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In behavioral neuroscience, the adaptability of humans facing different constraints has

been addressed on one side at the brain level, where a variety of functional networks

dynamically support the same performance, and on the other side at the behavioral level,

where fractal properties in sensorimotor variables have been considered as a hallmark

of adaptability. To bridge the gap between the two levels of observation, we have jointly

investigated the changes of network connectivity in the sensorimotor cortex assessed

by modularity analysis and the properties of motor variability assessed by multifractal

analysis during a prolonged tapping task. Four groups of participants had to produce the

same tapping performance while being deprived from 0, 1, 2, or 3 sensory feedbacks

simultaneously (auditory and/or visual and/or tactile). Whereas tapping performance was

not statistically different across groups, the number of brain networks involved and

the degree of multifractality of the inter-tap interval series were significantly correlated,

increasing as a function of feedback deprivation. Our findings provide first evidence

that concomitant changes in brain modularity and multifractal properties characterize

adaptations underlying unchanged performance. We discuss implications of our findings

with respect to the degeneracy properties of complex systems, and the entanglement of

adaptability and effective adaptation.

Keywords: adaptability, fNIRS, modularity, fractal properties, tapping

INTRODUCTION

The huge ability of the brain to exploit its inherent plasticity to adapt to intrinsic or extrinsic
constraints over different time scales is stunning and vital (Bassett et al., 2011; Fallani et al.,
2014). Depending on circumstances, adaptability may take the form of robustness against changing
conditions as well as the form of innovation and evolvability (Whitacre, 2010; Whitacre and
Bender, 2010). In a complementary way the brain allows for preserving a given cognitive-motor
performance in the face of tumor growth and resection (Duffau, 2014) as well as diversifying the
repertoire of our cognitive-motor behaviors with learning, for example (Bassett et al., 2011; Dayan
and Cohen, 2011). While some studies has focused on the precise neuro-physiological mechanisms
sustaining the brain’s capacity to adapt, others have provided insight intomore generic organization
principles inherent in complex systems, notably through the assessment of brain network
connectivity (e.g., Tononi et al., 1994;McIntosh et al., 1999; Sporns, 2012; Tognoli and Kelso, 2014).
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From this latter perspective, the brain’s functional organization
has been conceived as a dynamic balance between functional
segregation and integration of subparts of the entire network
(Friston, 1994; Tononi et al., 1994; Sporns, 2013). At a given
observation scale, the brain network can thus be assessed as a
modular organization, modules being defined as clusters that are
densely connected within but weakly connected between them
(Bullmore et al., 2009; Bassett and Gazzaniga, 2011; Sporns and
Betzel, 2016). Moreover, complexity is increased by the dynamic
properties of the functional connections within and between
modules, which may compose and recompose depending
on circumstances. In particular, such connectivity scheme is
closely related to degeneracy, a key property characterizing
the structure-function relationship in the brain (Tononi et al.,
1999; Noppeney et al., 2004). Degeneracy refers to a many-
to-one structure-function relationship, with a partial functional
overlapping between modules of the network: different parts
may perform the same function or specialized functions under
circumstances (Edelman and Gally, 2001; Price and Friston,
2002; Whitacre and Bender, 2010). Together, the modular
and degenerate properties of network connectivity constitute
an essential basis for adaptability, supporting robustness and
adaptive changes facing various conditions (Jirsa et al., 2010;
Whitacre, 2010; Bassett and Gazzaniga, 2011; Grefkes and
Ward, 2014). The variety of the dynamical states or network
configurations involved to maintain a given function or
performance, whether at rest (Deco et al., 2011) or during a task
may thus basically reflect adaptation to changing conditions.

Developing in parallel in a bio-behavioral literature, a
significant amount of research focusing on the temporal
dynamics of diverse macroscale variables (e.g., heartbeat
intervals, Ivanov et al., 2001; force production, Athreya
et al., 2012; gait and coordination dynamics, Hausdorff et al.,
1996; inter-tapping intervals, Torre and Delignières, 2008)
has considered that fractal fluctuations are the hallmark
of underlying dynamic complexity and system’s adaptability
(Ivanov et al., 1998; Gilden, 2001; Ashkenazy et al., 2002; Kello
et al., 2010; Manor et al., 2010; Torre and Balasubramaniam,
2011; Delignières and Marmelat, 2013). Notably, a breakdown
of the fractal properties in pathological and/or elderly compared
to young and healthy subjects has been evidenced repeatedly,
supporting the idea that loss of fractal properties can be
considered a marker of the general loss of adaptability coming
along with aging and disease (Goldberger, 1996; Hausdorff
et al., 1996; Peng et al., 2000; Blaszczyk and Klonowski, 2001;
Lipsitz, 2002). In particular, in the context of neurological
disorders such as Parkinson, Huntington or Alzheimer diseases,
research programs have been assessing the diagnostic and/or
prognostic (Mäkikallio et al., 2001; Goldberger et al., 2002;
Hu et al., 2009) power of fractal properties in sensorimotor
variables. Thereby studies have made implicit but strong
assumptions on a close relationship between network alterations
at the brain level and fractal properties at the effector
level. In a complementary vein, the fractal properties of
motor variables have been shown sensitive to experimental
restriction/augmentation of the sensorial feedbacks available
to subject’s performance on given tasks (Slifkin and Newell,

1999; Manor et al., 2010; Athreya et al., 2012; Warlop et al.,
2013). Finally, the literature has evidenced that fractal properties
may be variable within a same time series (multifractal series).
Different fractal scaling regimes may apply in an intermittent
way to different windows of observation within the series,
thus reflecting variations in the system’s underlying dynamic
organization and exploration of new solutions (e.g., Ivanov
et al., 2001, 2004; Nunes Amaral et al., 2001; Hu et al., 2004;
Stephen and Anastas, 2011; Dixon et al., 2012; Dutta et al.,
2013). In fact, where comparison of the Gaussian properties
of any variable of interest may indicate unchanged output
across groups or experimental conditions, alterations of its
fractal properties often reflect underlying reorganizations in the
performing system. To our knowledge, however, the question
of whether/to what extent the multiple connectivity patterns
forming and reforming in the brain directly spill over into the
behavioral outcome remains largely unanswered so far: When
the brain adapts facing changing conditions to sustain steady
motor-behavioral performance, are the ad hoc reorganizations
in network connectivity reflected in some distinctive fractal
properties of behavioral variability?

In view of the above literature, the degeneracy or
intermittency of functional brain networks may be reflected
in the multifractal properties at the behavioral level. Imposing
constraints by manipulating the feedbacks available to perform
a motor task is likely to alter the expression of degeneracy in
the motor output. Therefore, the purpose of the study was to
bridge levels of observation to establish a direct relationship
between degenerate connectivity patterns enabling adaptation at
the brain level, and fractal properties as their dynamic signature
in the sensorimotor outcome. Herein we consider adaptability
as the capacity to maintain a given function or performance
despite changing constraints. Thus, a heuristic experimental
paradigm should allow us to manipulate the experimental
constraints imposed to subjects in a given task without these
manipulations affecting their performance, by virtue of the
system’s capacity to adapt. In this way, we should be able to
assess jointly the variety of patterns of brain connectivity that
are involved intermittently during task performance, and the
dynamic fractal properties of the task variable. Therefore,
we used the well-known finger-tapping paradigm (Wing and
Kristofferson, 1973), where previous literature has showed that
experimental deprivations of visual, auditory, or tactile feedbacks
are not such as to alter tapping performance (Aschersleben and
Prinz, 1995, 1997; Stenneken et al., 2006; Repp and Su, 2013).
Following from the above, we hypothesized that the variety
and intermittency of brain networks (degeneracy) involved in
the task and the dynamical fractal properties of tapping series
would evolve jointly as a function of different conditions of
feedback deprivation, while tapping performance should stay
invariant.

MATERIALS AND METHODS

Participants
Thirty-two healthy volunteers took part in the study (9 women,
23 men, 26.9 ± 6.3 years of age). All participants signed a
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written informed consent before participating in the study.
All participants were right-handed according to the Edinburgh
Handedness Inventory (Oldfield, 1971) and reported normal
hearing and normal or corrected vision. None showed any sign
of neurological disease, nor reported extensive practice in music.
All procedures were approved by the local ethics committee (IRB-
EM: 1610C, Montpellier). All participants gave written informed
consent in accordance with the Declaration of Helsinki for
human experimentation.

Experimental Design and Procedure
The experimental design was an independent-group design,
with the experimental factor being the numbers of sensorial
feedbacks the participants were deprived from. Participants
were randomized to one of the four following conditions:
(i) no feedback deprivation (Control), (ii) deprivation of one
feedback, either visual, or auditory, or tactile (-1 FB); (iii)
simultaneous deprivation of two feedbacks, either visual and
auditory, or visual and tactile, or auditory and tactile (-2 FB); (iv)
simultaneous deprivation of three feedbacks, visual, auditory and
tactile (-3 FB). Participants were deprived of visual and auditory
feedbacks using a sleeping mask and ear defenders, respectively.
The tactile feedback was prevented by the means of a removable
striking surface at the place where the index finger tapped (“air
tapping,” e.g., Aschersleben and Prinz, 1997). Each participant
performed three tapping trials in the assigned conditions.
As mentioned above, none of the visual, auditory or tactile
deprivations should alter tapping performance (Aschersleben
and Prinz, 1995, 1997; Repp and Su, 2013), and no study to
our knowledge conveys strong assumptions about any differential
effect of these conditions on the temporal structure of tapping.
Nevertheless, rather than arbitrarily removing one of the three
feedbacks for each participant or for a whole group, participants
of the −1 FB group performed one trial in each of the visual,
auditory and tactile feedback deprivation conditions in a random
order. Likewise, participants of the −2 FB group performed one
trial in each of the visual-auditory, visual-tactile, and auditory-
tactile deprivation conditions in a random order. Participants
of the Control and −3 FB groups performed three times the
same.

The Tapping Task
The experiment was conducted in a quiet room. Participants
were sitting comfortably on an adjustable chair, with their
dominant side forearm and palm of the hand resting on
a customized plinth (570 × 160 × 50mm) on a table in
front of them. Subjects realized a tapping task according to
a conventional synchronization-continuation paradigm (Wing
and Kristofferson, 1973; Vergotte et al., 2017): during the initial
synchronization phase, the tempo was prescribed by a PC-
driven auditory metronome delivering 20 signals at a frequency
of 1.5Hz (0.666 s inter-tap intervals), known as a comfortable
tapping frequency (Fraisse, 1966; Torre and Delignières, 2008).
Once the metronome stopped, participants had to continue
tapping by maintaining the prescribed tempo as accurately
and regularly as possible for the whole trial duration. The
duration of each trial was set to 6min 40 s so as to ensure

a sufficient number of inter-tap intervals to be submitted to
subsequent fractal analysis (Delignieres et al., 2006; Eke et al.,
2012). Between each of the three trials, participants had a 2-min
rest.

Data Collection
Tapping Performance
Movements of the index finger were captured using a single-axis
accelerometer (15 × 15mm) fixed on the nail so as to minimize
possible device-induced sensorial feedbacks. Acceleration data
were collected using a Labjack U12 device and stored via its
software (LJStream v1.07). The sampling rate was 300Hz.

Functional Near-Infrared Spectroscopy

Measurements
Hemodynamic changes in the cortex during the tapping tasks
were measured by two synchronized continuous waves (CW)
multi-channel functional near infrared spectroscopy (fNIRS)
devices (Oxymon MkIII and Octamon, Artinis Medical Systems,
The Netherlands) with a sampling rate of 10Hz. fNIRS is an
optical method using near-infrared light to measure relative
changes of oxyhemoglobin (O2Hb) and deoxyhemoglobin
(HHb) in the cortex (Scholkmann et al., 2014). In the present
study, a customized cap was used to place beside the vertex
(Cz) a 16-channels array on three regions of interest [premotor
cortex (PMC), primary motor cortex (M1) and supplementary
motor cortex (SMA)] on both hemispheres. Another 8-channel
array was placed on the prefrontal cortex [PFC, Nazion (Nz)
was the reference point]. Due to different sensibility of light
penetration among brain regions using fNIRS (Brigadoi and
Cooper, 2015), the inter-probe distance was fixed at 30mm for
M1, PMC and SMA, and 35mm for PFC. After positioning all
we used a 3D-digitizer (Fastrack, Polhemus, United States) to
collect the location of each probe for each subject. NFRI function
(Singh et al., 2005) included in the NIRS-SPM toolbox (Ye et al.,
2009) was used to extract the Montreal Neurological Institute
coordinates (MNI). The positioning of the 24 channels (MNI
coordinates and Brodmann area correspondences) can be seen
in Figure 1.

Data Analysis
Motor Variability Analysis

Preprocessing of tapping data
Raw acceleration data were first low-pass filtered using a
Butterworth zero-phase digital filter (Frequency= 15Hz). Then,
a MATLAB in-house script (MATLAB 2014b, The MathWorks)
for peak detection was used to extract the onsets of the
subsequent finger taps. Series of inter-tap intervals (ITI) were
then computed as the differences between subsequent tap times.
For each trial, the first twenty ITI (corresponding to the
synchronization phase) were discarded, and series of 512 ITI in
the continuation phase were retained for further analyses. For
each ITI series, we computed the typical performance variables
used in tapping studies (Billon et al., 1996; Repp and Su, 2013),
namely the mean, the coefficient of variation (CV) and the linear
drift over the trial duration.
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FIGURE 1 | Localization of fNIRS probes, channels, MNI coordinates and Brodmann correspondences. (A) Yellow: transmitters, blue: detectors and red: channels.

(B) MNI coordinates for each channel (n = 24) with x, y, and z coordinates. On the right, Brodmann area correspondence (number, name and %) extracted from the

NIRS-SPM toolbox (NFRI function).

Characterizing fractal properties of inter-tap interval series
Fractal time series are basically characterized by fluctuations with
scale invariant structure [i.e., obeying a power law distribution
X(ct) = cHX(t), where X is the signal, c is a constant, H is the
fractal exponent] and temporal long-range correlations (meaning
the autocorrelation function of the time series decays as a power-
law without falling to zero). To analyze the fractal properties
of ITI series, we used the Multifractal Detrended Fluctuation
Analysis (Ivanov et al., 1999; Kantelhardt et al., 2002; MFDFA,
Ihlen, 2012). MFDFA is derived from the original Detrended
Fluctuation Analysis (DFA), which estimates the monofractal
properties of a time series (Peng et al., 1995). In short, DFA
exploits the diffusion properties of the time series, analyzing
the relationship between the average amplitude of fluctuations
and the size of the observation window within which these
fluctuations are measured. For fractal series, a power-relationship
characterized by the monofractal exponent α ε [0, 2] is expected:
in particular, for α = 0.5 the series is white noise, for α = 1,
the series is so-called 1/f noise, and for 0.5 < α < 1 the
series is considered stationary and containing persistent long-
range correlations. By yielding a single fractal exponent (α)

characterizing the average fractal properties of a time series, the
DFA assumes that the fractal properties are homogeneous over
all scales of the entire time series.

However, instead of being characterized by a single
homogeneous fractal exponent, time series of bio-behavioral
variables are often characterized by an inhomogeneous
distribution of variability (intermittent fluctuations). The fractal
exponent may vary over time scales: the series is actually
characterized by multiple fractal exponents (Ihlen and Vereijken,
2010) and with this viewpoint the MFDFA was developed
(Kantelhardt et al., 2002; Ihlen, 2012). Since we hypothesized
that the system’s adaptations to imposed task constraints would
be expressed through the variety of fractal properties in ITI
series, we opted for MFDFA analysis. MFDFA basically uses the
same steps as DFA, but the average amplitude of the fluctuations
is calculated using qth order fluctuation function, with q varying
from−10 to +10 in steps of 0.5, whereas DFA computes the
amplitude of fluctuations only for q = 2. In brief, the time series
x(i) is first integrated into X(k), and divided into Nn adjacent
segments of length n. Within each segment (s = 1, . . . , Nn) the
local trend is then subtracted from X(k). So, the amplitude of
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fluctuations is computed for each detrended segment according
to:

F2(n, s) =
1

n

sn
∑

k = (s−1)n+1

[X(k)− Xn,s(k)]
2 (1)

The variance is then averaged over all segments to obtain the qth

order fluctuation function:

Fq(n) =

{

1

Nn

Nn
∑

s = 1

[F2(n, s)]
q/2

}1/q

(2)

If the series x(i) presents fractal properties, the generalized Hurst
exponent h(q) is given by:

Fq(n) ∝ nh(q) (3)

According to Kantelhardt et al. (2002), the result of MFDFA
can then be converted into the classical multifractal formulation
using simple transformations, to be finally summarized by the
multifractal spectrum representing F(α) as a function of α(q),
where F(α) is the fractal dimension (or dimension of the subset
of the series that is characterized by α), and α is the Hölder
(or singularity) exponent (see Figure 2). Our variable of interest
is the width of the multifractal spectrum (MF-Width), meaning
the range between the minimum and maximum exponents α(q)
characterizing the time series, which represents the degree of
multifractality. Figure 2 illustrates the distinction between mono
and multifractal properties of two experimental time series as
assessed by DFA and MFDFA.

Brain Connectivity Analysis

fNIRS preprocessing
A common approach as described in Huppert et al. (2009)
was used to obtain O2Hb and HHb concentration changes. We
extracted 6min of raw (light intensity) data after the end of
the metronome using the ARTINIS software (Oxysoft v3.0.95).
Data were then uploaded in MATLAB. We first converted
intensity data to optical density (OD). Then we applied the
moving standard deviation and spline interpolation methods
(SDThresh = 20, AMPThresh = 0.5, tMotion = 0.5 s, tMask
= 2 s and p = 0.99; Scholkmann et al., 2010), combined with
wavelet artifact correction (iqr= 0.1; Molavi and Dumont, 2012)
as recommended in Cooper et al. (2012) to remove possible
head motion artifacts. To retrieve the relative concentration
changes (expressed in µM) of O2Hb and HHb, we applied the
modified Beer-Lambert law (Kocsis et al., 2006) on OD data,
by including an age-dependent constant differential path length
factor (4.99+ 0.067×Age0.814). The presence of a strong cardiac
oscillation (frequency peak around 1Hz) in the power spectrum
of O2Hb signal indicates a good contact between the optical
probe and the scalp (Themelis et al., 2007). 6.25% of all channels
analyzed did not satisfy this condition and were discarded. For
subsequent analysis, a band pass zero-phase digital filter (4th
order Butterworth, cut-off frequency [0.009 0.08]) was used to
remove physiological noise like cardiac, respiratory, Mayer waves
and very low frequencies (Scholkmann et al., 2014). A linear
detrending was then used to remove possible slow drifts.

Functional connectivity analysis
In the line of assessing functional network connectivity free
from the constraint of neuroanatomical a-priori assumptions,
the most commonly used method is based on the bivariate
Pearson’s correlation analysis (Biswal et al., 1995): it consists in
computing the statistical dependency between two or more time
series to explore the influence that one region of interest exerts
on others (seed based correlation analysis), or in computing all
possible connections at the level of the entire brain (whole brain
correlation analysis), at rest or during a task (Medvedev, 2014).

Then an N × N adjacency matrix was constructed, reflecting
the strength of the correlation between each time series.
However, different studies applying such analyses have implicitly
considered that patterns of connectivity were stationary and
computed an average matrix over the whole scanning period.
Instead, to assess the dynamic functional connectivity (dFC)
between the present 24 fNIRS channels, we used a sliding window
correlation analysis as proposed in the literature (Hutchison et al.,
2013). For each subject, this method yielded a number n of
matrices depending on the window size and a shift (in samples),
summarizing the evolution of all connections between channels
over time. As there is no consensus in the literature we used three
widespread window sizes (30, 75, and 120 s; Hutchison et al.,
2013) and a shift of 1 sample (100ms). Figure 3 illustrates the
pipeline for these analyses.

Modularity analysis
Once obtained the time evolution for all connections, one
of the main challenges in dFC analysis is to classify the
multiple networks obtained with reliable metrics (Fallani et al.,
2014). A network is a collection of nodes (vertices) and links
(edges). All networks are represented mathematically through
their connectivity (adjacency) matrices. Rows and columns
correspond to nodes and entries denote links that are weighted.
Based on the graph theory analysis, one of the relevant methods
to extract the number of different communities involved during
the task is the modularity analysis (Newman, 2006; Rubinov and
Sporns, 2010). Modularity quantifies the degree to which the
network may be subdivided into delineated and no overlapping
groups. In other words, modularity reflects strong links within
each community and weaker links between communities. The
Modularity (Q) for a partition in communitiesm= [m1, . . . , mn]
of a weighted undirected graph is defined (Watts, 2004; Newman,
2006; Rubinov and Sporns, 2010) as:

Qw
(m1, ...,mn) =

1

lw

∑

i,j ∈ N

[

wij −
kwi k

w
j

lw

]

δmi,mj (4)

where wij is the weight of the edge between node i and node
j. The set of weights fits into a matrix w that represents the
graph G. Here wij is the correlation between the row i and row
j of functional O2Hb matrix. Rows and columns of the square
matrix G are indexed by the nodes of G (that is the time index
of O2Hb matrix). When connections are non-oriented (as in
the present study) this matrix G is symmetric: weight wij= wji

and ki is the weight of vertex i that is the sum of wij for all
vertices j. The number lw is the total sum of weights. Modularity
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FIGURE 2 | Distinction between DFA and MFDFA analysis for mono and multifractal time series. (A) Two experimental time series of 512 pts: in blue, the time series is

closely mono-fractal; in red, the time series is multi-fractal. The Y-axis displays an arbitrary unit centered to zero. (B) Results yielded by DFA for the two time series.

The plot shows the size of fluctuations F(n) as a function of the size n of observation windows in bi-logarithmic coordinates. The monofractal exponent α is given by

the slope of log(F(n)) vs. log(n). According to the plot, both time series present long-range correlations and are characterized by the same monofractal exponent

(α = 0.74). (C) Multifractal spectra for the two time series. The right-hand side of the spectrum accounts for the influence of large-amplitude fluctuations (q positive),

and the left-hand side accounts for the influence of low amplitude fluctuations (q negative). The width of the multifractal spectrum is then calculated by the difference

α(q)max – α(q)min. Comparison of plots (B,C) shows that while both time series present globally the same monofractal exponent, the blue series is close to

monofractal whereas the red one is clearly multifractal.

FIGURE 3 | Illustration of the functional connectivity analysis for one representative subject. (A) Extraction of O2Hb fNIRS time series for all channels after

preprocessing and band pass filtering (cut off frequency [0.08 0.009]). (B) Sliding window Pearson’s correlation analysis for window sizes of 30, 75, and 120 s.

(C) Grand average correlation analysis between each matrix. The upper plot shows communities detected for 360 s (3 communities in this example). (D) Grand

average matrix after putting in the order of community. Red squares delimit each community.

optimization was done based on the assumption that a graph
partitioning is the difference between the number of edges
within the partitions found and the number of expected edges
at random between vertices of an equivalent degree distribution

(Newman, 2006). In this formalism, the ratio kwi k
w
j /l

w gives the

null model, that is the probability that a random edge with a
random weight wij joins the nodes i and j (Newman, 2006).
Nodes of G are partitioned between the sets m1,. . . ,mn. So, mi

Frontiers in Physiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 909

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Vergotte et al. Brain Functional Connectivity and Motor Variability

is the set of the actual partition that contains vertex i. The δ

(mi,mj) (delta of Dirac) function for given vertices i and j takes
the value 1 if i and j are in the same subset of the partition
(that is mi = mj), and 0 otherwise. Importantly, in our study
we used the modularity analysis across all time steps and not
for each graph. We then considered that distinct community
detected should reflect different network organization without
extracting the exact topological organization. We determined
the communities in each of these graphs by the algorithm that
maximizes the modularity (see Equation 4) from the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010).

Statistical Analysis
After normality testing (Lilliefors test), between-group
differences were tested using one-way ANOVA on the three
tapping performance variables (mean, CV and drift of ITI
series), and on MF-Width with respect to our main hypothesis.
Secondarily we also checked for any between-group difference
in the monofractal exponent (α). We used Kruskal Wallis
analysis, as the data were not normally distributed for the three
sliding window sizes of community detection analysis. We
used Spearman’s correlation between the number of networks
detected for each sliding window size (30, 75, and 120 s) and
MF-Width of the tapping series.

RESULTS

Tapping Performance
All samples of the tapping performance variables (mean, CV,
and drift) were normally distributed. Our experimental design
was thought to impose different levels of constraints to the
subjects without inducing differences in tapping performance.
The ANOVA applied to the performance showed no significant
difference between groups for all variables [mean: F(3, 28) = 1.519;
p= 0.230; η2 = 0.136, CV: F(3, 28) = 2.316; p= 0.523; η2 = 0.045,
drift: F(3, 28) = 0.634; p= 0.594; η2 = 0.022, Figure 4].

Multi-Fractal Properties of Tapping Series
MF-Width samples were normally distributed after log-normal
correction. The one-way ANOVA revealed a significant group
effect [F(3, 28) = 2.822; p = 0.044; η2 = 0.253]. LSD Fisher post-
hoc showed differences between the control group and the −1
FB and −2 FB groups (p = 0.012 and p = 0.021, respectively).
Figure 5 summarizes the results obtained for the multifractal
properties of tapping time series. Monofractal exponents (α)
were normally distributed, and the one-way ANOVA did not
show any significant difference between groups [F(3,28) = 0.845;
p= 0.473; η2 = 0.071].

Modularity Analysis
For all considered sliding window sizes, Kruskal Wallis test
showed significant differences between Control and −1 FB, − 2
FB and − 3 FB groups [for 30 s: H(3) = 18.7, p = 0.003; η2 =

0.561; for 75 s: H(3) = 18.5, p = 0.001; η2 = 0.554; for 120 s:
H(3) = 18.9; p = 0.003; η2 = 0.568]. All corrected p-values for
multiple comparisons are reported in Table 1. Results for each
window size are shown in Figure 6.

Relationship Between Modularity in the
Brain and Fractal Properties in Behavior
With regard to our main hypothesis, results showed a significant
correlation (Figure 7) between MF-Width in tapping series and
the number of brain networks detected for window sizes 30 s
(rho = 0.277; p = 0.028) and 75 s (rho = 0.275; p = 0.038).
However no significant correlation was found for window size
120 s (rho= 0.086; p= 0.526).

DISCUSSION

The present study aimed to establish a relationship between
connectivity patterns underlying adaptation at the brain level and
fractal properties as their dynamic signature in the behavior. We
hypothesized that the number of brain networks involved in the
task and the multifractal properties of the tapping series would
evolve jointly, as a function of different conditions of feedback
deprivation. We found that (i) the degree of multifractality (MF-
Width) increased significantly in groups where feedbacks were
suppressed as compared to the control group; (ii) the number
of networks involved during the task was higher for groups with
feedback deprivation than for the control group; and (iii) MF-
Width and the number of networks involved in the task were
correlated for sliding windows of 30 and 75 s. After discussing
the suitability of the experimental design, we consider some
notable implications of our results at the behavioral and brain
levels, respectively, before focusing more specifically on the
brain-behavior relationship.

Suitability of the Experimental Design
We considered the general definition of adaptability as the
capacity to maintain a given function or performance despite
changing constraints (De Wolf and Holvoet, 2005), also
referred to as robustness (Whitacre, 2010). In this line, the
experimental paradigm was required in order to impose different
experimental constraints while leaving the global level of task
performance substantially close: the system was thus deemed to
handle adaptations—notably reorganization in brain—allowing
for sustained performance. To meet these requirements, we
used a finger-tapping task. A major advantage of such task was
to allow for a simple manipulation of the amount of sensory
feedbacks available (–1 FB,−2 FB,−3 FB), while overall tapping
performance has previously been shown insensitive to feedback
manipulations (Aschersleben and Prinz, 1995, 1997; Repp and Su,
2013). That is, in the present study feedback manipulation has
merely constituted a means to constrain the system and induce
putative internal adaptation/reorganization, without any specific
hypothesis as regards the sensory modalities. In this respect,
our results are congruent with the literature (Aschersleben and
Prinz, 1997), as we observed no significant differences between
conditions of feedback deprivation in any of the three variables
commonly characterizing tapping performance (mean ITI, CV
and drift; Figure 4). Moreover, such tapping task has previously
been shown to entail fractal properties in the ITI series produced
(Lemoine et al., 2006; Torre and Delignières, 2008). Our present
results on the monofractal exponent α are also in agreement with
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FIGURE 4 | Dotplot of tapping performance for the four groups. Left, mean inter-tap intervals (ITI) produced. Middle, Coefficient of variation (CV) of ITI series. Right,

drift of ITI series during the task. Error bars represent standard error.

FIGURE 5 | Degree of multifractality of ITI series (MF-Width) for the four experimental groups. (A) Average multifractal spectrum for each group. (B) Dotplot MF-Width

for the four experimental groups; gray horizontal line represent the mean. Star reflects the significant difference at p < 0.05.

TABLE 1 | Corrected p-values of Kruskal Wallis analysis for each sliding window

size.

Window size

30 s 75 s 120 s

Control/−1 FB <0.009 <0.04 <0.03

Control/−2 FB <0.003 <0.0002 <0.02

Control/−3 FB <0.006 <0.02 <0.01

−1 FB/−2 FB 1 1 1

−1 FB/−3 FB 1 1 1

−2 FB/−3 FB 1 1 1

Significant differences are in bold.

the literature in this respect (α = 0.75 ± 0.13 all groups taken
together, without significant differences between groups).

As regards the experimental design, we opted for an
independent group design rather than repeated measures.
Although this methodological choice obviously entailed
limitations of sample sizes for each group, we deemed it
preferable given the lengthy duration of tapping trials required
for reliable fractal analysis (Delignieres et al., 2006; Vaz et al.,
2017). Indeed, we aimed to observe the effect of adaptations
due to feedback deprivation, which implied avoiding as much
as possible any putative effects of weariness and attentional
fluctuations that may also alter the fractal properties of tapping
series (Damouras et al., 2010). Finally, in contrast to previous

studies we here investigated a motor task with adaptations being
experimentally induced by different levels of task constraints.
In return, this approach implied some a priori uncertainty as
regards the precise effect of experimental constraints especially
on brain connectivity, rather than a priori controlled variations
as possible in simulation studies for example. All in all, the
consistency of our results with previous literature leads us to
consider the experimental design suitable, and following results
with reasonable confidence.

Multifractal Properties Reflect Adaptations
Underlying Unchanged Performance
Further gain of precision in appraising the functional
significance of fractal properties in behavioral variables is
a still-open challenge. A significant body of literature has
converged to the general idea that mono and multifractal
properties are a hallmark of the adaptability of biological
systems (Goldberger et al., 2002; Lipsitz, 2002). However,
such conclusions mostly originate from indirect cross-
sectional observations revealing loss of fractal properties
with aging, pathology, or different conditions of functional
impairment that are generally associated with loss of adaptability
(Manor et al., 2010; Manor and Lipsitz, 2013). Though
adaptability (or loss of adaptability) may indeed constitute a
common denominator, several potentially confounding effects,
including effective adaptations to achieve task performance
despite functional impairment, might actually be the cause
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FIGURE 6 | Box plots with median, quartiles, and individual dots for the number of communities detected during the task for the four groups (Control,−1FB,−2 FB,

and−3 FB), for (A) sliding window of 30 s, (B) sliding window of 75 s, and (C) sliding window of 120 s. Stars highlight significant difference at p < 0.05.

FIGURE 7 | Scatterplots showing the correlation (Spearman’s correlation) between the multifractal properties (MF-Width) and the number of communities detected

with modularity analysis, for (A) window size = 30 s, (B) window size = 75 s, and (C) window size = 120 s. The correlation is significant for 30 and 75 s windows.

Yellow = control group, light blue = −1 FB, blue = −2 FB, and dark blue = −3 FB group.

of altered fractal properties (Dingwell and Cusumano,
2010).

Our present results show significant variations of multifractal

properties as a function of feedback deprivation imposed to
the system (Figure 5) without significant functional decrement

(Figure 4), which does not appear directly relevant to the issue of

adaptability. At a first glance, this result may appear congruent
with previous studies showing an alteration of monofractal

properties as a function of the involvement of sensorial feedbacks

in task performance (Slifkin and Eder, 2012, 2014): it has indeed
been proposed that weaker monofractal properties may be due

to tighter sensorimotor control mechanism exerted on task-
relevant variables (Dingwell and Cusumano, 2010; Warlop et al.,

2013). However, we observed that the degree of multifractality
in tapping series increased in feedback deprivation conditions

compared to the control group.Mono andmultifractal properties

do not capture the same features of time series: whereas
monofractal properties summarize a homogeneous scaling
behavior over the whole time series, multifractal analyses assess
the possibly inhomogeneous scaling regimes present in the
series, and capture the amount of intermittent changes in the
systems/subjects functioning modes (Ihlen and Vereijken, 2010).
Thus, this result suggests an increasing involvement of different

modes of regulation to achieve unchanged performance despite
the imposed experimental constraints. Accordingly, we support
the idea that rather than globally reflecting the adaptability of
complex biological systems, changes in multifractal properties
reflect effective adaptations underlying invariance of functional
outcome.

In this line, characterizing multifractal properties in
macroscale variables may constitute a fine-grained analysis
to uncover masked adaptations underlying goal achievement.
From a broader perspective, disentangling adaptability and
effective adaptation actually constitutes a major challenge, as
both come necessarily together to a certain extent (Ulanowicz,
2002). Combining analysis at the task-relevant observation level
(e.g., the level of motor performance) and an assessment of the
correlates occurring at underlying observation levels (e.g., the
level of brain dynamics) may contribute to this end.

Changes in Brain Modularity Reflect
Functional Adaptation to Constraints
In this study, we hypothesized that the variety and intermittency
of functional connectivity patterns would be influenced by
different conditions of privation of sensorial feedbacks. Our
results show that dynamical reorganizations of the brain network
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yielded multiple networks that were intermittently involved
during task performance (Figures 3, 6), and that the number
of different networks involved depends on the experimental
group, i.e., on the feedbacks subjects were deprived or not.
The literature studying brain networks involved in a task has
generally considered that for a given function or performance
the functional organization of the brain is stable over time.
Accordingly, the purpose of investigations has often been to
extract the typical network engaged in a given task, using
a number of computational methods (Biswal et al., 1995;
Witt et al., 2008). Nevertheless, another part of the literature
studying the dynamic properties of functional networks in
resting state has showed that the modular organization of the
brain evolves within the scanning period (Chang and Glover,
2010; Hutchison et al., 2013; Fallani et al., 2014) and that
such natural fluctuations are likely to support the ability of
quick adaptive responses (Deco et al., 2011). Previous studies
using resting paradigm do not enable to reveal the actual
implementation of such adaptability during a sensorimotor task.
These results complement previous literature insofar as they
show that the variety of brain networks that are involved in
a single task depends on the experimental constraints imposed
to the subjects. More precisely, the counter-intuitive character
of these results (i.e., increased number of networks with
decreasing feedbacks, Figure 6) could be explained by the fact
that, under constraints, the brain navigates between numerous
networks to find out the solution enabling achievement of its
level of performance (Kelso et al., 2013; Tognoli and Kelso,
2014). Such explanation seems consistent with previous studies
showing novel recruitment of cortical areas under conditions
of chronic sensorial deprivation (blindness, deafness, Merabet
and Pascual-Leone, 2010), although adaptation to transient
experimental manipulations is not directly comparable with
lifelong alterations.

From a broader perspective, considering that the brain
possesses degenerate properties (i.e., multiple networks could
perform the same function with some of them being possibly
latent, Edelman and Gally, 2001), the networks involved in
a given function or performance can hardly be grasped in a
comprehensive way without imposing internal and/or external
constraints so as to induce variation in connectivity patterns
(Price and Friston, 2002). This idea was initially developed in
theoretical papers, and few experimental tasks actually allow
imposing constraints without changing the motor performance.
Electroencephalography, functional magnetic resonance imagery
and fNIRS studies (Nedelko et al., 2010; Leff et al., 2011;
Muthuraman et al., 2012) showed that the sensorimotor network
(e.g., M1, PMC, and PFC) is engaged in a simple short finger-
tapping task and is supposed to reflect sensory integration, motor
initiation and production. Conversely, our results suggest the
existence of multiple networks that allow for the carrying out of
a tapping task over time. Moreover, there is no single network
dedicated specifically to tapping independently of the different
conditions under which tapping is to be performed. However,
these findings need to be examined with caution due to some
methodological consideration. In this study, we used modularity
analysis (Newman, 2006; Sporns, 2012; or community detection,

Sporns and Betzel, 2016) at the macro scale level (between
networks) and not on each network. One can hypothesize that
the latter analysis would make it possible to highlight similar
clusters of sub-networks linked in different ways. In particular,
it has recently been shown that dynamic connectivity between
different brain regions is not only dependent on the regions
involved, but also on the interconnections between multiple EEG
frequency bands (Liu et al., 2015). Future investigations using
EEG combined with fNIRS would allow to better understand
the dynamic functional organization of the brain, and the
role of multifrequency connections in network coupling. It has
been proposed that the modular organization of the brain is
subtended by a relatively rigid network composed of nodes
distributed in each sub-module (Sporns, 2013). Nevertheless,
although the origin of temporal fluctuations in dFC estimates
remains largely unknown, sliding window analysis was shown
as a promising method to highlight dynamic connectivity in
multiple neuroimaging methods. As the optimal window size to
compute correlation coefficient is still under debate (Hutchison
et al., 2013), we used three-window sizes (30, 75, and 120 s,
see Figure 7) to be confident in the results obtained. We found
a strong statistical difference between the control group and
other groups independently of the window size. This confirms
our hypothesis and this allows us to confirm that our results
are not dependent on the window size chosen (e.g., Hutchison
et al., 2013; Hindriks et al., 2016). An additional step of our
promising results would be to extract the characteristics of the
different networks implemented withmore fine-grained tools like
those proposed in fMRI (Bassett and Bullmore, 2006; Bassett and
Gazzaniga, 2011; Papo et al., 2014).

Bridging the Gap Between Brain and
Behavior
The literature has mostly been studying the dynamics of cerebral
networks on one hand, and the temporal structure of behavioral
variability on the other hand, though both communities share key
concepts coming with the complex system approach (Bullmore
et al., 2009; Werner, 2010; Whitacre and Bender, 2010; Sleimen-
Malkoun et al., 2014). Thus, attempts to link these two
approaches seem valuable (Price and Friston, 2002; Friston and
Price, 2011). In the present study, we provide novel evidence
that the number of networks involved during a motor task in
four experimental conditions significantly correlates with the
degree of multifractality found in the sensorimotor outcome.
This correlation was obtained for two of the three window
sizes used (30 and 75 s). Previous literature has highlighted
that the dynamics of functional connectivity increase with
diminution of the window size, due to the non stationarity
of Blood Oxygenation Level Dependent or fNIRS signals for
short windows with an increase of transient nodes that were
unobserved for large window size (Hutchison et al., 2013).
Therefore it is not surprising that fewer networks were detected
for our largest window (120 s). As a consequence the correlation
between the number of networks and the multifractal properties
of tapping series was low and not significant for the 120 s window
as compared to the smaller windows.
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Previous theoretical and simulation approaches had shown
that degeneracy plays a central role in the link between
complexity, adaptability, and robustness (Whitacre, 2010) and
that degeneracy may underlie fractal properties in the outcome
variables (Delignières and Marmelat, 2013). Our result provides
experimental support highlighting the link between theoretically
related properties across two different scales of observation,
namely between degeneracy at the level of brain connectivity
and measures of complexity at the level of behavior, both
being considered tightly related with systems adaptability. As
such this result may be of particular relevance for translational
research, since a significant part of literature has proposed
to assess the diagnostic and/or prognostic power of fractal
properties in sensorimotor variables in neurodegenerative
pathologies (e.g., Parkinson or Alzheimer diseases) conveying
the strong but so far experimentally unproven assumption
that alterations of the brain network would come out in the
fractal properties of behavior. Consequently, we consider that
(i) fractal properties in macroscale variables are (at least partly)
dependent on the degenerate organization properties of the
brain, and (ii) concomitant changes in network connectivity and
multifractal properties in behavioral variability reflect (at least
partly) effective adaptations underlying invariance of functional
outcome.

Finally, the system’s ability to adapt and effective adaptation

go hand in hand (Ulanowicz, 2002), the first being a necessary
condition for the latter, the latter in turn affecting the first.

To be able to disentangle the brain and behavioral correlates

of adaptability and adaptation is of importance seeing that
evolution toward pathological states or advancing age often

come along with a decreased ability to adapt, up to functional
loss (Lipsitz, 2002; Manor et al., 2010; Stergiou et al., 2016).
The joint analysis of motor variability and brain dynamics, as
well as the use of an experimental paradigm that allows to
gradually constraining the system so as to induce adaptations
(maintenance of performance) up to the loss of further capacity
to adapt (decrement of performance), may contribute to this
end. Extending the present tapping paradigmmay be appropriate
in this view since, in contrast to visual, auditory or tactile
feedbacks, further deprivation of proprioception has been shown
to decrease tapping performance (Stenneken et al., 2006). Our
present experimental design was not conceived such as to allow
for investigation of putative differential effects among sensory

modalities (e.g., auditory and visual cortex), and we limited
ourselves to the assessment of sensorimotor and prefrontal
regions. Future studies using a larger number of channels
(whole brain) may examine in how far the networks dynamics
underlying finger tapping are affected depending on the sensory
modality suppressed.

CONCLUSION

To what extent the multiple networks in the brain restructure
with some distinctive properties of motor variability has
remained unanswered so far. Both conceptual considerations
and simulation approaches have provided strong indications
for such relationship but experimental evidence has been
lacking. Our present work evidences a significant correlation
between the number of brain networks and the degree of
multifractality in tapping. We believe that this finding constitutes
a step further toward bridging the gap between the degenerate
connectivity patterns at the brain level and the properties of
variability at the behavioral level. We anticipate that future
work, possibly combining simulation and experimental methods
like multimodal neuroimaging, will provide means for larger
and/or more fine-grained ranges of variation in the number
of brain networks involved and the fractal properties of motor
performance, so as to further consolidate our present findings.
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