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ABSTRACT

A range of indicators have been proposed for

identifying the elevated risk of critical transitions in

ecosystems. Most indicators are based on the idea

that critical slowing down can be inferred from

changes in statistical properties of natural fluctua-

tions and spatial patterns. However, identifying

these signals in nature has remained challenging.

An alternative approach is to infer changes in re-

silience from differences in standardized experi-

mental perturbations. However, system-wide

experimental perturbations are rarely feasible. Here

we evaluate the potential to infer the risk of large-

scale systemic transitions from local experimental

or natural perturbations. We use models of spatially

explicit landscapes to illustrate how recovery rates

upon small-scale perturbations decrease as an

ecosystem approaches a tipping point for a large-

scale collapse. We show that the recovery trajectory

depends on: (1) the resilience of the ecosystem at

large scale, (2) the dispersal rate of organisms, and

(3) the scale of the perturbation. In addition, we

show that recovery of natural disturbances in a

heterogeneous environment can potentially func-

tion as an indicator of resilience of a large-scale

ecosystem. Our analyses reveal fundamental dif-

ferences between large-scale weak and local-scale

strong perturbations, leading to an overview of

opportunities and limitations of the use of local

disturbance-recovery experiments.

Key words: resilience; critical transition; recovery

rate; alternative states; catastrophic shift; pulse

experiment; landscape ecology.

INTRODUCTION

The idea that we might detect loss of resilience as

an early-warning signal for critical transitions in

ecological systems has attracted much attention

(Scheffer and others 2012; Dakos and others 2015).

It can be mathematically shown that close to a

broad class of tipping points (namely zero-eigen-

value bifurcations) systems become slower in

recovering from small perturbations (Wissel 1984;

Strogatz 1994). A straightforward consequence of
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this ‘critical slowing down’ is that, if we can mea-

sure the time it takes for a system to return to its

original state after a small disturbance, we may

indicate the proximity of the system to a catas-

trophic shift (van Nes and Scheffer 2007). A range

of indicators has been proposed that may reflect

such slowing down in natural fluctuations or in

spatial patterns (Scheffer and others 2012; Dakos

and others 2015). In particular, rising temporal

autocorrelation and variance have received much

attention as indicators of loss of resilience before a

transition. For instance, variance of phosphorus

concentration in a lake is predicted to increase as

conditions reach a threshold at which the lake

shifts from an oligotrophic to a eutrophic state

(Carpenter and Brock 2006). Similarly, temporal

autocorrelation in vegetation biomass may rise

before the ecosystem collapses to a desert state due

to overgrazing (Dakos and others 2011). Other

proposed indicators of resilience include increasing

spatial correlation (Dakos and others 2010),

increasing skewness (Guttal and Jayaprakash

2008), changing frequency spectra (Kleinen and

others 2003), deviations in pattern formation (Ri-

etkerk and others 2004), and truncated power law

distributions (Kéfi and others 2007).

In theory, these indicators may well signal a

nearby tipping point. However, detecting them in

practice remains difficult. Timely and robust iden-

tification of resilience indicators requires long, high-

resolution records with lowmeasurement error that

are simply unavailable in most ecological systems.

Thus, it is not surprising that the best reported cases

for detecting shifts come from controlled experi-

ments in the lab where short-lived and easy-to-

monitor single species populations are used (Drake

and Griffen 2010; Dai and others 2012, 2013; Ver-

aart and others 2012). The only ecological study that

identified indicators of reduced resilience before a

catastrophic shift in the field is a lake trophic cascade

experiment that relied on the exceptional case of

comparing dynamics between a manipulated and a

control lake (Carpenter and others 2011).

Part of the difficulty stems from the fact that the

proposed indicators are mostly indirect measures of

critical slowing down. Such proxies have a number

of issues that ultimately limit their potential to

unequivocally detect whether critical slowing

down is at play (Brock and Carpenter 2010; Dakos

and others 2012, 2015). For instance, strong envi-

ronmental stochasticity could muffle any rising

pattern in variance caused by critical slowing

down. False-positive trends in both variance and

autocorrelation might be driven by changes in the

pattern of environmental fluctuations rather than

by the proximity to a nearby transition (Dakos and

others 2015). Overall, the most reliable way to

identify critical slowing down is to directly measure

the time (or alternatively rate) it takes for a system

to recover after a small experimental disturbance

(van Nes and Scheffer 2007).

In its simplest form, one applies a homogeneous

(system-wide), weak perturbation (for example, by

removing 5% of the biomass) and measures the

time it takes to recover to the pre-disturbance state.

However, most ecosystems are ‘spatially extended,’

in the sense that the size of the landscape is large

compared to the scale at which important processes

and interactions are acting. Examples of spatially

extended ecosystems with critical transitions be-

tween alternative stable states include kelp forests

(Konar and Estes 2003), coral reefs (McManus and

Polsenberg 2004; Elmhirst and others 2009), semi-

arid vegetation (Rietkerk and van De Koppel 1997),

mud-flats (van de Koppel and others 2001), and

lake vegetation in large lakes (Scheffer 1998).

Homogeneous (system-wide) disturbance experi-

mentation could be problematic in practice, either

due to cost and management restrictions (for

example, protected habitats), or because experi-

ments are simply impossible to perform on the scale

of the entire ecosystem. For instance, one simply

cannot remove a certain percentage of coral cover

on an entire reef to measure its recovery. In addi-

tion, the effects of a weak disturbance might be

difficult to measure in a naturally stochastic envi-

ronment, while a too strong system-wide pulse

experiment might ‘accidentally’ push the ecosys-

tem to an undesirable state. Thus, such large-scale

approaches do not always belong to the fail-safe

experimentation that would be appropriate for

measuring resilience (Holling and Meffe 1996).

In practice, it will be more feasible to perform a

strong local perturbation, for instance by removing

all vegetation in a small area in the middle of a

vegetated area. This perturbation type is different

from a system-wide perturbation, since spatial

interactions and dispersal play a role in the recov-

ery. Here, we study whether recovery rate from

strong but local disturbances in spatially extended

ecosystems can be used to infer system-level prox-

imity to a tipping point. We show that both in

continuous landscapes (for example, a single large

lake or forest) and in patchy landscapes (for

example, a set of connected ponds or forest pat-

ches) recovery rates upon local disturbances could

reflect the proximity to a threshold for system-wide

collapse. Nonetheless, we find that their perfor-

mance crucially depends on the dispersal rate of

organisms and the scale of perturbations.
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METHODS

Model

To test whether recovery time upon strong local

perturbations can, theoretically, be used as an

indicator for loss of resilience in large-scale

ecosystems, we adapted a harvesting model with

alternative stable states (Noy-Meir 1975) to make it

spatially explicit. The basic model describes the

logistic growth of a resource N that is harvested

following a sigmoidal functional response. This

model has been extensively used to study overex-

ploitation (May 1977) and the collapse of over-

grazed semi-arid vegetation (Noy-Meir 1975). For a

range of parameters, resource biomass can be in

two alternative states: a high biomass (underex-

ploited) state and a low biomass (overexploited)

state. Growth rate of resource N is given by equa-

tion 1:

f ðNÞ ¼ rN 1� N

K

� �
� c

N2

N2 þ H2
ð1Þ

in which r (1 day-1) is the local maximum growth

rate of resource N (in g m-2), K (10 g m-2) is the

local carrying capacity of resource N, c (ranging

from 1.8–2.8 g m-2 day-1) is the maximum har-

vest rate, and H (1 g m-2) is the half saturation of

the functional response of harvesting. An increase

in harvest rate c (stress driver) leads to a decrease in

stability of the underexploited, high biomass state

and eventually pushes the system to the overex-

ploited, low biomass equilibrium state.

We considered two representative spatially ex-

tended ecosystems: a ‘continuous landscape’ and a

‘patchy landscape’ (Table 1; Figure 1). The contin-

uous landscape was simulated using a partial dif-

ferential equation (PDE) model. Dispersal of the

resource through the continuous landscape was

modeled in its simplest form, as diffusion with

diffusion rate D (Table 1; Figure 1A). The patchy

landscape was defined as a random network of 100

patches with 0.04 connectivity (that is, there is 4%

probability that there is an edge between two pat-

ches in the network; Figure 1B). We assumed that

resource biomass is well mixed within each patch,

whereas dispersal occurs between connected pat-

ches with a constant rate d (Table 1). Qualitatively,

the patchy landscape is similar to a lattice differ-

ential equation (LDE), but in our view it represents

a more realistic patchy landscape than a grid. For

consistency with the continuous model, we assume

that all patches are of the same size (1 m2). The

parameters D in the continuous landscape and d in

the patchy landscape thus represent the level of

mixing of the resource N across the landscape.

Simulations

We started all experiments with the entire land-

scape in the underexploited (high resource bio-

mass) equilibrium state. We performed a strong,

local disturbance by removing all biomass either in

a square in the center of the continuous landscape

or in a single patch of the patchy landscape

(Ni,t0 = 0, where i denotes the local area, or patch

disturbed). We compared effects for a ‘small’ versus

a ‘large’ disturbed area. In the continuous land-

scape, a small-disturbed area was defined as an area

equal to 1% of the landscape (expressed in m2),

whereas a large disturbed area was equal to 5%

(Table 1). In the patchy landscape, a small pertur-

bation was performed on one specific focus patch

(1% of the landscape). For a large disturbance, both

the focus patch and its four connected patches (that

is, we selected focus patches with degree 4) were

set to zero biomass (5% of the landscape) (Table 1).

Usually, recovery rate is estimated by fitting an

exponential model on the recovery trajectory (van

Nes and Scheffer 2007; Veraart and others 2012).

In our simulations, such estimation was not possi-

ble because of the non-exponential form of recov-

Table 1. Different Dispersal Rates and Disturbance Levels Applied in the Recovery Time Experiments for
Continuous and Patchy Landscapes

Continuous landscape Patchy landscape

N 0 ¼ f ðNÞ þ D @2N
@x2 þ @2N

@y2

� �
N 0

i ¼ f ðNiÞ þ fd
P

ðNj � NiÞ

Landscape size 100 x 100 m 100 patches

Low dispersal rate D = 2.5 m2 day-1 d = 0.02 day-1

High dispersal rate D = 12.5 m2 day-1 d = 0.1 day-1

Small disturbance (1%) 10 x 10 m 1 patch

Large disturbance (5%) �22.4 x 22.4 m 5 patches

A two-dimensional partial differential equation describes the dynamics of the continuous landscape, and a sparse lattice differential equation describes the dynamics of the
patchy landscape. In the dispersal term of the patchy landscape, the index j refers to the patches that are connected with patch i.
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ery in parts of our scenarios. Thus, we used a

simpler alternative approach. We defined recovery

time upon local disturbance as the time it takes (t–

t0) for the resource biomass Nk,t to recover to the

pre-disturbed state Nk,t0 (where k denotes the

center of the disturbed area i, or patch i). The dis-

turbance was assumed to be recovered if the dif-

ference between Nk,t0 and Nk,t was smaller than

0.1 g m-2. We investigated how recovery rate

(defined as 1/recovery time) changes with the

distance to the tipping point by changing the har-

vest rate c, using the standardized disturbances

described above.

Strong local disturbances do not always recover

(Keitt and others 2001; van de Leemput and others

2015). There are two other possibilities. A local

strong disturbance can either trigger a systemic

collapse to the overexploited state (we call this ‘in-

duced collapse’), or the effect of the disturbance can

persist, that means that it neither recovers nor trig-

gers a systemic collapse (we call this ‘no recovery’).

As recovery cannot be defined for such cases, we

reported recovery rates only when there was actual

recovery. Overall, we estimated recovery rate upon

local disturbances for different scenarios that are

summarized in Table 1: at low and high dispersal

rates, and for small and large disturbed areas.

In the baseline scenarios, we assumed a

homogenous landscape (that is, the same parame-

ters across space) and standardized disturbances

(that is, same size and location of the disturbed

area). In addition, we performed experiments in

the presence of spatial heterogeneity, with ran-

domly located disturbances. We introduced spatial

heterogeneity in both landscapes by varying the

maximal growth rate of the resource in space (r).

To create heterogeneity in the continuous land-

scape, we first split the landscape in 25 equally

sized squares and randomly assigned growth rates

from a uniform distribution (r � U[0.8, 1.2 day-

1]). Next, we smoothened the generated variability

over the entire space with a Gaussian smoothing

function (Bowman and Azzalini 1997). In the

patchy landscape, growth rates were randomly as-

signed to patches following the same uniform dis-

tribution (r � U[0.8, 1.2 day-1]).

Randomly located disturbances were introduced

as follows. In the continuous landscape, the size of

each disturbance (as percentage of the total area)

was drawn from a uniform distribution (size �
U[0.01, 0.05], whereas the location of the distur-

bance was determined randomly in the landscape.

In the patchy landscape, we selected one patch at

random for each simulation (patch � U[1,100]).

Due to the network topology, the disturbed patches

differ in their number of neighbors (that is, degree).

We define a single ‘recovery rate experiment’ as a

collection of simulations with one random distur-

bance per simulated level of harvest rate c. To get

an estimate of the variability in recovery rate, we

simulated 100 recovery rate experiments. We re-

ported the mean recovery rate and the 10th and

90th percentiles for each level of the harvest rate c.

Moreover, we reported the percentage of simula-

tions that yield ‘no recovery,’ and we reported

indicators after correcting for the size of distur-

bance A (in m2) in a continuous landscape, and the

degree of the disturbed node k in a patchy land-

Figure 1. Representation of disturbance-recovery experiments in our spatially extended ecosystems. A A continuous

landscape is defined as a fully connected landscape. We performed a local strong disturbance by removing all resource

biomass from an area in the center of the landscape, indicated in white. B A patchy landscape is defined as a sparsely

connected landscape: that is a network of patches that are randomly connected to other patches in the landscape. We

performed a local strong disturbance by removing resource biomass from one patch, the so-called focus patch, indicated by

the white dot. The focus patch used for the simulations is connected to four other patches, indicated by the shaded dots.
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scape. We did this by regressing recovery rate 1
Dt

against perturbation size A in the case of a contin-

uous landscape and degree of perturbed node k in

the case of a patchy landscape, to get an estimated

recovery rate for each perturbation experi-

ment 1̂
Dt

� �
. We reported residuals 1

Dt � 1̂
Dt

� �
and their

10th and 90th percentiles.

For all analyses, we used GRIND for MATLAB

(accessed at http://www.sparcs-center.org/grind).

We approximated a continuous landscape using the

finite difference method where we discretized

space in a lattice, while making sure that cells were

sufficiently small to approximate continuous space

for the parameters we used. This resulted in a

50 9 50 lattice. Importantly, a finer-meshed lattice

did not alter the resulting dynamics for the

parameters we used. Note that one should always

be aware of situations of no recovery due to the

discretization method used (Keitt and others 2001;

van de Leemput and others 2015). All differential

equations were solved using an explicit Runge–

Kutta (4, 5) solver with adaptive step size.

RESULTS

In both our spatial systems (Figure 1), increasing

the harvest rate caused a gradual decrease in re-

source biomass up till the tipping point at which

the ecosystem collapsed to the alternative overex-

ploited state (the fold bifurcation point in Fig-

ure 2A). In line with previous results (van Nes and

Scheffer 2007), the time of the system to recover

upon a weak global perturbation becomes longer as

the system is closer to the bifurcation point (Fig-

ure 2B).

Slowing down was also observed in the time to

recover from resource biomass removal in a small

area (Figure 2C). Note, though, that the recovery

trajectory of a strong local perturbation can be non-

exponential (Figure 2C). Close to the systemic tip-

ping point, the total biomass on the landscape may

even decrease prior to recovery (see Online Ap-

pendix 1). This can happen if the conditions are

such that the system has already crossed the

Maxwell point: The basin of attraction of the low

biomass state is larger than the basin of attraction of

the high biomass state. Under these conditions,

there is potential for a sufficiently large local per-

turbation to induce a traveling front toward sys-

temic collapse (van de Leemput and others 2015).

The reason we do not see the full collapse in this

example is that the perturbation was too small to

actually induce such collapse and the system

eventually recovered. The decrease in resilience of

the high biomass state was reflected in the local

recovery time (Figure 2C).

In addition, the size of the area that was affected

by the perturbation could be considered an indi-

cator of resilience (see also Dai and others 2013 for

a similar measure of recovery length). Systematic

analysis of the size of the affected area suggested

that it might be an appropriate metric that rises

steadily as the system approaches critical conditions

for systemic collapse (see Online Appendix 1). In

what follows, we limit our further analysis to

recovery rate of the perturbed site itself.

In general, we found that recovery rate (that is,

1/recovery time) decreased smoothly as increased

harvest rates brought the system closer to the tip-

ping point for a systemic collapse. This was true in

both continuous and patchy landscapes (Figure 3A,

B). As the perturbed area was larger, it invoked a

systemic collapse at lower harvest rates (‘induced

collapse’) (Figure 3A vs. C and B vs. D).

The overall difference between a homogeneous

continuous (Figure 3A, C, E) and a patchy (Fig-

ure 3B, D, F) landscape is that a local disturbance

in a continuous landscape will always either re-

cover or expand (‘induced collapse’), whereas in a

patchy landscape there is a range of conditions at

which a local disturbance can persist in time (‘no

recovery’), neither recovering nor expanding (see

also van de Leemput and others 2015).

Results also depended on the dispersal rate of

the resource. In a system with a low dispersal

rate, even small-scale perturbations could pro-

voke premature systemic collapses in the con-

tinuous landscape (Figure 3E). In a patchy

landscape, the ‘no recovery’ range was larger in a

system with a low dispersal rate (Figure 3F),

compared to a system with a high dispersal rate

(Figure 3D). Not surprisingly, when we imposed

a large disturbed area on a system with a low

dispersal rate, the probability of a premature

collapse or no recovery increased even more

(Online Appendix 2).

In spite of those differences, recovery rates al-

ways decreased as the harvest rates approached the

critical point where a premature collapse or ‘no

recovery’ situation occurred (Figure 3C, D, E, F).

Thus, rather than the distance to the generic

bifurcation point, a drop in recovery rates signaled

the decreased capacity of the ecosystem to recover

from the prescribed local perturbations.

So far, we assumed that environmental condi-

tions across the landscape were homogeneous. As

a next step, we considered a situation where

conditions (represented by the maximum growth

rate r, see methods) are varied spatially (Figure 4).
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To analyze the properties of such heterogeneous

landscapes, we performed multiple experiments in

which we simulated disturbances of random size

at random locations. There was a clear decreasing

trend in such average recovery rates as increasing

harvest brought the landscapes closer to the sys-

temic collapse (Figure 4, see Online Appendix 2

for a system with high dispersal rates). Still, vari-

ability was relatively large, which was due to 1)

the location of the disturbance in the heteroge-

neous landscape and 2a) the variation in size of

disturbance in a continuous landscape, or 2b)

number of neighbors (degree) of the disturbed

node in the patchy landscape. Importantly, if data

were available on any of these variables, one

might be able to reduce the variability in recovery

rates (Figure 4C, D; Online Appendix 2), and im-

prove the sensitivity of the resilience indicator. In

the patchy landscape, the probability of local no

recovery upon perturbations strongly increased

toward the systemic collapse (Figure 4B), which

was much less when dispersal rates were high

(Online Appendix 2).

DISCUSSION

Our analyses suggest that in spatially extended

ecosystems, reduced recovery rates upon local

perturbations may signal that the ecosystem is

approaching a system-wide transition. At the same

Figure 2. Collapse of resource biomass under increasing harvesting, and two distinct disturbance-recovery experiments in

a spatially continuous ecosystem. A Bifurcation diagram of resource biomass. Increasing harvest rate c pushes the resource

(mean biomass) toward the tipping point to overexploitation. Continuous lines indicate the two alternative equilibria. The

dashed line indicates the unstable equilibrium that divides the two alternative basins of attraction. BWe performed a weak

global disturbance (by removing 10% of standing biomass) far (c = 2) and close (c = 2.55) to the transition and monitored

an increase in recovery time due to critical slowing down. C We performed a strong local disturbance (by removing all

standing biomass in an area comprising 1% of the landscape) far (c = 2) and close (c = 2.55) to the transition and

monitored an increase in recovery time. Note this increase is not strictly due to critical slowing down. Dashed horizontal

lines indicate the threshold between the basins of attraction of the two alternative states. For all simulations, dispersal rate

is low (D = 2.5 m2 day-1).
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time, our results show that local recovery rates

depend strongly on the size of the local pertur-

bations and on the exchange of resources between

the perturbed area and its surrounding. The level

of exchange essentially depends on the dispersal

rate and in a patchy landscape on the connectivity

(that is, degree) of the disturbed patch. Although

these findings may seem straightforward at first

sight, the link to practical implications as well as

the more fundamental underlying theory is not so

clear.

Signals from Strong Local Disturbance
Versus Weak Global Disturbance
Experiments

Although our results resemble the patterns found by

measuring recovering rate upon a small perturba-

tion in a well-mixed system (van Nes and Scheffer

2007; Dakos and others 2011), they are not directly

related to the same phenomenon of critical slowing

down. Critical slowing down is defined for weak

disturbances close to equilibrium (Figure 2B) where

Figure 3. Strong local disturbance-recovery experiments for measuring recovery rate (as 1/recovery time) as an indicator

for ecosystem-level resilience. A Recovery rate upon a local disturbance—a zero-biomass area in the middle of a

homogeneous high-biomass landscape (indicated by the red area)—as a function of harvest rate c. B Recovery rate upon a

local disturbance—a zero-biomass patch in a patchy high-biomass landscape (indicated by the red focus patch)—as a

function of harvest rate c. C, E In a continuous landscape, a large disturbance in a system with a high dispersal rate or a

small disturbance in a system with a low dispersal rate may induce a ‘premature’ systemic collapse (gray area). This means

that a transition of the global ecosystem takes place before the actual fold bifurcation point (black area). D, F In a patchy

landscape, a local disturbance may also induce a systemic collapse (gray area), but can also lead to no recovery (green area)

especially when the dispersal rate is low.
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recovery is approximately exponential. In our

strong local disturbance experiments, we pushed a

local area to the alternative equilibrium (Fig-

ure 2C). As the disturbed area lies in the basin of

attraction of the alternative state, it would not re-

cover in case it was isolated. Inflow of biomass from

the neighboring undisturbed parts of the system is

needed. The capacity for this recovery process de-

pends on the exchange between the perturbed area

and its surrounding (that is, dispersal rate), but also

on the conditions that determine local resilience.

Phrased loosely, a system weakened by harsh con-

ditions (that is, here represented by a high harvest

rate) will recover more slowly from local damage,

because the neighboring area has a low capacity to

‘pull’ the disturbed area back to the pre-disturbed

state. In theoretical terms, the change in the relative

resilience and reduction of the recovery capacity of

spatially extended systems is related to the crossing

of a Maxwell point (Keitt and others 2001; Bel and

others 2012). At this theoretical point, in parameter

space both equilibria are equally stable (that is, they

Figure 4. Effects of random disturbance experiments in landscapes with spatially heterogeneous conditions and a low

dispersal rate. We randomly disturbed areas of different size on a continuous landscape and different patches in a patchy

landscape for each level of resilience (in terms of maximal harvest rate) and measured recovery rates. A, B Average

recovery rates decrease in all situations as the system approaches the critical harvest rate for collapse. Black lines represent

the average recovery rate, while the gray shaded areas show the 10th and 90th percentile, based on experiments per

simulated harvest rate. B In a patchy landscape, the percentage of experiments followed locally by no recovery (green lines)

increases as the harvest rate increases. This occurs especially when the dispersal rate is low (see Appendix 2 for a system

with a high dispersal rate). C, D Average residual recovery rates after being corrected for the size of the disturbance (C), or

the degree of the disturbed node (D). Note that the variance in recovery rates is lower after the correction.
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have the same potential (Strogatz 1994)) and large

spatial perturbations will neither recover nor ex-

pand (van de Leemput and others 2015).

Beyond the theoretical aspects, our results have

marked practical implications. They suggest that a

local-scale experiment can provide information for

the resilience of a large-scale ecosystem. This is

important as performing a small-scale disturbance

experiment is much more realistic than applying a

large-scale disturbance. For example, instead of

facing the daunting task of removing 10% of sub-

merged vegetation in a whole shallow lake, one

may probe the resilience of the lake by removing all

vegetation from just a small area. In fact, the

detectability of such local recovery rates might be

stronger when compared to recovery rates from

weak global perturbations under noisy conditions

(Online Appendix 3). Also, one only needs to

monitor recovery of a small part of the landscape. It

should be noted that these implications apply

specifically to spatially extended systems (that is,

low level of mixing in relation to the size of the

landscape). In case of a well-mixed system, where

local perturbations smoothen out rapidly over the

entire landscape, it would be more valuable to

monitor the population size of the entire landscape.

Our results also suggest that detecting altered

local recovery rate may be feasible for random

disturbances in a heterogeneous environment

(Figure 4). Obviously, this approach still requires

having sufficient replicates of the disturbance

experiments to get accurate results. Importantly,

one can reduce some of the observed variability in

recovery rates if one has relevant information on

the disturbances (Figure 4C, D). For instance, one

might be able to correct for the size of the distur-

bances (Figure 4C). Also, if connections between

nodes in a patchy landscape are known, one could

correct for the degree of the disturbed node (Fig-

ure 4D), because the connectivity of a patch largely

determines the exchange rate between the dis-

turbed node and its surrounding.

Designing Experiments

Clearly, our models are quite abstract, and bridging

from our results to any particular field situation is a

challenge. Nonetheless, our results suggest some

aspects to ponder when it comes to designing

experiments. First of all, disturbance experiments

are never completely free of risk. The local distur-

bance may unintentionally trigger a domino effect,

such that the disturbance spreads through the en-

tire landscape (Peters and others 2007). The likeli-

hood of such an induced system-wide collapse

depends on the spatial extent of the perturbation,

the overall ecosystem resilience (that is, the level of

the stress driver), and the strength of dispersal (see

Online Appendix 4). It also depends on the type of

connectivity in the landscape, that is, whether the

landscape is continuous or patchy (Figure 1). Even

a very local perturbation can theoretically trigger a

collapse in a continuous landscape that is close to a

tipping point, provided that the dispersal rate is low

(Figure 3E). This is because at low dispersal rates,

the capacity of the landscape at larger scales to re-

cover from a local disturbance is reduced. As a re-

sult, the local effect may persist long enough to

kick-off a domino effect leading to an expanding

collapse (van de Leemput and others 2015).

Table 2. Opportunities and Limitations for Performing Local Disturbance-Recovery Experiments in Spa-
tially Extended Ecosystems to Indicate System-Wide Resilience

Local recovery time experiments

opportunities limitations

Are feasible to perform Can accidentally induce a collapse

Are easy to monitor Might not reflect system-level resilience (under extreme landscape

heterogeneity)

Provide a strong signal even under

stochastic conditions

Require multiple experiments for averaging out local differences

Natural disturbances can be used as

proxy experiments

Require information on dispersal rates and

landscape heterogeneity

Variability in dispersal rates and perturbation

size can muffle the effect of resilience

Can be performed at different spatial scales May initiate other processes that lead to

alternative outcomes
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Obviously, spatial interactions that are relevant

to recovery are typically more complex than the

simple diffusion mechanism in the model. Plants

may enter through seed dispersal or root expansion

depending on species and conditions, and animals

may move directionally in or out of damaged pat-

ches. For example, clearing part of seagrass mead-

ows creates open spaces attracting swans that delay

or prohibit the regrowth of seagrass (van der Heide

and others 2012). Also, other processes may play a

role in the recovery of local disturbances. For

example, regrowth of vegetation patches may not

occur from the side of a cleared patch, but simply

from overwintering structures belowground.

In general, there is a trade-off between signal

strength and the probability of inducing a collapse.

Researchers in any particular ecosystem probably

have a good intuition about the type and size of

experimental perturbation that could yield a clear

recovery signal, while not posing a risk of inducing

a spreading collapse. We summarize some of the

opportunities and limitations of recovery of local

disturbances as an indicator of resilience in Table 2.

Although replicated prescribed experiments are

the cleanest way to monitor change in recovery

rates, natural local disturbances may offer an

alternative in some situations. Recovery from

events such as disease outbreaks, wildfires, or

bleaching has been studied in ecosystems ranging

from grasslands (Tilman and Downing 1994), and

marine kelp ecosystems (Dayton and others 1992)

to forests (Cole and others 2014), and coral reefs

(Houk and others 2014). Especially if data on many

repeated events are available, differences in

recovery rates may hint at differences in resilience.

This should work best in a mostly homogeneous

environment.

Restoration: A Flipped Perspective

In our modeled patchy landscapes, there is the

possibility that a disturbed patch does not recover

but that there is no cascading effect causing the

entire landscape to shift to the other state [that is, it

has an infinite recovery time, the so-called pinning

(Keitt and others 2001; van de Leemput and others

2015)]. In practice, partial transitions may be more

common than all-or-none transitions, as even

modest heterogeneity in conditions or in dispersal

rates can allow spatial coexistence of alternative

stable states (van de Leemput and others 2015).

How one looks at such transitions depends on the

context. Clearly, the words ‘collapse’ and ‘recovery’

we use are value-laden, suggesting that the current

state of the landscape is preferred over the potential

alternative state. However, one may flip the per-

spective and frame our results thinking of the

transition to the alternative state as a ‘restoration’

that brings the system to a preferred state. For in-

stance, one may try to eradicate an invasive spe-

cies, or promote the return of vegetation that

originally dominated the landscape. In such situa-

tions, the ‘no recovery’ results may correspond to

successful restorations of parts of the landscape. A

cascading ‘collapse’ would be a large-scale success,

and ‘recovery’ would be a failure. The same results

then illustrate that depending on the tendency of

species to spread (that is, our dispersal rate) a suf-

ficiently large scale of restoration efforts can be

critically important, especially in homogeneous

landscapes (van de Leemput and others 2015).

Importantly, the interpretation of ‘recovery rate’

(that is, rate at which the system returns to the

original state after a restoration attempt) as an

indicator of resilience remains relevant, as it may

be used to probe whether a system may easily be

restored or not. Areas with the lowest recovery

rates may in that perspective be the most promising

places for restoration efforts, and the effect of the

perturbed initial patch on recovery rates may give

an indication of the critical scale needed for suc-

cessful restoration.

Prospects

The analysis of recovery rates in spatially extended

ecosystems is an almost unexplored territory (Dai

and others 2013; Benedetti-Cecchi and others

2015). Our results suggest a number of ways for-

ward. It is easy to see the scope for prescribed

replicated experiments along environmental gra-

dients where the system is known to approach a

critical transition. On small scales, such as labora-

tory systems or herbaceous vegetation, this may be

quite feasible. For instance, strikingly clean results

can be found in elegant experiments with yeast

populations growing in a set of flasks where spatial

interactions are simulated by manually dispersing

yeast between flask cultures on a daily basis (Dai

and others 2013). On larger scales, it may be pos-

sible to interpret the response to frequent human-

induced or natural perturbations. For instance, re-

motely sensed recovery of tropical forests from

wildfires or clearing could indicate spatial variation

or long-term trends in resilience.

Also, on the theoretical side there is scope for

further exploration. We have only briefly touched

upon the transient spatial expansion of a distur-

bance as an indicator of resilience. A related sug-

gestion has been done for the slightly different
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situation of a press perturbation (for example, a

continuous local harvest of biomass instead of a

one-time removal). Here recovery time is no rele-

vant measure, as the system is not allowed to re-

cover. Instead, the size of the area impacted by the

disturbed region, termed ‘recovery length’, indi-

cates the resilience of the system (Dai and others

2013). Furthermore, we did not consider the effect

of network topology here. If one considers the

landscape as a network of habitat patches, future

work could explore which patches, under which

conditions, could be used best as target nodes to

indicate systemic resilience in disturbance-recovery

experiments.

Analyses of such spatial aspects complement the

existing body of work on indicators of critical

slowing down in simple time series. Clearly, the

combination of spatial and temporal dimensions of

the response to local perturbations contains most

information. The two are not redundant, as the

extent of spatial expansion carries information on

spatial processes that cannot be inferred from the

local response alone. Thus, their combination may

allow separating the relative importance of intrinsic

dynamics and spatial interactions. Developing and

testing indicators based on spatiotemporal re-

sponses is an exciting and promising way forward.
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