φ1 converges to the PFE, while
φ2 increases and eventually converges to EE2. The
unstable equilibrium is typically very close to the
PFE, so that the basin of attraction of the PFE
is relatively small. Nevertheless, it contains the
whole nonnegative S-axis.

TABLE II
PARAMETER VALUES USED IN FIGURE 3.

Parameter Value Parameter Value
Λ 1.0000 λ 0.5000
γ 0.9000 β 5.0000
σ 0.4000 ρ 0.1000
δ 0.1000 M 100.000
α 0.0450 d 0.1000

Due to the complexity of the model, we could
not obtain theoretically a general result for the
observed properties of the positive equilibria, or
alternatively the global asymptotic stability of the
PFE. However, we derive in the next two sections

sufficient conditions for the two practically impor-
tant properties: extinction and persistence of the
pathogen.

IV. SUFFICIENT CONDITIONS FOR GLOBAL

ASYMPTOTIC STABILITY OF PFE
We prove sufficient conditions for global

asymptotic stability of PFE using LaSalle’s Invari-
ance Principle [11, Theorem 2].

Theorem 1. The PFE of model (1) is globally
asymptotically stable on R4

+ if either condition a)
or condition b) below hold:

a)
λβγ2Λ2

16d2(α+ d)δM
≤ 1 (12)

b) β < α+ d and

λβ2γ2Λ2

4d2δM(β + α+ d)2
≤ 1. (13)

Proof: Taking into account the inequalities
(4), it is sufficient to consider the system (1) on
the domain

Ω =

{
x ∈ R4

+ : S + I ≤ Λ

d

}
.

We consider on Ω the function

V (x) = A+ F +
ξ

2
I2,

where ξ is a positive constant with value yet to be
determined. We have

V̇ (x) = Ȧ+ Ḟ + ξIİ

= λA(γI −A)− ξ(α+ d)I2

+ ξ
βF

M + F
SI − δF.

Since the first term is a quadratic of A it obtains
it largest value when A = 1

2γI . Using also that
F ≥ 0 and

SI ≤
(
S + I

2

)2

≤ Λ2

4d2
,

we have

V̇ (x) ≤
(
λγ2

4
− ξ(α+ d)

)
I2+

(
ξβΛ2

4d2M
− δ
)
F

(14)
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Fig. 2. Illustration of the case of global asymptotic stability of the PFE.

The coefficient of I2 is nonpositive if and only if

ξ ≥ λγ2

4(α+ d)
(15)

Similarly, the coefficient of F is nonpositive if and
only if

ξ ≤ 4d2Mδ

βΛ2
(16)

A constant ξ satisfying (15) and (16) exists if and
only if

λγ2

4(α+ d)
≤ 4d2Mδ

βΛ2
,

or, equivalently,

λβγ2Λ2

16d2(α+ d)δM
≤ 1, (17)

that is if and only if condition a) holds. Hence, if
a) holds, we can select ξ such that V̇ (x) ≤ 0 for
x ∈ Ω. Let E = {x ∈ Ω : V̇ (x) = 0}. According
to LaSalle Invariance Principle, all solutions con-
verge to the largest invariant set M of (1) which
is contained in E.

If the inequality in (17) is strict, then ξ can be
selected in such a way that the coefficients in (14)

are negative. Hence, V̇ (x) = 0 only if I = F = 0
and then A = 0 as well. Hence,

E =

{
(0, 0, S, 0) : 0 ≤ S ≤ Λ

d

}
. (18)

The largest invariant set in E given in (18) isM =
{PFE}.

If the inequality in (17) holds as equality, then
the right hand side of (14) is zero irrespective
of the values of I and F . However, if I or
F is not zero, then the respective inequalities
leading to (14) should be satisfied as equalities.
This process leads enlargement of E in (18) by

an isolated point
(
γΛ

4d
, 0,

Λ

2d
,

Λ

2d

)
and we again

have M = {PFE}.
Therefore, by the LaSalle Invariance Principle

all solutions converge to PFE.

b) The condition β < α+d provides for slightly
sharper upper bound of SI and hence slightly
weaker condition on the parameters.
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Fig. 3. If solutions of model (1) are initiated ‘close’ to the PFE convergence to this equilibrium occurs. Solutions that are
initiated from the ‘smaller’ endemic equilibrium converge to either the PFE or the ‘larger’ equilibrium, dependent on the
initial density of the susceptible compartment.

From the last equation of the model (1) we have

dI

dt
≤ βS − (α+ d)I

≤ β(S + I)− (β + α+ d)I

≤ βΛ

d
− (β + α+ d)I.

Therefore

lim sup
t→+∞

I(t) ≤ βΛ

d(β + α+ d)
.

Hence, in the investigation of the asymptotic be-
havior of the system we can consider only the
subset of Ω where

I ≤ βΛ

d(β + α+ d)
.

The inequality β < α+ d implies that

βΛ

d(β + α+ d)
≤ Λ

2d
.

Hence,

SI ≤
(

Λ

d
− I
)
I

≤
(

Λ

d
− βΛ

d(β + α+ d)

)
βΛ

d(β + α+ d)

=
β(α+ d)Λ2

(β + α+ d)2d2
.

Then, following the same method as for a), in
place of (17) we obtain the second inequality in
b).

The parameter values given in Table I satisfy
both condition (a) and condition (b) of Theorem 1.
Hence, the global asymptotic stability of PFE
observed earlier in Figure 2 can be deduced from
either (a) or (b). Another illustration is given on
Figure 4. The model parameters, given in Table III,
satisfy condition (a), but not condition (b) in
Theorem 1. This is sufficient to deduce the global
asymptotic stability of PFE seen in Figure 4.

We need to remark the conditions (a) and (b)
are each only sufficient, but not necessary for the
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TABLE III
PARAMETER VALUES USED IN FIGURE 4

Parameter Value Parameter Value
Λ 0.9000 λ 0.5000
γ 0.5000 β 1.0000
σ 0.2000 ρ 0.3000
δ 0.2900 M 5.000
α 0.0600 d 0.1500

global stability of the PFE. The parameter values
given in Table IV satisfy neither of the conditions
in Theorem 1. Yet, global asymptotic stability of
PFE can be observed in the simulations presented
in Figure 5.

TABLE IV
PARAMETER VALUES USED IN FIGURE 5

Parameter Value Parameter Value
Λ 1.1000 λ 0.6900
γ 0.6000 β 1.5000
σ 0.4000 ρ 0.5000
δ 0.2000 M 5.000
α 0.0100 d 0.3000

V. SUFFICIENT CONDITIONS FOR PERSISTENCE

We derive sufficient conditions for persistence
using the theory of monotone systems. The system
(1) is not monotone. We construct an auxiliary
system about the vector y = (A,F, I)T which is
monotone. From the third equation of (1) we have

Λ− (d+ β)S ≤ dS

dt
≤ Λ− dS (19)

Then, it follows that for every solution of (1) it
holds

Λ

β + d
≤ lim inf

t→+∞
S(t) ≤ lim sup

t→+∞
S(t) ≤ Λ

d
.

Hence, for the asymptotic properties of the solu-
tions of (1) it is sufficient to consider the subset
of Ω where

Λ

β + d
≤ S ≤ Λ

d
. (20)

In this subdomain we consider the following sys-
tem for y = (A,F, I)T :

dy

dt
= h(y) :=

 λA(γI −A)− σA
−δF + σA− ρΛ

d F
βF
M+F

Λ
β+d − (α+ d)I

 . (21)

Let us recall that function h is said to satisfy the
Kamke condition if hi is increasing in yj for i 6= j.
The Kamke condition implies that the respective
system of ODEs is monotone with respect to the
initial condition or shortly monotone, [16, Section
3.1]. The Jacobian of h is

Jh=

λγI−2λA−σ 0 λγA

σ −δ − ρΛ
d 0

0 βMΛ
(β+d)(M+F )2 −(α+d)

 .

Since the nondiagonal entries of Jh are nonnega-
tive, the system (21) is monotone. Moreover, since
the system is irreducible in the interior of R3

+,
it is strongly monotone, [16, Theorem 4.1.1]. Let
us recall that a system of the form (21) is called
strongly monotone if for any two solution y(1) and
y(2)

y(1)(0) < y(2)(0) =⇒ y
(1)
i (t) < y

(2)
i (t), t > 0,

i = 1, 2, 3.

Our interest in the system (21) is motivated by
the fact that its solutions provide lower bounds
for the coordinates A, F , and I of the solutions of
(1). This will be shown later by using differential
inequalities given in [18] for systems of ODEs
with quasi-monotone right hand side. Hence, we
carry out first the asymptotic analysis of (21).

To find the equilibria of (21), we set the right
hand side to zero:

λA(γI −A)− σA = 0 (22)

−δF + σA− ρΛ

d
F = 0 (23)

βF

M + F

Λ

β + d
− (α+ d)I = 0 (24)

The origin, 0 is an equilibrium. To find the nonzero
equilibria, we multiply the first equation by σ

λ
and add it to the second one to eliminate A. We
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Fig. 4. Illustration of the global stability of the PFE of the host-pathogen model when only condition (a) in Theorem 1
holds.

multiply the third equation by γσ
α+d and add it to

the second one to eliminate I . Hence, we obtain

ϕ(y) :=
σ

λ
h1(y) + h2 +

γσ

α+ d
h3(y) = (25)

−
(
δ+

ρΛ

d

)
F−σ

2

λ
+

γσβΛF

(α+d)(β+d)(M+F )
= 0

(26)

Equation (26) is equivalent to the quadratic equa-
tion

(
δ +

ρΛ

d

)
F 2+(

M

(
δ +

ρΛ

d

)
+
σ2

λ
− γσβΛ

(β + d)(α+ d)

)
F

+
Mσ2

λ
= 0.

(27)

The equation (27) has two positive real roots if
and only if the coefficient of F is negative and the

discriminant is positive, that is

M

(
δ+

ρΛ

d

)
+
σ2

λ
− γσβΛ

(β+d)(α+d)
< 0, (28)

∆=

(
M

(
δ+

ρΛ

d

)
+
σ2

λ
− γσβΛ

(β+d)(α+d)

)2

− 4Mσ2

λ

(
δ +

ρΛ

d

)
> 0 (29)

Assuming that conditions (28)–(29) hold, we
denote by F̃1 and F̃2, F̃1 < F̃2, the roots of (27)
and by Ẽ1 = (Ã1, F̃1, Ĩ1)T and Ẽ2 = (Ã2, F̃2, Ĩ2)T

the corresponding equilibria of (21). where

Ai =
1

σ

(
δ +

ρΛ

d

)
Fi, i = 1, 2, (30)

Ii =
1

γ
(Ai + σ) , i = 1, 2. (31)

Considering the expressions (30) and (31, we have
0 << Ẽ1 << Ẽ2.

Theorem 2. Let conditions (28)–(29) hold. Then
for every solution y(t) of (21) we have

y(0) > Ẽ1 =⇒ lim inf
t→+∞

y(t) ≥ Ẽ2.
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Fig. 5. Illustration that PFE of the host-pathogen model may be globally asymptotically stable when neither of the condition
in Theorem 1 holds.

Proof: It is easy to see that the equilibrium
0 is asymptotically stable, indeed the eigenvalues
of Jh(0), ξ1 = −σ, ξ2 = −

(
δ + ρΛ

d

)
and ξ3 =

−(α+ d) are all negative.
We consider the order interval [0, Ẽ1]. It follows

from [16, Theorem 2.2.2], that the solutions ini-
tiated in this interval, excluding the end points,
either all converge to 0 or all converge to Ẽ1.
Since 0 is asymptotically stable, this implies that
all solutions converge to 0. The Jacobian of h at
Ẽ1 after some simplifications is:

Jh(Ẽ1) =

−λA
∗ 0 λγA∗

σ −δ − ρΛ
d 0

0 βMΛ

(β+d)(M+F̃1)2
−(α+ d)

 ,

Since the nondiagonal entries of Jh(Ẽ1) are non-
negative and the matrix is irreducible, it follows
from the theory of nonnegative matrices [4, The-
orem 2.1.4] that Jh(Ẽ1) has eigenvector v with
positive coordinates and associated eigenvalue ξ,
which is a real number. Since Ẽ1 is repelling in
[0, Ẽ1], we have that ξ ≥ 0. We will show that
ξ > 0. Assume the opposite, namely ξ = 0. Then

it is easy to compute that w =

(
σ

γÃ1

, 1,
σγ

α+ d

)T
is a left eigenvector. Then, using the expression for
ϕ in (25) and that h(Ẽ1) = 0 we have

∇ϕ(Ẽ1) = wTJh(Ẽ1) = 0.

The first and the third coordinates of ∇ϕ(y) are
always zero since ϕ does not depend on A and I .
The fact that ∂ϕ(Ẽ1)

∂F = 0 implies that the equation
(26), or, equivalently (27, has a double root. This
contradicts (29). Therefore ξ > 0.

Next, we consider the order interval [Ẽ1, Ẽ2].
Again following [16, Theorem 2.2.2], that the
solutions initiated in this interval, excluding the
end points, either all converge to Ẽ1 or all converge
to Ẽ2. Considering that Ẽ1 is repelling in the
direction of the positive vector v, we conclude that
all solutions converge to Ẽ2.

Let y(t) be any solution of (21) such that
y(0) > Ẽ1. Consider the solution of (21) with
initial condition z(0) = min{y(0), Ẽ2}. Since
z(0) ∈ [Ẽ1, Ẽ2] and z(0) > Ẽ1, we have

lim
t→+∞

z(t) = Ẽ2.
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Then using that y(0) ≥ z(0) and the monotonicity
of the system (21) we have y(t) ≥ z(t), t ≥ 0.
Therefore

lim inf
t→+∞

y(t) ≥ lim
t→+∞

z(t) = Ẽ2.

Using Theorem 2 for the auxiliary system (21)
we prove the following theorem for the original
model (1).

Theorem 3. Let conditions (28) and (29) hold.
Then, for any solution of (1) we have that if

A(0) > Ã1, F (0) > F̃1, I(0) > Ĩ1, (32)

then

lim inf
t→+∞

A(t) ≥ Ã2,

lim inf
t→+∞

F (t) ≥ F̃2,

lim inf
t→+∞

I(t) ≥ Ĩ2.

Proof: As discussed earlier, it is sufficient
to consider the subdomain, where (20) holds. Let
x(t) be a solution of (2) such that A(0), F (0),
I(0) satisfy (32) and S(0) ∈

[
Λ
β+d ,

Λ
d

]
. From (19)

it follows that S(t) ∈
[

Λ
β+d ,

Λ
d

]
for t ≥ 0. Then

the coordinates A(t), F (t), and I(t) satisfy

d

dt

A(t)
F (t)
I(t)

 =

f1(x)
f2(x)
f4(x)

 ≥ h
A(t)
F (t)
I(t)


Using that h is quasi-monotone and applying [18,
Chapter 2, Section 12.X], we obtain that the vector
function (A(t), F (t), I(t))T is bounded below by
the solution of (21) with the same initial con-
dition at t = 0. Then, Theorem 2 implies that
Ẽ2 is a lower bound for the limit inferior of
(A(t), F (t), I(t))T as t→ +∞, which proves the
theorem.

Theorem 3 shows that if the initial invasion is
sufficiently large the pathogen establishes itself at
a level above Ẽ2. We should remark that it is not
necessary to have initially all compartments A,
F and I above Ẽ1. It is sufficient that at some
future time they all exceed Ẽ1. For example, and
as it can be also expected from biological point

of view, the initial infection/infestation is brought
in the compartment F . If this initial value of F
is sufficiently large that A and I increase above
Ã1 and Ĩ1, while F is still above F̃1, the pathogen
will persist eventually at least at a level of Ẽ2.

Theorem 3 is illustrated numerically by Fig-
ure 6. The initial conditions of the solutions
in this figure were chosen specifically so that
(A0, F0, I0) ≥ Ẽ1. Clearly any solution initiated at
or above the level of Ẽ1 ≈ (4.091, 1.7241, 0.2164)
persists at a non-zero level above Ẽ2 for all
time; and in fact converges to an equilibrium of
model (1), at least for the parameter values in
Table V. We verify that the data in Table V satisfies
conditions (28)-(29) of Theorem 3. Indeed, the
left hands sides of (28) and (29) are respectively
negative and positive, so that inequalities in (28)
and (29) hold.

Theorem 3 gives only sufficient conditions for
persistence of pathogen. In Figure 7, we show that
the pathogen persist, in fact, the solutions converge
to EE2, even though the initial conditions do not
satisfy the requirements of Theorem 3.

TABLE V
PARAMETER VALUES USED IN FIGURES 6 AND 7

Parameter Value Parameter Value
Λ 0.9000 λ 1.0000
γ 23.52536 β 5.0000
σ 1.0000 ρ 0.9000
δ 0.9000 M 10.000
α 0.0010 d 0.5500

Our numerical investigations of model (1) have
revealed that in addition to the PFE which is al-
ways locally attracting, there exists an equilibrium
close to the PFE which is repelling, and an attract-
ing equilibrium which is removed from the PFE.
Although we have not proven this mathematically,
the important properties of the model, namely
extinction and persistence, have been proven under
certain conditions.

VI. THE SPATIO-TEMPORAL HOST-PATHOGEN

MODEL

The model in Section II looks only at the tem-
poral progression of an infection, and although this
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Fig. 6. Illustration of persistence of the infection as proven in Theorem 3. Observe that solutions of model (1) originating
at the level of Ẽ1 remain non-zero for all time.

approach is acceptable under certain assumptions
(such as a pathogen entering an entire field in
a uniform manner), the model can be modified
slightly to accommodate the spatial movement of
pathogens through the field.

Diffusion has been used to model spatial spread
in theoretical ecology since the latter half of
the twentieth century [9], [15], with its use for
modelling fungal growth being justified by the
“observation that tip growth occurs to fill space
and to capture nutrients” [5]. Davidson (1998) also
noted that fungal growth “is, in the main, directed
from areas of high hyphal density to areas of
low hyphal density”, and included diffusion in his
model with the warning ‘that this flux should not
be viewed as the movement of existing biomass,
but rather the propensity of new biomass to grow
away from high density areas’. We reiterate this
warning, and include diffusion to model the spatial
growth of off-host pathogen in search of new
hosts, with µ denoting the diffusion constant. Our
Host-Pathogen spatio-temporal model is defined as

follows:

∂A

∂t
= λA(γI −A)− σA+ ρFS

∂F

∂t
= −δF + σA− ρFS + µ∆F

∂S

∂t
= Λ− dS − βF

M + F
S

∂I

∂t
=

βF

M + F
S − (α+ d)I

with

A(x, 0) ≥ 0, F (x, 0) ≥ 0,

S(x, 0) ≥ 0, I(x, 0) ≥ 0,

∂F

∂x
(−L, t) = 0 =

∂F

∂x
(L, t).

(33)

If the initial condition is spatially uniform, and
taking the boundary conditions into account, then
the solution is also spatially uniform, reducing
it to a solution of the corresponding temporal
system. The properties and long-term behaviour
of the temporal model have been theoretically
proven in Section II, and this chapter devotes
itself to numerical investigation of the behaviour of
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Fig. 7. Illustration of persistence of the infection when initial conditions do not satisfy conditions (32) in Theorem 3.

solutions of system (33). Our interest is mainly in
the practically relevant case where the pathogen
is introduced in one location, and studying the
dynamics of its propagation. In order to solve
model (33) numerically, we use non-standard dis-
cretization coupled with a second order central-
space discretization [2].

A. Numerical investigations

1) Under the conditions for asymptotic stability
obtained by application of LaSalle’s Invariance
Principle: The parameter values given in Table VI
satisfy the conditions (12) which ensures the PFE
of the temporal model is globally asymptotically
stable. The details are given in Section IV. We
investigate whether the solutions of the spatio-
temporal model behave in a similar fashion, using
the diffusion constant µ = 0.01. Indeed, although
convergence occurs over a long time period, the
addition of diffusion does not result in observable
change in the asymptotic properties of the steady
state. In Figure 8, even assuming that the initial
population has free pathogen over a quarter of the
field, this does not result in the infection spreading.

TABLE VI
PARAMETER VALUES USED IN FIGURE 8

Parameter Value Parameter Value
Λ 1.0000 λ 0.4000
γ 0.2000 β 1.0000
σ 0.0100 ρ 0.4000
δ 0.1000 M 100.000
α 0.0205 d 0.1000

TABLE VII
PARAMETER VALUES USED IN FIGURE 9

Parameter Value Parameter Value
Λ 1.0000 λ 0.7000
γ 0.4000 β 1.0000
σ 0.1000 ρ 0.2000
δ 0.2000 M 100.00
α 0.0100 d 0.2000

In Figure 9, we also provide an example where
the conditions (12) are not satisfied and yet there
is convergence to PFE (see also Table VII).

2) Parameter values for persistence of the in-
fection: A monotone system, constructed to ap-
proximate the temporal host pathogen model from
below was proven to admit two interior equilibria
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Fig. 8. The time evolution of pathogen and disease through the field at different times, using the parameter values that
satisfy the conditions for stability of the PFE that were obtained by the application of LaSalle’s Invariance Principle.

Fig. 9. The parameter values in Table VII do not satisfy condition for asymptotic stability of the PFE, however convergence
to PFE is observed.

Biomath 8 (2019), 1901029, http://dx.doi.org/10.11145/j.biomath.2019.01.029 Page 14 of 17

http://dx.doi.org/10.11145/j.biomath.2019.01.029


R. Anguelov, R. Bekker, Y. Dumont, Bi-stable dynamics of a host-pathogen model

Fig. 10. When solutions of model (33) are initiated with pathogen and infectious hosts at the level of EE2, on the left
boundary, a field of completely susceptible hosts will experience a travelling infection front. This front connects EE2 and the
PFE.

in Section V, denoted Ẽ1 and Ẽ1, with Ẽ1 < Ẽ1.
Additional conditions were derived, under which
the pathogen persists. Indeed, it was found that
solutions initiated at or above Ẽ1 and satisfying
conditions (28) and (29), page 9, remain non-zero
for all t ≥ 0.

For the parameter values in Table VIII on page 15,
these conditions are satisfied. Indeed, we have

M

γσ

(
δ +

ρΛ

d

)
+

σ

γλ
− βΛ

(β + d)(α+ d)
≈ −0.4204 < 0,

∆ ≈ 0.0053 > 0.

The equilibrium, Ẽ1 of the lower approximating
system is:

Ẽ1 ≈ (4.091, 1.7241, 0.2164).

The persistence of pathogen is illustrated in Fig-
ure 10. In fact, the solutions converge to EE2,
although the stability properties of EE1 and EE2

have not been proven. How does the inclusion

of diffusion affect this phenomenon? Solutions
initiated at the level of EE2 at the boundary exhibit
a travelling infection front, the movement of which
is driven by the increase in attached pathogen and
infested hosts by the diffusion of the free pathogen
(Figure 10). This behaviour suggests a possible
control strategy: if the speed of the front can be
sufficiently decreased, a percentage of the field
would be saved from disease.

TABLE VIII
PARAMETER VALUES USED IN FIGURE 10.

Parameter Value Parameter Value
Λ 0.9000 λ 1.0000
γ 23.52536 β 5.0000
σ 1.0000 ρ 0.9000
δ 0.9000 M 10.000
α 0.0010 d 0.5500

To this end, we investigate the relationship be-
tween µ and the wave speed c. The parameter val-
ues in Table VIII were again used, and a solution
with (A0, F0, I0) taking the value of EE2 on the
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Fig. 11. The speed of the infection front for different values of µ, for solutions of model (33) initiated with levels of
inoculum and disease at the level of EE2 on the left boundary. The parameter values in Table VIII were used. Clearly the
equation c(µ) = 0.01088µ0.4189 fits the data well.

left boundary was considered. The diffusion con-
stant µ was taken to be in the interval [10−7, 10−1],
which results in c ∈ (0, 4.5 × 10−3]. An equa-
tion of the form c(µ) = aµb was fitted to the
data in Figure 11, and the fitting process reveals
a ∈ (0.010770, 0.011) and b ∈ (0.416, 0.4218)
with 95% confidence. In fact, a = 0.01088 and
b = 0.4189. Literature indicates that the value of
b should be higher, with Gilligan [8] and Metz,
Mollison and van den Bosch [13] finding the wave
speed to be proportional to the square root of
the diffusion constant; that is c ∝ √µ. Although
b < 0.5 the equation fits the data well, and
since SSE = 8.59 × 10−6 its use in making
predictions would be justified. The coefficient of
determination r2 = 0.9933 indicating that 99.33%
of the variance of the data is explained by the
equation.

VII. CONCLUSION

In this work, we have derived a Host-Pathogen
model where the PFE is always LAS and may co-

exist with endemic equilibria. We provided suffi-
cient conditions for PFE being globally asymptot-
ically stable and for persistence of the pathogen,
using two different approaches, LaSalle Invari-
ance Principle approach and monotone system ap-
proach. We show that these results can be extended
to the spatio-temporal system, where we add
diffusion in the free pathogen compartment. We
also show numerically that a bi-stable travelling
wave solution can exist between PFE and a stable
endemic equilibrium, here EE2. We show that the
speed c of this traveling wave is of the form
aµb, where µ is the diffusion parameter. Further
theoretical investigations are needed, in order to
be able to derive appropriate control strategies to
avoid invasion of the pathogen in the whole crop.
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