

Vaccination against babesiosis using recombinant GPI-anchored proteins

Sarah Nathaly Wieser, Leonhard Schnittger, Monica Florin-Christensen, Stéphane Delbecq, Theo Schetters

► To cite this version:

Sarah Nathaly Wieser, Leonhard Schnittger, Monica Florin-Christensen, Stéphane Delbecq, Theo Schetters. Vaccination against babesiosis using recombinant GPI-anchored proteins. International Journal for Parasitology, 2019, 10.1016/j.ijpara.2018.12.002. hal-01992077

HAL Id: hal-01992077 https://hal.umontpellier.fr/hal-01992077

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

- 1 Invited Review
- 2 Vaccination against babesiosis using recombinant GPI-anchored proteins
- 3
- 4 Sarah Nathaly Wieser^a, Leonhard Schnittger^a, Monica Florin-Christensen^a, Stephane
- 5 **Delbecq^b**, Theo Schetters^{b,c,*}
- 6 ^aInstitute of Veterinary Pathobiology, National Institutes of Agricultural Technology
- 7 (INTA)-National Research Council of Argentina (CONICET). Los Reseros y Nicolas
- 8 Repetto, s/n, 1686 Hurlingham, Prov. Buenos Aires, Argentina
- 9 ^bVaccination Anti-Parasitaire (VAP), University of Montpellier, France
- 10 ^cDepartment of Veterinary Tropical Diseases, Veterinary Faculty, University of Pretoria,
- 11 South Africa
- 12
- 13 *Corresponding author.
- 14 *E-mail address*: th.schetters@protactivity.com

15

16 Abstract

17 The increase in human babesiosis is of major concern to health authorities. In the USA, 18 most of these cases are due to infections with *Babesia microti*, whereas in Europe B. 19 *divergens* is the major cause of clinical disease in humans. Here we review the 20 immunological and biological literature of glycosylphosphatidylinositol (GPI)-anchored 21 merozoite proteins of human *Babesia* parasites with emphasis on their role in immunity, 22 and provide some new bioinformatical information on B. microti GPI-Anchored Proteins 23 (GPI-AP). Cattle can be vaccinated with soluble parasite antigens (SPA) of Babesia 24 divergens that are released by the parasite during proliferation. The major component in 25 SPA preparations appeared to be a 37 kDa merozoite surface protein that is anchored in the 26 merozoite membrane by a GPI anchor. Animals could be protected by vaccination with the 27 recombinant 37 kDa protein expressed in Escherichia coli, provided the protein had a hydrophobic terminal sequence. Based on this knowledge, a recombinant vaccine was 28 29 developed against Babesia canis infection in dogs, successfully. In order to identify similar 30 GPI-anchored proteins in *B. microti*, the genome was analysed. Here it is shown that *B*. microti encodes all proteins necessary for GPI assembly and its subsequent protein transfer. 31 32 In addition, in total 21 genes encoding for GPI-anchored proteins were detected, some of which reacted particularly strongly with sera from *B. microti*-infected human patients. 33 34 Reactivity of antibodies with GPI-anchored merozoite proteins appears to be dependent on the structural conformation of the molecule. It is suggested that the three-dimensional 35 structure of the protein that is anchored in the membrane is different from that of the 36 37 protein that has been shed from the merozoite surface. The significance of this protein's dynamics in parasite biology and immune evasion is discussed. Finally, we discuss 38

- 39 developments in tick and *Babesia* vaccine research, and the role such vaccines could play
- 40 in the control of human babesiosis.
- 41
- 42 *Keywords: Babesia microti; Babesia divergens;* Recombinant vaccine; GPI anchors;
- 43 Apicomplexa; Human babesiosis; Merozoite surface protein
- 44
- 45

46 **1. Introduction**

47 The incidence of clinical babesiosis in humans is increasing, which is of concern to 48 health authorities (Vannier et al., 2015). A growing number of *Babesia* spp. has been 49 associated with human infections, the majority of which are due to *Babesia microti* in the 50 United States (USA) and Babesia divergens in Europe. Importantly, it has been shown that animals can be immunised against B. divergens infection using a vaccine based on the 51 52 recombinant B. divergens antigen Bd37 (Delbecq et al., 2006). This antigen is a merozoite 53 surface protein that is anchored to the membrane by a specific structure called 54 glycosylphosphatidylinositol (GPI) anchor. It was later shown that a homologous GPI-55 anchored protein (GPI-AP) of Babesia canis successfully protected dogs against virulent 56 challenge infection (Moubri et al., 2018). This holds promise for the development of vaccines against human babesiosis. Here we review the immunological and biological 57 literature of GPI-anchored merozoite proteins of human Babesia parasites with emphasis on 58 59 their role in immunity, and provide some new bioinformatical information on B. microti 60 GPI-AP. In addition, we discuss developments in tick and Babesia vaccine research, and the role such vaccines could play in the control of human babesiosis. 61

62

63 2. Parasite antigens released during infection

Natural infection with *Babesia* parasites follows transmission by a tick bite. In order to feed successfully, ticks have developed a range of responses to counteract coagulation, inflammation and the onset of immunity (reviewed by Schetters, 2018). The environment of the biting site is anti-inflammatory, and due to the anti-coagulants that are injected with the tick saliva, there is free movement and a high density of red blood cells. Hence, at the

moment *Babesia* parasites are injected with tick saliva into a naive host, the environment at 69 70 the injection site is favourable to them. The parasite rapidly invades an erythrocyte that 71 subsequently enters the blood circulation (some parasites, however, can be taken up with 72 the blood meal of the tick). This could be enough time to activate components of the innate humoral immune systems, but is less likely to be enough time for interactions with white 73 74 blood cells. During the invasion process, however, the merozoite surface coat is shed and 75 left outside the red blood cell where it interacts with the host defence mechanisms (Igarashi 76 et al., 1988). The merozoite surface coat is a major constituent of supernatants of in vitro 77 cultures of the parasite (soluble parasite antigens; SPA), which have been shown to induce 78 protective immunity in a number of host-parasite models (Schetters and Montenegro-79 James, 1995). The molecules in SPA preparations are proteinaceous and have sugar moieties (sensitive to amylase), suggesting they are glycoproteins. Importantly, the 80 antigenicity of the SPA preparations was lost after 2-mercaptoethanol treatment, which 81 indicates that intact disulphide bonds implied in the structural organization of the molecule 82 83 are critical (reviewed in Ristic and Kakoma, 1988).

84

85

3. Development of recombinant vaccines

The fact that animals could be protected by vaccination with *Babesia* antigens from supernatants of in vitro cultures of the parasite stimulated the search for immunoprotective moieties from such preparations (Timms et al., 1983). Fractionation of the supernatants of in vitro cultures of the human *B. divergens* parasite (strain Rouen) led to the discovery of a 37 kDa protein that was recognized by sera from humans, bovines and gerbils that were infected with *B. divergens* (Bd37; Précigout et al., 1991). The protein appeared to be a

merozoite surface protein, and metabolic labelling studies indicated that it was glycosylated 92 93 and palmitoylated, indicative of a GPI-anchored surface protein (Carcy et al., 1995). After 94 incubation with GPI-specific phospholipase D, a soluble, hydrophilic form of Bd37 was 95 released from the merozoite surface in the supernatants of in vitro cultures of *B. divergens* 96 (Delbecq et al., 2002). A monoclonal antibody that was generated in mice that were 97 vaccinated with partially purified Bd37 protein, recognized the Bd37 antigen and was 98 shown to confer protection in vivo (Précigout et al., 2004). Subsequently, the Bd37 gene 99 could be cloned from an expressed sequence tag (EST) library and expressed in 100 Escherichia coli. The recombinant glutathione S-transferase (GST) fusion protein was used 101 to vaccinate gerbils. Results showed that gerbils were fully protected from a virulent B. 102 divergens challenge infection (Hadj-Kaddour et al., 2007). Importantly, where vaccination with the native Bd37 protein from culture supernatants induced immunity that was largely 103 104 strain-specific (Précigout et al., 1991), vaccination with the recombinant protein induced a broad spectrum of protection (Hadj-Kaddour et al., 2007). Additional studies suggested that 105 106 induction of broad spectrum immunity depended on the structural conformation of the 107 protein, which might be influenced by the addition of hydrophobic terminal peptide sequences to the core Bd37 protein (Delbecq et al., 2006, 2008). Using the knowledge 108 acquired from the Bd37 vaccine project, a recombinant vaccine against *B. canis* for dogs 109 110 was developed. The recombinant protein used was a 40 kDa merozoite surface protein of B. canis that has a predicted GPI-anchoring site. Vaccination of dogs with the recombinant 111 protein induced immunity against virulent challenge infection (Moubri et al., 2018). These 112 113 two examples suggest the feasibility of a more general strategy involving GPI-anchored

114 merozoite surface antigens to develop protective vaccines against other *Babesia* spp.

115 including *B. microti*.

116 Information on the degree of polymorphism of *B. microti* GPI-anchored proteins is 117 still missing. In the case of bovine *Babesia* spp., sequencing studies showed a variety of 118 scenarios from high level of strain conservation, as in the case of B. bovis merozoite surface 119 antigen 2c (MSA-2c) to a high level of polymorphism as is the case of *B. bigemina* gp45/55 120 (McElwain et al., 1991; Wilkowsky et al., 2003; Carcy et al., 2006). Interestingly, even in 121 the case of moderate polymorphism, conservation among strains at the level of 122 neutralization-sensitive B-cell epitopes has been shown (Suarez et al., 2000; Dominguez et 123 al., 2010).

124 Despite the presence of conserved neutralization-sensitive B-cell epitopes in B. 125 bovis GPI-anchored proteins, protection upon challenge using recombinant forms of some 126 of these antigens has so far been unsuccessful. It could be that, similar to the situation with Bd37 of B. divergens, addition of hydrophobic terminal peptide sequences to the core 127 128 protein induces conformational changes in the molecule, thus exposing the neutralization-129 sensitive epitopes. Clearly, similar studies and studies on delivery systems and immunomodulators that could elicit protective responses in the bovine host are much 130 needed in Babesia vaccine development (reviewed in Florin-Christensen et al., 2014). 131 132

133 4. In silico prediction of the GPI synthesis pathway of *B. microti*

GPI has been shown to be abundantly present in the membranes of apicomplexan
and kinetoplastid pathogenic protozoa such as *Plasmodium falciparum*, *Toxoplasma gondii*, *B. bovis*, *Trypanosoma brucei* and *Leishmania donovani* (Smith et al., 1997; Ferguson,

1999; Rodriguez et al., 2010). The molecule is present in free and protein-bound forms, and 137 138 is comprised of a conserved core structure and variable moieties. The core structure is 139 characterized by glucosamine linked to myo-inositol in position 1, and to the first of a chain 140 of commonly three mannose residues in position 4 (Fig. 1). Myo-inositol can be linked to 141 diacylglycerol, 1-alkyl-2-acylglycerol or ceramide, forming different kinds of inositol 142 phospholipids. In the case of GPI anchors, the last mannose residue is conjugated via 143 phosphoethanolamine to the C terminus of a protein. In addition to the different lipid 144 moieties that can be bound to myo-inositol, the latter may or may not be acylated, and the 145 number of sugar residues varies among different organisms (Ferguson et al., 2009). In B. 146 *bovis*, the most abundant free GPI molecule has a more simple structure consisting of a 147 chain of two mannose residues, N-glucosamine and a non-acylated inositol linked to 148 diacylglycerol (Rodriguez et al., 2010). Babesia bovis protein-bound GPI molecules, as 149 well as free and protein-bound GPIs of other piroplasmids, are yet to be structurally 150 characterized. 151 All enzymes necessary for the assembly of man-man-GlcN-inositol-diacylglycerol,

152 the main free GPI of B. bovis, have been identified in its in silico proteome (Rodriguez et al., 2010). To analyze if B. microti possesses the metabolic capacity to generate GPI, its 153 proteome was searched for GPI biosynthetic enzymes orthologous with those described for 154 155 P. falciparum and B. bovis (Delorenzi et al., 2002; Rodriguez et al., 2010). The results show that this parasite, which has the smallest genome among apicomplexans (Cornillot et 156 al., 2012), encodes all proteins necessary for GPI assembly and its subsequent protein 157 158 transfer (Table 1). Interestingly, the genomes of both *B. bovis* and *B. microti* encode phosphatidylinositol glycan anchor biosynthesis-W (PIG-W), the enzyme that catalyzes 159

160 acylation of myo-inositol, hence acylated inositol is likely present in the GPI molecules 161 synthesized by these parasites. The differential sensitivity of the Bd37 GPI anchor to 162 specific phospholipases C and D also indicates an acylated inositol in B. divergens 163 (Delbecq et al., 2002). The P. falciparum PIG-B orthologs, responsible for adding the third 164 mannose residue, could neither be found in the B. bovis nor in the B. microti genome. This 165 finding suggests that either all GPI molecules of these Babesia parasites include a chain of 166 two mannose residues instead of the commonly found chain of three mannoses, or that 167 another yet unknown enzyme adds a third mannose residue. It is concluded that all the 168 genes encoding for the factors necessary for GPI synthesis are predicted to be present in the 169 genome of B. microti.

170

171 5. Identification and analysis of the GPI-anchored proteome of *B. microti*

172 Proproteins, to which GPI is attached post-translationally, share the following 173 features: (i) an N-terminal signal peptide sequence targeting them to the endoplasmic 174 reticulum (ER); (ii) a C-terminal transmembrane domain for transient anchoring to the ER 175 membrane, and (iii) the GPI-attachment or omega site, where cleavage of the proprotein 176 takes place and which is located a few amino acids before the C-terminal hydrophobic 177 domain. Upon cleavage of the transmembrane domain, the protein is transferred onto a GPI 178 anchor (Ferguson et al., 2009). Prediction of these three features with bioinformatic 179 algorithms allows the in silico identification of GPI-anchored proteomes (Fig. 2), thus providing an attractive pool of antigens for vaccine and diagnostic test development. 180 181 Seventeen proteins predicted to be GPI-anchored were identified in the B. microti proteome 182 (Table 2). Most of these proteins coincide with the predictions of Cornillot et al. (2016),

183	who obtained a list of 19 predicted GPI-APs. Two of the proteins found in the present study
184	(GenBank Accession numbers XP_012647776.1 and XP_012650569.1) were not identified
185	earlier, which brings the total of predicted GPI-APs to 21.
186	Interestingly, the genes encoding two of the identified GPI-APs (BmGPI12 and
187	BmGPI13) are among the most expressed in both mice and hamsters (Silva et al., 2016).
188	Similarly, in <i>B. bovis</i> , the gene encoding GPI-anchored Merozoite Surface Antigen-1 is one
189	of the most actively transcribed in the merozoite stage (Pedroni et al., 2013), highlighting
190	the importance of GPI-APs for membrane structure and/or function.
191	Babesia microti experimentally infected mice reacted with recombinant forms of
192	several of the GPI-APs shown in Table 2 in a microarray antibody assay. Among these
193	proteins, BmGPI12 mounted particularly strong IgM and IgG antibody responses.
194	Moreover, in a pilot study, sera from <i>B. microti</i> -infected human patients showed ~35-fold
195	higher and ~16-fold higher IgG and IgM reactivity, respectively, against recombinant
196	BmGPI12 than the control non-infected group. These results indicate that BmGPI12 can be
197	considered a biomarker for <i>B. microti</i> -infections (Cornillot et al., 2016). Recently, a fully-
198	automated prototype antibody assay was developed based on recombinant BmGPI12
199	which, when applied to human samples, showed a high level of positive concordance with
200	results of <i>B. microti</i> infection diagnosis by PCR or immunofluorescence. The estimated risk
201	of human babesiosis among blood donors of tick-endemic areas is relatively elevated and
202	higher than HIV. Thus, this type of sensitive diagnostic assay can help mitigate the spread
203	of <i>B. microti</i> in affected countries (Cheng et al., 2018).
204	

205 6. Structural analysis of GPI-APs in apicomplexans: domain repertoire

206	One of the first classifications of GPI-APs in apicomplexans relies on the size of
207	these proteins. Medium-sized proteins (< 40 kDa) are generally constituted by a single
208	domain (or a duplicated small domain). In contrast, in large proteins as found in
209	Plasmodium, a multi-domain organisation is mainly found. As reviewed in Anantharaman
210	et al. (2007), for host cell invasion apicomplexan parasites use either specific protein
211	domains that are found only in apicomplexans, or conserved domains that are also found in
212	other organisms, in particular in the genome of their host. Some of these domains of
213	mammalian origin have been acquired through lateral gene transfer. Transmembrane
214	parasite proteins that are involved in host cell invasion contain a large number of domains
215	that are also found in mammals (e.g. Epidermal Growth Factor-like domain (EGF),
216	Thrombospondin type-1 Repeat domain (TSR) coagulation factors). In contrast, only a few
217	domains that are specific to apicomplexans, such as Duffy Binding Like domain (DBL) and
218	Microneme Adhesive Repeat domain (MAR; Blumenschein et al., 2007), have been
219	reported.
220	It is likely that the domain repertoires used at each parasite stage are shaped by
221	different evolutionary pressures; for instance, malaria sporozoites that invade liver cells,
222	which are structurally organized in an organ, are likely to have evolved adaptations that are
223	different from those of merozoites that invade free-moving erythrocytes. It is tempting to
224	speculate that mammalian domains are mainly involved in invasion of nucleated cells while
225	parasite-specific domains are involved in invasion of erythrocytes. In addition, the large
226	number of specific domains in parasite GPI-AP repertoires could reflect some adaptation to
227	the relatively long exposure of these parasite surface proteins to the immune system during
228	infection, in contrast to the "just-in-time" release of proteins from secretory organelles.

229	The three-dimensional (3D) structures of two GPI-anchored merozoite surface
230	molecules of <i>Babesia</i> parasites (Bd37.1 in <i>B. divergens</i> and Bc28.1 in <i>B. canis</i>) have been
231	resolved (Delbecq et al., 2008; Yang et al., 2012). Although both are involved in the
232	binding of merozoites to erythrocytes, these two proteins bear no structural relationship
233	with each other nor with other known GPI-AP structures in parasites. The immunological
234	epitopes at the surface of Bd37.1 are highly clustered at one side of the proteins and at the
235	unstructured parts, leaving one side of the proteins without detectable antibody-binding
236	regions (Delbecq et al., 2008). A 3D structural analysis of Bd37.1 suggests that the protein
237	can adopt different conformations which could be involved in immune escape (Delbecq et
238	al., 2008). In contrast, the Bc28.1 protein appears to be stably structured around a single
239	core, which is not likely to allow drastic conformational changes (Yang et al., 2012).
240	Nevertheless, an unusually long α -helix in the C-terminal position suggests a large degree
241	of freedom in protein dynamics at the merozoite surface. Both Bd37.1 and Bc28.1 contain
242	additional unstructured parts and positively charged patches, but the significance of these
243	features is not known.

244

7. Soluble form of proteins: functions and the notion of membrane context

One of the intriguing features of apicomplexan GPI-APs is the fact that they can be released from the parasite cell surface. As a result, these proteins can be found in the plasma of infected animals and in the supernatants of in vitro cultures of the parasite. This shedding could result from cleavage by a phospholipase, but for most known GPI-APs the exact mechanisms have not been determined. Since GPI-APs can be recognized by effector

251	molecules of the host immune system, shedding allows parasites to escape immune
252	destruction. The fate and role of shed GPI-APs themselves in the host-parasite relationship
253	is not known. It has been suggested that the glycan part of the GPI anchor interacts with
254	host defence mechanisms, which could play a role in pathogenesis (Debierre-Grockiego
255	and Schwartz, 2010). Indeed, in B. canis-infected dogs, fever was positively correlated with
256	the level of SPA in plasma (Schetters et al., 2009). The fact that vaccination with
257	supernatants of in vitro cultures of B. canis could protect dogs from clinical disease without
258	an effect on the parasitaemia but on the level of SPA in plasma supports this view
259	(Schetters et al., 1996).
260	Results from Babesia Bd37.1 and Theileria PIM proteins suggest that the cleaved,
261	soluble forms of the GPI proteins have different binding characteristics compared with their
262	membrane-bound counterparts (Casanova et al., 2006). It is suggested here that the location
263	of the GPI protein in the context of the parasite plasma membrane (referred to as
264	'membrane context') affects the conformation, orientation and association with other
265	molecules, as has been described for PrP, a GPI-AP prion protein found in mammals
266	(Mahal et al., 2012). Coexistence of multiple conformations of a protein has been
267	associated with enzyme allostery and was suggested to occur in antibodies (reviewed in
268	James and Tawfik, 2003). Such structural dynamics could be crucial for parasite survival.
269	First, if the soluble form of the protein were structurally similar to the membrane-bound
270	form that is used to enter the host cell, it would compete for the host cell receptor (Fig. 3).
271	Hence, switching to the alternative conformation would prevent the soluble protein from
272	binding to the host cell receptor, thus allowing the parasites to bind to and enter the host
273	cell. A second advantage of structural dynamics could be related to evasion of the immune

response. For instance, if the cleaved protein had a conformation similar to the protein in 274 275 the membrane context, then antibodies against the soluble protein would also recognize the 276 protein at the parasite surface. This could then lead to, e.g., blocking of binding to the host 277 cell receptor, or destruction of the parasite by immune phagocytosis and/or lysis through 278 complement activation. Hence, it would be advantageous if the soluble protein would 279 change its structural conformation and prevent the generation of antibodies that reacted 280 with the membrane-bound form of the protein. This is supported by results from the B. 281 canis-dog model; dogs that were vaccinated with SPA from in vitro cultures were protected 282 against disease after a virulent *B. canis* infection without affecting the parasite proliferation 283 (Schetters et al., 1996). Protection was associated with the presence of antibodies against a 284 39 kDa antigen, which appeared to be the soluble hydrophilic form of a 40 kDa merozoite 285 surface membrane protein (Moubri et al., 2018). Apparently, antibodies against the soluble 286 protein did not negatively affect parasite proliferation. In contrast, vaccination with the 287 recombinant hydrophobic 40 kDa protein induced antibodies that reacted with the 40 kDa 288 merozoite surface protein. When the dogs were challenged, protection was reflected in a 289 strong anti-parasite response (Moubri et al., 2018).

This model is further corroborated by the analysis of the recombinant Bd37.1-based vaccine against *B. divergens*. Using this vaccine, an efficient immune response was obtained only with hydrophobic recombinant antigens, but not with the hydrophilic versions of the recombinant Bd37.1, although similar levels of antibody were induced (Delbecq et al., 2006). Protection was reflected in a strong anti-parasite response. These results suggest that the hydrophobic protein exhibits parasite epitopes that are also expressed in GPI-AP in the membrane context. As a result the immune response is directed

297	against the merozoite. Similar epitopes appear to not be present on the hydrophilic version
298	of the Bd37.1 protein. Importantly, vaccination with the hydrophobic recombinant Bd37.1
299	protein induced protection against heterologous infection, which indicates that the
300	hydrophobic protein expresses epitopes are present in a wide range of genetically different
301	B. divergens strains. In contrast, vaccination with the native soluble (hydrophilic) form of
302	Bd37 from supernatants of in vitro cultures induced immunity that was highly strain-
303	dependent (Précigout et al., 2004).

304

305 8. Outlook

306 Control of babesiosis in animals comprises a number of measures, which depend on 307 the host species. In production animals, tick control by acaricide treatment and vaccination 308 of animals with live attenuated *Babesia* vaccines is practised in countries with high parasite 309 prevalence. With increasing acaricide resistance, tick control by vaccination appears to 310 become an important additional tool (Schetters, 2018). It has the added advantage that there 311 is no withdrawal period for meat or milk. With the advent of effective recombinant Babesia 312 vaccines, live-attenuated vaccines will eventually be replaced. In canine babesiosis, vaccination with subunit vaccines has been practised (Schetters and Montenegro-James, 313 1995). With the discovery of a recombinant *Babesia* antigen that induces protection against 314 315 experimental infection in dogs, it is expected that vaccines with recombinant antigens will 316 become commercially available (Moubri et al., 2018). 317 The GPI-anchored *Babesia* proteins that are located at the merozoite surface appear 318 attractive vaccine candidate antigens, despite the fact that many of them are polymorphic in

319 nature. The results obtained with recombinant forms of GPI-APs suggest that the 3D

structure of the protein influences the expression and/or immunodominance of epitopes that
are common on geographically different *Babesia* strains. Results further indicated that
increased relative hydrophobicity is crucial for the induction of protective immunity that
transcends strain variation. Although this seems to apply to *B. divergens* and *B. canis*, it
remains to be determined whether this also applies to other *Babesia* spp. including *B. microti*.

326 Although the incidence of *Babesia* infection in humans is increasing, it is not likely 327 that a vaccine against human *Babesia* parasites, or against the ticks that transmit the 328 parasites, will be developed and introduced at a large scale in the human population. It 329 could be envisaged, however, that a vaccine is used to protect humans who are particularly 330 vulnerable to infection such as elderly or immunocompromised subjects. In addition, 331 healthy subjects who have a high chance of becoming infected, such as foresters who work 332 in highly endemic areas, could benefit from vaccination. Until that time, hygienic measures 333 e.g. wearing protective clothing that may be impregnated with an acaricide, visual 334 inspection and removal of ticks after visiting a potentially tick-infested area, and 335 chemotherapeutic treatment of *Babesia* infection remain the methods of control. 336

337 Acknowledgements

This work was funded by Merck Sharp and Dohme-Animal Health (MSD-AH), the
Netherlands and Instituto Nacional de Tecnología Agropecuaria (INTA; PNBIO 1131034),
Argentina.

341

References

343	Anantharaman, V., Iyer, L.M., Balaji, S., Aravind, L., 2007. Adhesion Molecules and
344	Other Secreted Host-Interaction Determinants in Apicomplexa: Insights from
345	Comparative Genomics. Int Rev Cytol 262, 1-74.
346	Blumenschein, T.M.A., Friedrich, N., Childs, R.A., Saouros, S., Carpenter, E.P.,
347	Campanero-Rhodes, M.A., Simpson, P., Chai, W., Koutroukides, T., Blackman,
348	M.J., Feizi, T., Soldati-Favre, D., Matthews, S., 2007. Atomic resolution insight
349	into host cell recognition by Toxoplasma gondii. EMBO J 26, 2808-2820.
350	Carcy, B., Précigout, E., Valentin, A., Gorenflot, A., Schrevel, J., 1995. A 37-kilodalton
351	glycoprotein of Babesia divergens is a major component of a protective fraction
352	containing low-molecular-mass culture-derived exoantigens. Infect Immun 63, 811-
353	817.
354	Carcy, B., Précigout, E., Schetters, T., Gorenflot, A., 2006. Genetic basis for GPI-anchor
355	merozoite surface antigen polymorphism of Babesia and resulting antigenic
356	diversity. Vet Parasitol 138, 33-49.
357	Casanova, C.L., Xue, G., Taracha, E.L., Dobbelaere, D.A., 2006. Post-translational signal
358	peptide cleavage controls differential epitope recognition in the QP-rich domain of
359	recombinant Theileria parva PIM. Mol Biochem Parasitol 149, 144-154.
360	Cheng, K., Coller, K.E., Marohnic, C.C., Pfeiffer, Z.A., Fino, J.R., Elsing, R.R., Bergsma,
361	J., Marcinkus, M.A., Kar, A.K., Gumbs, O.H., Otis, K.S., Fishpaugh, J., Schultz,
362	P.W., Pope, M.R., Narvaez, A.R., Wong, S.J., Madison-Antenucci, S., Leary, T.P.,

363	Dawson, G.J., 2018. Performance evaluation of a prototype Architect antibody
364	assay for Babesia microti. J Clin Microbiol 56, 1-11 doi: 10.1128/JCM.00460-18.
365	Cornillot, E., Hadj-Kaddour, K., Dassouli, A., Noel, B., Ranwez, V., Vacherie, B.,
366	Augagneur, Y., Brès, V., Duclos, A., Randazzo, S., 2012. Sequencing of the
367	smallest Apicomplexan genome from the human pathogen Babesia microti. Nucleic
368	Acids Res 40, 9102-9114.
369	Cornillot, E., Dassouli, A., Pachikara, N., Lawres, L., Renard, I., Francois, C., Randazzo,
370	S., Brès, V., Garg, A., Brancato, J., Pazzi, J.E., Pablo, J., Hung, C., Teng, A.,
371	Shandling, A.D., Huynh, V.T., Krause, P.J., Lepore, T., Delbecq, S., Hermanson,
372	G., Liang, X., Williams, S., Molina, D.M., Ben Mamoun, C., 2016. A targeted
373	immunomic approach identifies diagnostic antigens in the human pathogen Babesia
374	microti. Transfusion 56, 2085-2099.
375	Debierre-Grockiego, F., Schwarz, R.T., 2010. Immunological reactions in response to
376	apicomplexan glycosylphosphatidylinositols. Glycobiology 20, 801-811.
377	Delbecq, S., Précigout, E., Vallet, A., Schetters, Th., Gorenflot, A., 2002. Babesia
378	divergens: Cloning and biochemical characterisation of Bd37. Parasitology 125,
379	305-212.
380	Delbecq, S., Hadj-Kaddour, K., Randazzo, S., Kleuskens, J., Schetters, T.P.M., Gorenflot,
381	A., Précigout, E., 2006. Hydrophobic moieties in recombinant proteins are crucial to
382	generate efficient saponin-based vaccine against Apicomplexan Babesia divergens.
383	Vaccine 24, 613-621.

384	Delbecq, S., Auguin, D., Yang, Y-S., Lőhr, F., Arold, S., Schetters, Th., Précigout, E.,
385	Gorenflot, A.,. Roumestand, C., 2008. The solution structure of the adhesion protein
386	Bd37 from Babesia divergens reveals structural homology with eukaryotic proteins
387	involved in membrane trafficking. J Mol Biol 375, 409-424.
388	Delorenzi, M., Sexton, A., Shams-Eldin, H., Schwarz, R.T., Speed, T., Schofield, L., 2002.
389	Genes for glycosylphosphatidylinositol toxin biosynthesis in Plasmodium
390	falciparum. Infect Immun 70, 4510-4522.
391	Dominguez, M., Echaide, I., Echaide, S.T., Mosqueda, J., Cetrá, B., Suarez, C.E., Florin-
392	Christensen, M., 2010. In silico predicted conserved B-cell epitopes in the
393	merozoite surface antigen-2 family of <i>B. bovis</i> are neutralization sensitive. Vet
394	Parasitol 167, 216-26.
395	Ferguson, M.A., 1999. The structure, biosynthesis and functions of
396	glycosylphosphatidylinositol anchors, and the contributions of trypanosome
397	research. J Cell Sci 112, 2799-2809.
398	Ferguson, M., Kinoshita, T., Hart, G., 2009. Essentials of glycobiology. Cold Spring
399	Harbor Lab Press, Cold Spring Harbor, NY, USA.
400	Florin-Christensen, M., Suarez, C.E., Rodriguez, A.E., Flores, D.A., Schnittger, L., 2014.
401	Vaccines against bovine babesiosis: where we are now and possible roads ahead.
402	Parasitology 141, 563–1592.
403	Hadj-Kaddour, K., Carcy, B., Vallet, A., Randazzo, S., Delbecq, S., Kleuskens, J.,
404	Schetters, T., Gorenflot, A., Précigout, E., 2007. Recombinant protein Bd37

405	protected gerbils against heterologous challenges with isolates of Babesia divergens
406	polymorphic for the bd37 gene. Parasitology 134, 187-196.
407	Igarashi, I., Aikawa, M., Kreier, J.P., 1988. Host cell-parasite interactions in babesiosis. In:
408	Ristic, M. (ed.) Babesiosis of Domestic Animals and Man. CRC Press, Boca Raton
409	(FL), USA, pp 53-69.
410	James, L.C., Tawfik, D.S., 2003. Conformational diversity and protein evolution – a 60-
411	year-old hypothesis revisited. Trends Biochem Sci 28, 361-368.
412	Mahal, S.P., Jablonski, J., Suponitsky-Kroyter, I., Oelschlegel, A.M., Herva, M.E.,
413	Oldstone, M., Weissmann, C., 2012. Propagation of RML Prions in Mice
414	Expressing PrP Devoid of GPI Anchor Leads to Formation of a Novel, Stable Prion
415	Strain. PLOS Path 8, DOI:10.1371/journal.ppat.1002746
416	McElwain, T.F., Perryman, L.E., Musoke, A.J., McGuire, T.C., 1991. Molecular
417	characterization and immunogenicity of neutralization-sensitive Babesia bigemina
418	merozoite surface proteins. Mol Biochem Parasitol 47, 213-22.
419	Moubri, K., Kleuskens, J., Van de Crommert, J., Scholtes, N., Van Kasteren, T., Delbecq,
420	S., Carcy, B., Précigout, E., Gorenflot, A., Schetters, T., 2018. Discovery of a
421	recombinant Babesia canis supernatant antigen that protects dogs against virulent
422	challenge infection. Vet Parasitol 249, 21-29.
423	Pedroni, M.J., Sondgeroth, K.S., Gallego-Lopez, G.M., Echaide, I., Lau, A.O., 2013.
424	Comparative transcriptome analysis of geographically distinct virulent and

425	attenuated Babesia bovis strains reveals similar gene expression changes through
426	attenuation. BMC Genomics 14, 763.

427	Précigout, E., Gorenflot, A., Valentin, A., Bissuel, G., Carcy, B., Brasseur, P., Moreau, Y.,
428	Schrevel, J., 1991. Analysis of immune responses of different hosts to Babesia
429	divergens isolates from different geographic areas and capacity of culture-derived
430	exoantigens to induce efficient cross-protection. Infect Immun 59, 2799-2805.
431	Precigout, E., Delbecq, S., Vallet, A., Carcy, B., Camillieri, S., Hadj-Kaddour, K.,
432	Kleuskens, K., Schetters, T., Gorenflot, A., 2004. Association between sequence
433	polymorphism in an epitope of Babesia divergens Bd37 exoantigen and protection
434	induced by passive transfer. Int J Parasitol 34, 585-593.
435	Ristic, M., Kakoma, I., 1988. Exoantigens of Babesia. In: Ristic, M. (ed.) Babesiosis of
436	Domestic Animals and Man. CRC Press, Boca Raton (FL), USA, pp 131-141.
437	Rodríguez, A.E., Couto, A., Echaide, I., Schnittger, L., Florin-Christensen, M., 2010.
438	Babesia bovis contains an abundant parasite-specific protein-free
439	glycerophosphatidylinositol and the genes predicted for its assembly. Vet Parasitol
440	167, 227-235.
441	Schetters, Th.P.M., 2018. Vaccination against ticks. In: Meng, C.Q., Sluder, A.E. (eds.)
442	Ectoparasites: Drug Discovery against Moving Targets. Wiley-VCH Verlag GmbH,
443	Weinheim, Germany, pp 25-42.
444	Schetters, Th., Montenegro-James, S., 1995. Vaccines against babesiosis using soluble
445	parasite antigens. Parasitol Today 11, 456-462.

446	Schetters, Th. P.M., Scholtes, N.C., Kleuskens, J.A.G.M., Bos, H.J., 1996. Not peripheral
447	parasitaemia but the level of soluble parasite antigen in plasma correlates with
448	vaccine efficacy against Babesia canis. Parasite Immunol18, 1-6.
449	Schetters, Th.P.M., Kleuskens, J., Van De Crommert, J., De Leeuw, P., Finizio, AL.,
450	Gorenflot, A., 2009. Systemic inflammatory responses in dogs experimentally
451	infected with Babesia canis: a haematological study. Vet Parasitol 162, 7-15
452	Silva, J.C., Cornillot, E., McCracken, C., Usmani-Brown, S., Dwivedi, A., Ifeonu, O.O.,
453	Crabtree, J., Gotia, H.T., Virji, A.Z., Reynes, C., 2016. Genome-wide diversity and
454	gene expression profiling of Babesia microti isolates identify polymorphic genes
455	that mediate host-pathogen interactions. Sci Rep 6, 35284.
456	Smith, T.K., Sharma, D.K., Crossman, A., Dix, A., Brimacombe, J.S., Ferguson, M.A.,
457	1997. Parasite and mammalian GPI biosynthetic pathways can be distinguished
458	using synthetic substrate analogues. EMBO J 16, 6667-6675.
459	Suarez, C.E., Florin-Christensen, M., Hines, S.A., Palmer, G.H., Brown, W.C., McElwain,
460	T.F., 2000. Characterization of allelic variation in the Babesia bovis merozoite
461	surface antigen 1 (MSA-1) locus and identification of a cross-reactive inhibition-
462	sensitive MSA-1 epitope. Infect Immun 68, 6865-70.
463	Timms, P., Dalgliesh, R.J., Barry, D.N., Dimmock, C.K., Rodwell, B.J., 1983. Babesia
464	bovis: comparison of culture-derived parasites, non-living antigen and conventional
465	vaccine in the protection of cattle against heterologous challenge. Aust Vet J 60, 75-
466	77.

467	Vannier, E.G., Diuk-Wasser, M.A., Ben Mamoun, C., Krause, P.J., 2015. Babesiosis. Infect
468	Dis Clin North America 29, 357-70.
469	Wilkowsky, S.E., Farber, M., Echaide, I., Torioni de Echaide, S., Zamorano, P.I.,
470	Dominguez, M., Suarez, C.E., Florin-Christensen, M., 2003. Babesia bovis
471	merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-
472	cell epitopes that elicit neutralization-sensitive antibodies in cattle. Mol Biochem
473	Parasitol 127,133-41.
474	Yang, YS., Murciano, B., Moubri, K., Cibrelus, P., Schetters, T., Gorenflot, A., Delbecq,
475	S., Roumestand, C., 2012. Structural and functional characterization of Bc28.1,
476	major erythrocyte-binding protein from Babesia canis merozoite surface. J Biochem
477	287, 9495-9508.

478

479 Figure legends

480

481	Fig. 1. Biosynthetic pathway of <i>Babesia microti</i> glycosylphosphatidylinositol (GPI). The
482	biosynthesis starts at the cytoplasmic side of the endoplasmic reticulum (ER) and continues
483	in the ER lumen. The first Uridine diphosphate-N-acetylglucosamine (UDP-GlcNac) is
484	linked to a phosphatidylinositol (PI) molecule by a complex formed by the enzymes PIG
485	(PI glycan anchor biosynthesis)-A and GPI-1 (step 1). Then, the N-acetyl group is removed
486	by PIG-L (step 2) and the GlcPI is translocated to the ER lumen by an uncharacterized
487	flippase (step 3). A fatty acid is added to the PI inositol ring by PIG-W, forming GlcN-acyl-
488	PI (step 4). Two mannose (Man) molecules are sequentially added to GlcN-acyl-PI
489	catalyzed by PIG-M and PIG-V (steps 6 and 7). The mannose donor substrate is dolichol-
490	phosphate-mannose, synthesized from dolichol-phosphate (Dol-P) and GDP-mannose by
491	DPM1 (Dolichol-phosphate mannosyltransferase 1) at the cytoplasmic side of the ER (step
492	5), and transported across the ER membrane. When the GPI is destined to function as an
493	anchor, ethanolamine-phosphate is added by PIG-O, and finally, a protein is translocated to
494	the GPI molecule by the GPI anchor attachment 1 protein (GAA1) and GPI-8 complex (not
495	shown).

496

Fig. 2. Strategy for the identification of glycosylphosphatidylinositol (GPI)-anchored
proteins in *Babesia microti*. The proteome of *B. microti* was scanned with SignalP to
identify the secretome, i.e. signal peptide-containing proteins. Then, the presence of a

500 transmembrane helix in the C-terminus was detected by five programs: TO["]PCONs,

501 DASTMfilter, TMHMM, HMMTOP and Constrained Consensus TOPology server. The

resulting protein list was scanned with four GPI predictor programs: GPI-SOM, big-PI

503 (Protozoa), big-PI (Plants) and PredGPI. Proteins detected by at least two of these programs

are shortlisted in Table 2.

505

506

Fig. 3. Immunobiological interactions of glycosylphosphatidylinositol (GPI)-anchored 507 proteins (GPI-AP) from Babesia merozoites. GPI-AP are relatively abundant due to 508 differential expression and differential shedding of the anchor. The potential heterogeneity 509 in the osidic anchor could affect shedding, packing and orientation (1). GPI-AP interact 510 with the host cell surface for penetration. The membrane vicinity induces electrostatic 511 perturbation and stimulates conformational changes, which affect packing and orientation 512 513 of GPI-AP that could increase avidity for the host cell (2). Soluble GPI-AP could 514 potentially stick to the host cell surface, with low affinity (3) and bind to antibodies (4). Membrane-bound GPI-AP could be recognized by specific antibodies (5). It is thought that 515 516 immune protection/escape relies on the equilibrium between these two interactions (4 and 517 5). A continuous release of GPI-AP during the active penetration of the cell (shedding) or 518 by enzymatic cleavage of the anchor (by lipase or protease) from plasma membrane could 519 overwhelm the antibody production (6).

Enzymatic activity	Protein name	GenBank Accession number	GenBank annotation				
Glycosyltransferase	Glycosyltransferase PIG-A		Phosphatidylinositol glycan, class A				
	GPI-1 or	XP_021338686.1	Phosphatidylinositol glycan, class Q				
	PIGQ						
de-N-acetylase	PIG-L	XP_021337725.1	N-acetylglucosaminyl				
			phosphatidyl				
			inositol deacetylase				
Flippase	Nd	Nd	Nd				
Acyltransferase	yltransferase PIG-W		Multiple TM. Not a GPI protein				
Dol-P-Man synthase	Dol-P-Man synthase DPM-1		Dolichol-phosphate mannosyltransferase;				
			DPM1				
Mannosyltransferase MT-I PIG-M		XP_021338330.1	phosphatidylinositol glycan, class M				

Table 1. Identification of *Babesia microti* proteins predicted to participate in the synthesis of glycosylphosphatidylinositol (GPI)

 anchors and the attachment of GPI anchors to nascent proteins.

Mannosyltransferase MT-II	PIG-V	XP_012650107.1	Conserved protein, unknown function
Etanolamine-P transferase	PIG-O	XP_021338017.1	phosphatidylinositol glycan, class O
Transamidase	GAA1	XP_021337605	glycosylphosphatidylinositol anchor attachment
			1 protein
	GPI-8	XP_012650207.2	GPI-anchor transamidase

Nd, not determined

No	GenBank ID	GenBank Annotation	SignalP	GPIsom	PredGPI	BigPI	C-term	Length	Exons	Domains	B. microti-
								(aa)			specific
1	XP_021337223	BmGPI15, Sexual	+	+	HP	+	+	1024	1	None	Yes
		stage antigen, Pfam									
		s48/45									
2	XP_012647442 ^a	BmGPI5, Sexual	+	+	HP	+	+	881	1	6-Cys	No
		stage antigen, Pfam								PS51701	
		s48/45									
3	XP_012648325 ^a	BmGPI8, Sexual	+	+	HP	+	+	924	1	6-Cys	No
		stage antigen, Pfam								PS51701	
		s48/45									
4	XP_012647158	BmGPI1, B. microti-	+	+	HP	+	+	798	1	None	Yes
		specific									
5	XP_012647167 ^b	BmGPI4, B. microti-	+	+	HP	+	+	648	1	GmlU	No
		specific, 24 tandem								TIGR01173	

Table 2. Identification and description of glycosylphosphatidylinositol (GPI)-anchored proteins of *Babesia microti*.

repeat, IPR011004

6	XP_012648768	BmGPI13,	В.	+	+	HP	+	+	319	1	IG_MHC	Yes
		microti-specifi	с								PS00290	
7	XP_012649764	BmGPI18,	acid	+	+	WP	+	+	380	4	GAP	No
		phosphatase									PTZ00422	
8	XP_021338453 ^c	BmGPI11,		weak	+	HP	0	+	298	8	MOLO-1	No
		Conserved p	protein,								Pfam 17175	
		unknown funct	tion									
9	XP_021338712	BmGPI17,		+	+	HP	0	+	456	2	None	No
		Conserved p	protein,									
		unknown funct	tion									
10	XP_012648767 ^d	BmGPI12,	BMN1	+	+	HP	0	+	328	1	None	Yes
		family, BN	MN1-9,									
		BmSA1 orthol	ogue									
11	XP_012649179	BmGPI16,		+	+	HP	0	+	437	1	None	Yes
		Chemotaxis do	omain									
12	XP_012648610 ^d	BmGPI10,	BMN1	+	+	HP	0	+	304	1	None	Yes

		family, N1-21a									
		orthologue									
13	XP_012647166 ^b	BmGPI3, B. microti-	+	+	HP	0	+	530	1	None	Yes
		specific									
14	XP_021338061 ^c	BmGPI6, Conserved	+	+	Р	0	+	252	8	MOLO-1	No
		protein, unknown								Pfam17175	
		function									
15	XP_012647776 ^d	BMN1 family	+	+	Р	0	+	194	2	None	Yes
16	XP_012650569 ^d	BMN1 family	+	+	Р	0	+	280	2	None	Yes
17	XP_012648607 ^d	BmGPI9, BMN1	+	+	WP	0	+	281	1	None	Yes
		family									

Proteins positively predicted with at least two GPI-anchor prediction programs, with a signal peptide and a C-terminal transmembrane domain, and a mature protein predicted as hydrophilic are included in decreasing order, according to the strength of their GPI-anchor prediction. A plus sign (+) and 0 show positive and no prediction, respectively, using the default parameters of each program. HP, P and WP

correspond to prediction with high, medium or low probability, respectively. In the case of XP_021338453, prediction of a signal peptide is considered weak, since a signal peptide was not predicted with the default parameters of the program, but could be detected with a lower cutoff value. Proteins with the same superindex are paralogs. Proteins not predicted as GPI-anchored in the analysis of Cornillot et al. (2016) are in bold. Domains: 6-Cys: 6-cysteine domain; IG-MHC: Immunoglobulins and major histocompatibility complex proteins signature; GAP: glideosome-associated protein 50; MOLO-1: Modulator of levamisole receptor-1; GmlU: UDP-N-acetylglucosamine diphosphorylase/glucosamine-1-phosphate N-acetyltransferase.

aa, amino acid

