D. J. Surmeier, J. A. Obeso, and G. M. Halliday, Selective neuronal vulnerability in Parkinson disease, Nat Rev Neurosci, vol.18, issue.2, pp.101-113, 2017.

C. J. Gloeckner, The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity, Hum Mol Genet, vol.15, issue.2, pp.223-232, 2006.

M. Steger, Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases, Elife, vol.5, p.12813, 2016.

D. G. Healy, Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study, Lancet Neurol, vol.7, issue.7, pp.583-590, 2008.

L. Guo, P. N. Gandhi, W. Wang, R. B. Petersen, A. L. Wilson-delfosse et al., The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity, Exp Cell Res, vol.313, issue.16, pp.3658-3670, 2007.

G. Ito, GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease, Biochemistry, vol.46, issue.5, pp.1380-1388, 2007.

X. Li, Y. C. Tan, S. Poulose, C. W. Olanow, X. Y. Huang et al., Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants, J Neurochem, vol.103, issue.1, pp.238-247, 2007.

W. W. Smith, Z. Pei, H. Jiang, V. L. Dawson, T. M. Dawson et al., Kinase activity of mutant LRRK2 mediates neuronal toxicity, Nat Neurosci, vol.9, issue.10, pp.1231-1233, 2006.

J. M. Taymans, C. Van-den-haute, and V. Baekelandt, Distribution of PINK1 and LRRK2 in rat and mouse brain, J Neurochem, vol.98, issue.3, pp.951-961, 2006.

J. Simón-sánchez, V. Herranz-pérez, F. Olucha-bordonau, and J. Pérez-tur, LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain, Eur J Neurosci, vol.23, issue.3, pp.659-666, 2006.

H. L. Melrose, A comparative analysis of leucine-rich repeat kinase 2 (Lrrk2) expression in mouse brain and Lewy body disease, Neuroscience, vol.147, issue.4, pp.1047-1058, 2007.

M. F. Beal, Parkinson's disease: a model dilemma, Nature, vol.466, issue.7310, pp.8-10, 2010.

T. M. Dawson, H. S. Ko, and V. L. Dawson, Genetic animal models of Parkinson's disease, Neuron, vol.66, issue.5, pp.646-661, 2010.

F. Junyent and E. J. Kremer, CAV-2--why a canine virus is a neurobiologist's best friend, Curr Opin Pharmacol, vol.24, pp.86-93, 2015.

C. Soudais, C. Laplace-builhe, K. Kissa, and E. J. Kremer, Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo, FASEB J, vol.15, issue.12, pp.2283-2285, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02197466

C. Soudais, N. Skander, and E. J. Kremer, Long-term in vivo transduction of neurons throughout the rat CNS using novel helper-dependent CAV-2 vectors, FASEB J, vol.18, issue.2, pp.391-393, 2004.

E. N. Ord, Combined antiapoptotic and antioxidant approach to acute neuroprotection for stroke in hypertensive rats, J Cereb Blood Flow Metab, vol.33, issue.8, pp.1215-1224, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02193669

T. S. Hnasko, Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia, Proc Natl Acad Sci USA, vol.103, issue.23, pp.8858-8863, 2006.

P. Giannakopoulos, Quantitative analysis of tau protein-immunoreactive accumulations and beta amyloid protein deposits in the cerebral cortex of the mouse lemur, Microcebus murinus, Acta Neuropathol, vol.94, issue.2, pp.131-139, 1997.

N. Bons, F. Rieger, D. Prudhomme, A. Fisher, and K. H. Krause, Microcebus murinus: a useful primate model for human cerebral aging and Alzheimer's disease?, Genes Brain Behav, vol.5, issue.2, pp.120-130, 2006.

N. Mestre-francés, E. Keller, A. Calenda, H. Barelli, F. Checler et al., Immunohistochemical analysis of cerebral cortical and vascular lesions in the primate Microcebus murinus reveal distinct amyloid beta1-42 and beta1-40 immunoreactivity profiles, Neurobiol Dis, vol.7, issue.1, pp.1-8, 2000.

A. Rassoul and R. , Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer's disease-like pathology, PLoS One, vol.5, issue.9, p.12770, 2010.

J. M. Verdier, Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases, Front Neurosci, vol.9, p.64, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01255056

P. Freimuth, L. Philipson, and S. D. Carson, The coxsackievirus and adenovirus receptor, Curr Top Microbiol Immunol, vol.323, pp.67-87, 2008.

F. Loustalot, E. J. Kremer, and S. Salinas, The intracellular domain of the coxsackievirus and adenovirus receptor differentially influences adenovirus entry, J Virol, vol.89, issue.18, pp.9417-9426, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01990786

C. Zussy and S. Salinas, Study of adenovirus and CAR axonal transport in primary neurons, Methods Mol Biol, vol.1089, pp.71-78, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191594

S. Salinas, Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomainand dynamin-dependent endocytosis and lysosomal targeting, J Biol Chem, vol.289, issue.2, pp.680-695, 2014.

C. Zussy, Coxsackievirus adenovirus receptor loss impairs adult neurogenesis, synapse content, and hippocampus plasticity, J Neurosci, vol.36, issue.37, pp.9558-9571, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01824497

S. Salinas, CAR-associated vesicular transport of an adenovirus in motor neuron axons, PLoS Pathog, vol.5, issue.5, p.1000442, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01994282

D. Henaff, S. Salinas, and E. J. Kremer, An adenovirus traffic update: from receptor engagement to the nuclear pore, Future Microbiol, vol.6, issue.2, pp.179-192, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193316

S. Salinas, G. Schiavo, and E. J. Kremer, A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins, Nat Rev Microbiol, vol.8, issue.9, pp.645-655, 2010.

S. Piersanti, Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles, PLoS One, vol.8, issue.7, p.69808, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02193672

R. S. Liblau, D. Gonzalez-dunia, H. Wiendl, and F. Zipp, Neurons as targets for T cells in the nervous system, Trends Neurosci, vol.36, issue.6, pp.315-324, 2013.

F. Hérodin, P. Thullier, D. Garin, and M. Drouet, Nonhuman primates are relevant models for research in hematology, immunology and virology, Eur Cytokine Netw, vol.16, issue.2, pp.104-116, 2005.

M. H. Tuszynski, R. Grill, L. L. Jones, H. M. Mckay, and A. Blesch, Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts, J Comp Neurol, vol.449, issue.1, pp.88-101, 2002.

N. Déglon and P. Hantraye, Viral vectors as tools to model and treat neurodegenerative disorders, J Gene Med, vol.7, issue.5, pp.530-539, 2005.

S. Languille, The grey mouse lemur: a non-human primate model for ageing studies, Ageing Res Rev, vol.11, issue.1, pp.150-162, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00650159

S. G. Trouche, Antibody response and plasma Abeta1-40 levels in young Microcebus murinus primates immunized with Abeta1-42 and its derivatives, Vaccine, vol.27, issue.7, pp.957-964, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00371716

A. Kraska, Age-associated cerebral atrophy in mouse lemur primates, Neurobiol Aging, vol.32, issue.5, pp.894-906, 2011.
URL : https://hal.archives-ouvertes.fr/mnhn-02292134

S. G. Trouche, T. Maurice, S. Rouland, and J. M. Verdier, Mestre-Francés N. The three-panel runway maze adapted to Microcebus murinus reveals age-related differences in memory and perseverance performances, Neurobiol Learn Mem, vol.94, issue.1, pp.100-106, 2010.

O. Carmichael and S. Lockhart, The role of diffusion tensor imaging in the study of cognitive aging, Curr Top Behav Neurosci, vol.11, pp.289-320, 2012.

J. A. Obeso, The basal ganglia in Parkinson's disease: current concepts and unexplained observations, Ann Neurol, vol.64, issue.2, pp.30-46, 2008.

M. E. Fox, Cross-hemispheric dopamine projections have functional significance, Proc Natl Acad Sci USA, vol.113, issue.25, pp.6985-6990, 2016.

S. Geisler and D. S. Zahm, Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions, J Comp Neurol, vol.490, issue.3, pp.270-294, 2005.

Y. Li, Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease, Nat Neurosci, vol.12, issue.7, pp.826-828, 2009.

D. Ramonet, Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2, PLoS One, vol.6, issue.4, p.18568, 2011.

D. Macleod, J. Dowman, R. Hammond, T. Leete, K. Inoue et al., The familial Parkinsonism gene LRRK2 regulates neurite process morphology, Neuron, vol.52, issue.4, pp.587-593, 2006.

Z. Yue and M. L. Lachenmayer, Genetic LRRK2 models of Parkinson's disease: Dissecting the pathogenic pathway and exploring clinical applications, Mov Disord, vol.26, issue.8, pp.1386-1397, 2011.

T. L. Spires-jones, W. H. Stoothoff, A. De-calignon, P. B. Jones, and B. T. Hyman, Tau pathophysiology in neurodegeneration: a tangled issue, Trends Neurosci, vol.32, issue.3, pp.150-159, 2009.

H. L. Melrose, Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice, Neurobiol Dis, vol.40, issue.3, pp.503-517, 2010.

A. Rajput, Lrrk2 G2019S, and tau neuropathology, vol.67, pp.1506-1508, 2006.

Z. K. Wszolek, Autosomal dominant parkinsonism associated with variable synuclein and tau pathology, Neurology, vol.62, issue.9, pp.1619-1622, 2004.

G. Schoehn, Three-dimensional structure of canine adenovirus serotype 2 capsid, J Virol, vol.82, issue.7, pp.3192-3203, 2008.

J. C. Villaescusa, A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease, EMBO J, vol.35, issue.18, pp.1963-1978, 2016.

W. W. Smith, Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration, Proc Natl Acad Sci, vol.102, issue.51, pp.18676-18681, 2005.

N. Bons, S. Silhol, V. Barbié, N. Mestre-francés, A. et al., A stereotaxic atlas of the grey lesser mouse lemur brain (Microcebus murinus), Brain Res Bull, vol.46, issue.1-2, pp.1-173, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01977727

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc Natl Acad Sci USA, vol.98, issue.9, pp.5116-5121, 2001.

J. A. Duce, S. Podvin, W. Hollander, D. Kipling, D. L. Rosene et al., Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey, Glia, vol.56, issue.1, pp.106-117, 2008.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc Natl Acad Sci, vol.95, issue.25, pp.14863-14868, 1998.

G. R. Phillips, The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution, Neuron, vol.32, issue.1, pp.63-77, 2001.

P. S. Verhave, R. A. Vanwersch, H. P. Van-helden, A. B. Smit, and I. H. Philippens, Two new test methods to quantify motor deficits in a marmoset model for Parkinson's disease, Behav Brain Res, vol.200, issue.1, pp.214-219, 2009.

J. W. Marshall, H. F. Baker, and R. M. Ridley, Contralesional neglect in monkeys with small unilateral parietal cortical ablations, Behav Brain Res, vol.136, issue.1, pp.257-265, 2002.

H. N. Noristani, RNA-seq analysis of microglia reveals time-dependent activation of specific genetic programs following spinal cord injury, Front Mol Neurosci, vol.10, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01762560