G. Aschersleben, P. , and W. , Synchronizing actions with events: the role of sensory information, Attent. Percept. Psychophys, vol.57, pp.305-317, 1995.

G. Aschersleben, P. , and W. , Delayed auditory feedback in synchronization, J. Mot. Behav, vol.29, pp.35-46, 1997.

Y. Ashkenazy, J. M. Hausdorff, P. C. Ivanov, and H. E. Stanley, A stochastic model of human gait dynamics, Phys. A Stat. Mech. Appl, vol.316, pp.662-670, 2002.

D. N. Athreya, G. Van-orden, R. , and M. A. , Feedback about isometric force production yields more random variations, Neurosci. Lett, vol.513, pp.37-41, 2012.

D. S. Bassett and E. Bullmore, Small-world brain networks, Neurosci, vol.12, pp.512-523, 2006.

D. S. Bassett and M. S. Gazzaniga, Understanding complexity in the human brain, Trends Cogn. Sci, vol.15, pp.200-209, 2011.

D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson et al., Dynamic reconfiguration of human brain networks during learning, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.7641-7646, 2011.

M. Billon, A. Semjen, J. Cole, and G. Gauthier, The role of sensory information in the production of periodic finger-tapping sequences, Exp. Brain Res, vol.110, 1996.

B. Biswal, F. Z. Zerrin-yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn. Resonan. Med, vol.34, pp.537-541, 1995.

J. W. B?aszczyk and W. Klonowski, Postural stability and fractal dynamics, Acta Neurobiol. Exp, vol.61, pp.105-112, 2001.

S. Brigadoi, C. , and R. J. , How short is short? Optimum sourcedetector distance for short-separation channels in functional near-infrared spectroscopy, Neurophotonics, vol.2, p.25005, 2015.

E. Bullmore, A. Barnes, D. S. Bassett, A. Fornito, M. Kitzbichler et al., Generic aspects of complexity in brain imaging data and other biological systems, Neuroimage, vol.47, pp.1125-1134, 2009.

C. Chang and G. H. Glover, Time-frequency dynamics of restingstate brain connectivity measured with fMRI, Neuroimage, vol.50, pp.81-98, 2010.

R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz et al., A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy, Front. Neurosci, vol.6, p.147, 2012.

S. Damouras, M. D. Chang, E. Sejdi, C. , and T. , An empirical examination of detrended fluctuation analysis for gait data, Gait Posture, vol.31, pp.336-340, 2010.

E. Dayan and L. G. Cohen, Neuroplasticity subserving motor skill learning, Neuron, vol.72, pp.443-454, 2011.

G. Deco, V. K. Jirsa, and A. R. Mcintosh, Emerging concepts for the dynamical organization of resting-state activity in the brain, Nat. Rev. Neurosci, vol.12, pp.43-56, 2011.

D. Delignières and V. Marmelat, Degeneracy and long-range correlations, Chaos Interdiscip. J. Nonlin. Sci, vol.23, p.43109, 2013.

D. Delignieres, S. Ramdani, L. Lemoine, K. Torre, M. Fortes et al., Fractal analyses for 'short'time series: a re-assessment of classical methods, J. Math. Psychol, vol.50, pp.525-544, 2006.

T. De-wolf and T. Holvoet, Emergence versus self-organisation: different concepts but promising when combined, Eng. Self Organ. Syst, vol.3464, pp.1-15, 2005.

J. B. Dingwell and J. P. Cusumano, Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking, Gait Posture, vol.32, pp.348-353, 2010.

J. A. Dixon, J. G. Holden, D. Mirman, and D. G. Stephen, Multifractal dynamics in the emergence of cognitive structure, Top. Cogn. Sci, vol.4, pp.51-62, 2012.

H. Duffau, The huge plastic potential of adult brain and the role of connectomics: new insights provided by serial mappings in glioma surgery, Cortex, vol.58, pp.325-337, 2014.

S. Dutta, D. Ghosh, C. , and S. , Multifractal detrended fluctuation analysis of human gait diseases, Front. Physiol, vol.4, p.274, 2013.

G. M. Edelman and J. A. Gally, Degeneracy and complexity in biological systems, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.13763-13768, 2001.

A. Eke, P. Herman, B. G. Sanganahalli, F. Hyder, P. Mukli et al., Pitfalls in fractal time series analysis: fMRI BOLD as an exemplary case, Front. Physiol, vol.3, p.417, 2012.

F. De-vico-fallani, J. Richiardi, M. Chavez, A. , and S. , Graph analysis of functional brain networks: practical issues in translational neuroscience, Philos. Trans. R. Soc. B, vol.369, p.20130521, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01062386

P. Fraisse, L'anticipation de stimulus rythmiques. vitesse d'établissement et précision de la synchronisation. L'année Psychol, vol.66, pp.15-36, 1966.

K. J. Friston, Functional and effective connectivity in neuroimaging: a synthesis, Hum. Brain Mapp, vol.2, pp.56-78, 1994.

K. J. Friston, P. , and C. J. , Modules and brain mapping, Cogn. Neuropsychol, vol.28, pp.241-250, 2011.

D. L. Gilden, Cognitive emissions of 1/f noise, Psychol. Rev, vol.108, p.33, 2001.

A. L. Goldberger, Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside, Lancet, vol.347, pp.1312-1314, 1996.

A. L. Goldberger, L. A. Amaral, J. M. Hausdorff, P. C. Ivanov, C. K. Peng et al., Fractal dynamics in physiology: alterations with disease and aging, Proc. Natl. Acad. Sci, vol.99, pp.2466-2472, 2002.

C. Grefkes and N. S. Ward, Cortical reorganization after stroke: how much and how functional?, Neuroscientist, vol.20, pp.56-70, 2014.

J. M. Hausdorff, P. L. Purdon, C. K. Peng, Z. V. Ladin, J. Y. Wei et al., Fractal dynamics of human gait: stability of longrange correlations in stride interval fluctuations, J. Appl. Physiol, vol.80, pp.1448-1457, 1996.

R. Hindriks, M. H. Adhikari, Y. Murayama, M. Ganzetti, D. Mantini et al., Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?, Neuroimage, vol.127, pp.242-256, 2016.

K. Hu, P. C. Ivanov, Z. Chen, M. F. Hilton, H. E. Stanley et al., Non-random fluctuations and multi-scale dynamics regulation of human activity, Phys. Stat. Mech. Appl, vol.337, pp.307-318, 2004.

K. Hu, E. J. Van-someren, S. A. Shea, and F. A. Scheer, Reduction of scale invariance of activity fluctuations with aging and Alzheimer's disease: involvement of the circadian pacemaker, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.2490-2494, 2009.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain, Appl. Opt, vol.48, pp.280-298, 2009.

R. M. Hutchison, T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun et al., Dynamic functional connectivity: promise, issues, and interpretations, Neuroimage, vol.80, pp.360-378, 2013.

E. A. Ihlen, Introduction to multifractal detrended fluctuation analysis in Matlab, Front. Physiol, vol.3, p.141, 2012.

E. A. Ihlen and B. Vereijken, Interaction-dominant dynamics in human cognition: beyond 1/f ? fluctuation, J. Exp. Psychol. Gen, vol.139, p.436, 2010.

P. C. Ivanov, L. A. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum et al., Multifractality in human heartbeat dynamics, Nature, vol.399, p.461, 1999.

P. C. Ivanov, N. Amaral, L. A. Goldberger, A. L. Stanley, and H. E. , Stochastic feedback and the regulation of biological rhythms, EPL, vol.43, p.363, 1998.

P. C. Ivanov, Z. Chen, K. Hu, and H. E. Stanley, Multiscale aspects of cardiac control, Phys. Stat. Mech. Appl, vol.344, pp.685-704, 2004.

P. C. Ivanov, L. A. Nunes-amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum et al., From 1/f noise to multifractal cascades in heartbeat dynamics, Chaos Interdiscip. J. Nonlin. Sci, vol.11, pp.641-652, 2001.

V. K. Jirsa, O. Sporns, M. Breakspear, G. Deco, and A. R. Mcintosh, Towards the virtual brain: network modeling of the intact and the damaged brain, Arch. Ital. Biol, vol.148, pp.189-205, 2010.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-bunde, S. Havlin, A. Bunde et al., Multifractal detrended fluctuation analysis of nonstationary time series, Phys. Stat. Mech. Appl, vol.316, pp.87-114, 2002.

C. T. Kello, G. D. Brown, R. Ferrer-i-cancho, J. G. Holden, K. Linkenkaer-hansen et al., Scaling laws in cognitive sciences, Trends Cogn. Sci, vol.14, pp.223-232, 2010.

J. A. Kelso, G. Dumas, and E. Tognoli, Outline of a general theory of behavior and brain coordination, Neural Netw, vol.37, pp.120-131, 2013.

L. Kocsis, P. Herman, and A. Eke, The modified Beer-Lambert law revisited, Phys. Med. Biol, vol.51, p.91, 2006.

D. R. Leff, F. Orihuela-espina, C. E. Elwell, T. Athanasiou, D. T. Delpy et al., Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies, Neuroimage, vol.54, pp.2922-2936, 2011.

L. Lemoine, K. Torre, and D. Delignières, Testing for the presence of 1/f noise in continuation tapping data. Canad, J. Exp. Psychol, vol.60, p.247, 2006.

L. A. Lipsitz, Dynamics of stability: the physiologic basis of functional health and frailty, J. Gerontol. Ser, vol.57, 2002.

K. K. Liu, R. P. Bartsch, A. Lin, R. N. Mantegna, and P. C. Ivanov, Plasticity of brain wave network interactions and evolution across physiologic states, Front. Neural Circuits, vol.9, p.62, 2015.

T. H. Mäkikallio, H. V. Huikuri, A. Mäkikallio, L. B. Sourander, R. D. Mitrani et al., Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects, J. Am. Coll. Cardiol, vol.37, pp.1395-1402, 2001.

B. Manor, M. D. Costa, K. Hu, E. Newton, O. Starobinets et al., Physiological complexity and system adaptability: evidence from postural control dynamics of older adults, J. Appl. Physiol, vol.109, pp.1786-1791, 2010.

B. Manor and L. A. Lipsitz, Physiologic complexity and aging: implications for physical function and rehabilitation, Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.45, pp.287-293, 2013.

A. R. Mcintosh, M. N. Rajah, and N. J. Lobaugh, Interactions of prefrontal cortex in relation to awareness in sensory learning, Science, vol.284, pp.1531-1533, 1999.

A. V. Medvedev, Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study, Neuroimage, vol.85, pp.400-407, 2014.

L. B. Merabet and A. Leone, Neural reorganization following sensory loss: the opportunity of change, Nat. Rev. Neurosci, vol.11, pp.44-52, 2010.

B. Molavi and G. A. Dumont, Wavelet-based motion artifact removal for functional near-infrared spectroscopy, Physiol. Meas, vol.33, p.259, 2012.

M. Muthuraman, K. Arning, R. B. Govindan, U. Heute, G. Deuschl et al., Cortical representation of different motor rhythms during bimanual movements, Exp. Brain Res, vol.223, pp.489-504, 2012.

V. Nedelko, T. Hassa, F. Hamzei, C. Weiller, F. Binkofski et al., Age-independent activation in areas of the mirror neuron system during action observation and action imagery. a fMRI study, Restor. Neurol. Neurosci, vol.28, pp.737-747, 2010.

M. E. Newman, Modularity and community structure in networks, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.8577-8582, 2006.

U. Noppeney, K. J. Friston, P. , and C. J. , Degenerate neural systems sustaining cognitive functions, J. Anat, vol.205, pp.433-442, 2004.

L. A. Nunes-amaral, P. C. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono et al., Behavioral-independent features of complex heartbeat dynamics, Phys. Rev. Lett, vol.86, p.6026, 2001.

R. C. Oldfield, The assessment and analysis of handedness: the Edinburgh inventory, Neuropsychologia, vol.9, pp.97-113, 1971.

D. Papo, J. M. Buldú, S. Boccaletti, and E. T. Bullmore, Complex network theory and the brain, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, 2014.

C. K. Peng, J. M. Hausdorff, A. L. Goldberger, and J. Walleczek, Fractal mechanisms in neuronal control: human heartbeat and gait dynamics in health and disease, Nonlin. Dyn. Self-Organ. Biomed, pp.66-96, 2000.

C. K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos Interdiscip. J. Nonlinear Sci, vol.5, pp.82-87, 1995.

C. J. Price and K. J. Friston, Degeneracy and cognitive anatomy, Trends Cogn. Sci, vol.6, pp.416-421, 2002.

B. H. Repp and Y. H. Su, Sensorimotor synchronization: a review of recent research, Psychonom. Bull. Rev, vol.20, pp.403-452, 2006.

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: uses and interpretations, Neuroimage, vol.52, pp.1059-1069, 2010.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata-pavia et al., A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology, Neuroimage, vol.85, pp.6-27, 2014.

F. Scholkmann, S. Spichtig, T. Muehlemann, W. , and M. , How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation, Physiol. Meas, vol.31, p.649, 2010.

A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, D. et al., Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI, Neuroimage, vol.27, pp.842-851, 2005.

R. Sleimen-malkoun, J. J. Temprado, H. , and S. L. , Aging induced loss of complexity and dedifferentiation: consequences for coordination dynamics within and between brain, muscular and behavioral levels, Front. Aging Neurosci, vol.6, p.140, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01785469

A. B. Slifkin and J. R. Eder, Amplitude requirements, visual information, and the spatial structure of movement, Exp. Brain Res, vol.220, pp.297-310, 2012.

A. B. Slifkin and J. R. Eder, Fitts' index of difficulty predicts the 1/f structure of movement amplitude time series, Exp. Brain Res, vol.232, pp.1653-1662, 2014.

A. B. Slifkin and K. M. Newell, Noise, information transmission, and force variability, J. Exp. Psychol, vol.25, p.837, 1999.

O. Sporns, From simple graphs to the connectome: networks in neuroimaging, Neuroimage, vol.62, pp.881-886, 2012.

O. Sporns, Network attributes for segregation and integration in the human brain, Curr. Opin. Neurobiol, vol.23, pp.162-171, 2013.

O. Sporns and R. F. Betzel, Modular brain networks, Annu. Rev. Psychol, vol.67, pp.613-640, 2016.

P. Stenneken, W. Prinz, J. Cole, J. Paillard, A. et al., The effect of sensory feedback on the timing of movements: evidence from deafferented patients, Brain Res, vol.1084, pp.123-131, 2006.

D. G. Stephen, A. , and J. , Fractal fluctuations in gaze speed visual search, Attent. Percept. Psychophys, vol.73, pp.666-677, 2011.

N. Stergiou, J. A. Kent, and D. Mcgrath, Human movement variability and aging, Kinesiol. Rev, vol.5, pp.15-22, 2016.

G. Themelis, H. D'arceuil, S. G. Diamond, S. Thaker, T. J. Huppert et al., Near-infrared spectroscopy measurement of the pulsatile component of cerebral blood flow and volume from arterial oscillations, J. Biomed. Opt, vol.12, p.14033, 2007.

E. Tognoli and J. A. Kelso, The metastable brain, Neuron, vol.81, pp.35-48, 2014.

G. Tononi, O. Sporns, and G. M. Edelman, A measure for brain complexity: relating functional segregation and integration in the nervous system, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.5033-5037, 1994.

G. Tononi, O. Sporns, and G. M. Edelman, Measures of degeneracy and redundancy in biological networks, Proc. Natl. Acad. Sci. 96, pp.3257-3262, 1999.

K. Torre and R. Balasubramaniam, Disentangling stability, variability and adaptability in human performance: focus on the interplay between local variance and serial correlation, J. Exp. Psychol, vol.37, p.539, 2011.

K. Torre and D. Delignières, Unraveling the finding of 1/f ? noise in selfpaced and synchronized tapping: a unifying mechanistic model, Biol. Cybern, vol.99, pp.159-170, 2008.

R. E. Ulanowicz, The balance between adaptability and adaptation, Biosystems, vol.64, pp.13-22, 2002.

D. V. Vaz, B. A. Kay, and M. Turvey, Effects of visual and auditory guidance on bimanual coordination complexity, Hum. Mov. Sci, vol.54, pp.13-23, 2017.

G. Vergotte, K. Torre, V. C. Chirumamilla, A. R. Anwar, S. Groppa et al., Dynamics of the human brain network revealed by timefrequency effective connectivity in fNIRS, Biomed. Opt. Express, vol.8, pp.5326-5341, 2017.

T. B. Warlop, B. Bollens, F. Crevecoeur, C. Detrembleur, and T. M. Lejeune, Dynamics of revolution time variability in cycling pattern: voluntary intent can alter the long-range autocorrelations, Ann. Biomed. Eng, vol.41, pp.1604-1612, 2013.

D. J. Watts, The "new" science of networks, Annu. Rev. Sociol, vol.30, pp.243-270, 2004.

G. Werner, Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol, vol.1, p.15, 2010.

J. Whitacre and A. Bender, Degeneracy: a design principle for achieving robustness and evolvability, J. Theor. Biol, vol.263, pp.143-153, 2010.

J. M. Whitacre, Degeneracy: a link between evolvability, robustness and complexity in biological systems, Theor. Biol. Med. Modell, vol.7, p.6, 2010.

A. M. Wing and A. B. Kristofferson, Response delays and the timing of discrete motor responses, Attent. Percept. Psychophys, vol.14, pp.5-12, 1973.

S. T. Witt, A. R. Laird, and M. E. Meyerand, Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis, Neuroimage, vol.42, pp.343-356, 2008.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, J. et al., NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy, Neuroimage, vol.44, pp.428-447, 2009.