J. D. Sipe and A. S. Cohen, Review: History of the amyloid fibril, J. Struct. Biol, vol.130, pp.88-98, 2000.

M. Fändrich, On the structural definition of amyloid fibrils and other polypeptide aggregates, Cell. Mol. Life Sci, vol.64, pp.2066-2078, 2007.

D. Eisenberg and M. Jucker, The amyloid state of proteins in human diseases, Cell, vol.148, pp.1188-1203, 2012.

J. D. Sipe, M. D. Benson, J. N. Buxbaum, S. Ikeda, G. Merlini et al., Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis, Nomenclature Guidelines. Amyloid, vol.23, pp.209-213, 2016.

S. E. Saunders, S. L. Bartelt-hunt, and J. C. Bartz, Prions in the environment: Occurrence, fate and mitigation, Prion, vol.2, pp.162-169, 2008.

B. H. Toyama and J. S. Weissman, Amyloid Structure: Conformational diversity and consequences, Annu. Rev. Biochem, vol.80, pp.557-585, 2011.

N. Van-gerven, R. D. Klein, S. J. Hultgren, and H. Remaut, Bacterial amyloid formation: Structural insights into curli biogensis, Trends Microbiol, vol.23, pp.693-706, 2015.

A. Taglialegna, I. Lasa, and J. Valle, Amyloid structures as biofilm matrix scaffolds, J. Bacteriol, vol.198, pp.2579-2588, 2016.

M. S. Dueholm, P. Larsen, K. Finster, M. R. Stenvang, G. Christiansen et al., The tubular sheaths encasing Methanosaeta thermophila filaments are functional amyloids, J. Biol. Chem, vol.290, pp.20590-20600, 2015.

A. Drago?, Á. T. Kovács, and D. Claessen, The role of functional amyloids in multicellular growth and development of gram-positive bacteria, vol.7, pp.1-13, 2017.

S. Bieler, L. Estrada, R. Lagos, M. Baeza, J. Castilla et al., Amyloid formation modulates the biological activity of a bacterial protein, J. Biol. Chem, vol.280, pp.26880-26885, 2005.

A. Bavdek, R. Kostanj?ek, V. Antonini, J. H. Lakey, M. Dalla-serra et al., PH dependence of listeriolysin O aggregation and pore-forming ability, FEBS J, vol.279, pp.126-141, 2012.

M. P. Jackson and E. W. Hewitt, Why are functional amyloids non-toxic in humans? Biomolecules, vol.7, pp.1-13, 2017.

S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science, vol.216, pp.136-144, 1982.

B. T. Roberts and R. B. Wickner, Heritable activity: A prion that propagates by covalent autoactivation, Genes Dev, vol.17, pp.2083-2087, 2003.

A. H. Yuan and A. Hochschild, A bacterial global regulator forms a prion, vol.355, pp.198-201, 2017.

S. W. Liebman and Y. O. Chernoff, Prions in yeast. Genetics, vol.191, pp.1041-1072, 2012.

S. B. Prusiner, Biology and genetics of prions causing neurodegeneration, Annu. Rev. Genet, vol.47, pp.601-623, 2013.

C. Soto, Transmissible proteins: Expanding the prion heresy, Cell, vol.149, pp.968-977, 2012.

A. Espargaró, M. A. Busquets, J. Estelrich, and R. Sabate, Key points concerning amyloid infectivity and prion-like neuronal invasion, Front. Mol. Neurosci, vol.9, 2016.

G. S. Victoria and C. Zurzolo, The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases, J. Cell Biol, vol.216, pp.2633-2644, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01855453

R. B. Wickner and A. C. Kelly, Prions are affected by evolution at two levels, Cell. Mol. Life Sci, vol.73, pp.1131-1144, 2016.

V. N. Uversky, Looking at the recent advances in understanding ?-synuclein and its aggregation through the proteoform prism, vol.6, 2017.

R. Morales, L. D. Estrada, R. Diaz-espinoza, D. Morales-scheihing, M. C. Jara et al., Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases, J. Neurosci, vol.30, pp.4528-4535, 2010.

T. Duka, M. Rusnak, R. E. Drolet, V. Duka, C. Wersinger et al., Alpha-synuclein induces hyperphosphorylation of Au in the MPTP model of Parkinsonism, FASEB J, vol.20, pp.2302-2312, 2006.

I. F. Tsigelny, L. Crews, P. Desplats, G. M. Shaked, Y. Sharikov et al., Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases, PLoS ONE, vol.3, 2008.

M. Calero, A. Rostagno, and J. Ghiso, Amyloid Proteins. In Methods in Molecular Biology

E. M. Sigurdsson, M. Calero, M. Gasset, and . Eds, , vol.849, 2012.

P. H. Jensen, H. Hager, M. S. Nielsen, P. Højrup, and J. Gliemann, Jakes, R. ?-Synuclein binds to Tau and stimulates the protein kinase A-catalyzed Tau phosphorylation of serine residues 262 and 356, J. Biol. Chem, vol.274, pp.25481-25489, 1999.

B. S. Cox, A cytoplasmic suppressor of super-suppressor in yeast, Heredity, vol.20, pp.505-521, 1965.

R. Wickner, URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae, Science, vol.264, pp.566-569, 1994.

A. B. Salnikova, D. S. Kryndushkin, V. N. Smirnov, V. V. Kushnirov, and M. D. Ter-avanesyan, Nonsense suppression in yeast cells overproducing Sup35 (eRF3) Is caused by its non-heritable amyloids, J. Biol. Chem, vol.280, pp.8808-8812, 2005.

K. M. Keefer, K. C. Stein, and H. L. True, Heterologous prion-forming proteins interact to cross-seed aggregation in Saccharomyces cerevisiae, Sci. Rep, vol.7, p.5853, 2017.

W. Q. Zou, X. Xiao, J. Yuan, G. Puoti, H. Fujioka et al., Amyloid-?42 interacts mainly with insoluble prion protein in the Alzheimer brain, J. Biol. Chem, vol.286, pp.15095-15105, 2011.

B. F. Shaw, H. L. Lelie, A. Durazo, A. M. Nersissian, G. Xu et al., Detergent-insoluble aggregates associated with amyotrophic lateral sclerosis in transgenic mice contain primarily full-length, unmodified superoxide dismutase-1, J. Biol. Chem, vol.283, pp.8340-8350, 2008.

S. N. Bagriantsev, E. O. Gracheva, J. E. Richmond, and S. W. Liebman, Variant-specific [PSI + ] infection Is transmitted by Sup35 polymers within [PSI + ] aggregates with heterogeneous protein composition, Mol. Biol. Cell, vol.19, pp.2433-2443, 2008.

O. V. Nevzglyadova, A. V. Artemov, A. G. Mittenberg, K. V. Solovyov, E. I. Kostyleva et al., Prion-associated proteins in yeast: Comparative analysis of isogenic, vol.26, pp.611-631, 2009.

I. L. Derkatch, S. M. Uptain, T. F. Outeiro, R. Krishnan, S. L. Lindquist et al., Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI + ] prion in yeast and aggregation of Sup35 in vitro, Proc. Natl. Acad. Sci, vol.101, pp.12934-12939, 2004.

F. Arslan, J. Y. Hong, V. Kanneganti, S. Park, and S. W. Liebman, Heterologous aggregates promote de novo prion appearance via more than one mechanism, PLoS Genet, vol.11, 2015.

H. R. Saibil, A. Seybert, A. Habermann, J. Winkler, M. Eltsov et al., Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures, Proc. Natl. Acad. Sci, vol.109, pp.14906-14911, 2012.

M. Miyazono, T. Kitamoto, T. Iwaki, and J. Tateishi, Colocalization of prion protein and ? protein in the same amyloid plaques in patients with Gerstmann-Sträussler syndrome, Acta Neuropathol, vol.83, pp.333-339, 1992.

B. I. Giasson, M. S. Forman, M. Higuchi, L. I. Golbe, C. L. Graves et al., Initiation and synergistic fibrillization of Tau and alpha-synuclein, Science, vol.300, pp.636-640, 2003.

Y. Furukawa, K. Kaneko, G. Matsumoto, M. Kurosawa, and N. Nukina, Cross-seeding fibrillation of Q/N-rich proteins offers new pathomechanism of polyglutamine diseases, J. Neurosci, vol.29, pp.5153-5162, 2009.

J. Yan, X. Fu, F. Ge, B. Zhang, J. Yao et al., Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils, Am. J. Pathol, vol.171, pp.172-180, 2007.

B. Vasconcelos, I. C. Stancu, A. Buist, M. Bird, P. Wang et al., Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo, Acta Neuropathol, vol.131, pp.549-569, 2016.

M. I. Lutz, C. Schwaiger, B. Hochreiter, G. G. Kovacs, and J. A. Schmid, Novel approach for accurate tissue-based protein colocalization and proximity microscopy, Sci. Rep, 2017.

A. Esposito, C. P. Dohm, P. Kermer, M. Bähr, and F. S. Wouters, Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton, Neurobiol. Dis, vol.26, pp.521-531, 2007.

N. Badiola, R. M. De-oliveira, F. Herrera, C. Guardia-laguarta, S. A. Gonçalves et al., Tau enhances ?-synuclein aggregation and toxicity in cellular models of synucleinopathy, PLoS ONE, 2011.

A. A. Rubel, T. A. Ryzhova, K. S. Antonets, Y. O. Chernoff, and A. Galkin, Identification of PrP sequences essential for the interaction between the PrP polymers and A? peptide in a yeast-based assay, Prion, vol.7, pp.1-8, 2013.

C. G. Pack, Y. Inoue, T. Higurashi, S. Kawai-noma, D. Hayashi et al., Heterogeneous interaction network of yeast prions and remodeling factors detected in live cells, BMB Rep, vol.50, 2017.

G. Nübling, B. Bader, J. Levin, J. Hildebrandt, H. Kretzschmar et al., Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with ?-synuclein at the single molecule level, Mol. Neurodegener, vol.7, pp.1-13, 2012.

D. S. Kryndushkin, I. M. Alexandrov, M. D. Ter-avanesyan, and V. V. Kushnirov, Yeast [PSI + ] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J. Biol. Chem, vol.278, pp.49636-49643, 2003.

R. Halfmann and S. Lindquist, Screening for Amyloid Aggregation by Semi-Denaturing Detergent-Agarose Gel Electrophoresis, vol.17, pp.1-4, 2009.

V. N. Urakov, O. V. Mitkevich, I. V. Safenkova, and M. D. Ter-avanesyan, Ribosome-bound Pub1 modulates stop codon decoding during translation termination in yeast, FEBS J, vol.284, 1914.

A. G. Matveenko, P. B. Drozdova, M. V. Belousov, S. E. Moskalenko, S. A. Bondarev et al., SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1, Genes Cells, vol.21, pp.1-19, 2016.

R. Morales, I. Moreno-gonzalez, and C. Soto, Cross-seeding of misfolded proteins: Implications for etiology and pathogenesis of protein misfolding diseases, PLoS Pathog, vol.9, 2013.

A. Villar-piqué, M. Schmitz, N. Candelise, S. Ventura, and F. Llorens, Zerr, I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases, Mol. Neurobiol, vol.55, pp.7588-7605, 2018.

M. R. Krebs, L. A. Morozova-roche, K. Daniel, C. V. Robinson, and C. M. Dobson, Observation of sequence specificity in the seeding of protein amyloid fibrils, Protein Sci, vol.13, pp.1933-1938, 2004.

R. Qi, Y. Luo, G. Wei, R. Nussinov, and B. Ma, A? "stretching-and-packing" cross-seeding mechanism can trigger Tau protein aggregation, J. Phys. Chem. Lett, vol.6, pp.3276-3282, 2015.

H. Levine, Quantification of ?-sheet amyloid fibril structures with thioflavin T. Methods Enzymol, vol.309, pp.274-284, 1999.

I. Horvath, S. Rocha, and P. Wittung-stafshede, In vitro Analysis of ?-Synuclein Amyloid Formation and Cross-Reactivity, Amyloid Proteins, vol.1779, pp.73-83, 2018.

M. R. Krebs, E. H. Bromley, and A. M. Donald, The binding of thioflavin-T to amyloid fibrils: Localisation and implications, J. Struct. Biol, vol.149, pp.30-37, 2005.

I. M. Kuznetsova, A. I. Sulatskaya, V. N. Uversky, and K. K. Turoverov, A new trend in the experimental methodology for the analysis of the thioflavin T binding to amyloid fibrils, Mol. Neurobiol, vol.45, pp.488-498, 2012.

A. M. Streets, Y. Sourigues, R. R. Kopito, R. Melki, and S. R. Quake, Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183062

B. O'nuallain, A. D. Williams, P. Westermark, and R. Wetzel, Seeding specificity in amyloid growth induced by heterologous fibrils, J. Biol. Chem, vol.279, pp.17490-17499, 2004.

B. O'nuallain and R. Wetzel, Conformational Abs recognizing a generic amyloid fibril epitope, Proc. Natl. Acad. Sci, vol.99, pp.1485-1490, 2002.

K. Ono, R. Takahashi, T. Ikeda, and M. Yamada, Cross-seeding effects of amyloid ?-protein and ?-synuclein, J. Neurochem, vol.122, pp.883-890, 2012.

Y. A. Vitrenko, E. O. Gracheva, J. E. Richmond, and S. W. Liebman, Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM, J. Biol. Chem, vol.282, pp.1779-1787, 2007.

J. Sharma and S. W. Liebman, Exploring the basis of [PIN + ] variant differences in [PSI + ] induction, J. Mol. Biol, vol.425, pp.3046-3059, 2013.

E. A. Waxman and B. I. Giasson, Induction of intracellular Tau aggregation is promoted by ?-synuclein seeds and provides novel insights into the hyperphosphorylation of Tau, J. Neurosci, vol.31, pp.7604-7618, 2011.

C. J. Sarell, P. G. Stockley, and S. E. Radford, Assessing the causes and consequences of co-polymerization in amyloid formation, Prion, vol.7, pp.359-368, 2013.

N. D. Younan, C. J. Sarell, P. Davies, D. R. Brown, and J. H. Viles, The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers, FASEB J, vol.27, pp.1847-1858, 2013.

L. M. Young, L. Tu, D. P. Raleigh, A. E. Ashcroft, and S. E. Radford, Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers, Chem. Sci, vol.8, pp.5030-5040, 2017.

I. S. Pienaar, W. M. Daniels, and J. Götz, Neuroproteomics as a promising tool in Parkinson's disease research, J. Neural Transm, vol.115, pp.1413-1430, 2008.

G. E. Craft, A. Chen, and A. C. Nairn, Recent advances in quantitative neuroproteomics, Methods, vol.61, pp.186-218, 2013.

G. Shevchenko, A. Konzer, S. Musunuri, and J. Bergquist, Neuroproteomics tools in clinical practice, Biochim. Biophys. Acta Proteins Proteom, vol.1854, pp.705-717, 2015.

S. J. Schonberger, P. F. Edgar, R. Kydd, R. L. Faull, and G. J. Cooper, Proteomic analysis of the brain in Alzheimer's disease: Molecular phenotype of a complex disease process, Proteomics, vol.1, pp.1519-1528, 2001.

T. Tsuji, A. Shiozaki, R. Kohno, K. Yoshizato, and S. Shimohama, Proteomic profiling and neurodegeneration in Alzheimer's disease, Neurochem. Res, vol.27, pp.1245-1253, 2002.

L. Liao, D. Cheng, J. Wang, D. M. Duong, T. G. Losik et al., Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection, J. Biol. Chem, vol.279, pp.37061-37068, 2004.

B. Minjarez, M. L. Rustarazo, M. M. Sanchez-del-pino, A. González-robles, J. A. Sosa-melgarejo et al., Identification of polypeptides in neurofibrillary tangles and total homogenates of brains with Alzheimer's disease by tandem mass spectrometry, J. Alzheimers Dis, vol.34, pp.239-262, 2013.

J. A. Vrana, J. D. Gamez, B. J. Madden, J. D. Theis, H. R. Bergen et al., Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens, Blood, vol.114, pp.4957-4959, 2009.

S. Sethi, J. A. Vrana, J. D. Theis, N. Leung, A. Sethi et al., Laser microdissection and mass spectrometry-based proteomics aids the diagnosis and typing of renal amyloidosis, Kidney Int, vol.82, pp.226-234, 2012.

Y. Zhou, G. Gu, D. R. Goodlett, T. Zhang, C. Pan et al., Analysis of ?-synuclein-associated proteins by quantitative proteomics, J. Biol. Chem, vol.279, pp.39155-39164, 2004.

J. Jin, G. J. Li, J. Davis, D. Zhu, Y. Wang et al., Identification of novel proteins associated with both ?-synuclein and DJ-1, Mol. Cell. Proteom, vol.6, pp.845-859, 2007.

M. A. Mcfarland, C. E. Ellis, S. P. Markey, and R. L. Nussbaum, Proteomics analysis identifies phosphorylationdependent ?-synuclein protein interactions, Mol. Cell. Proteom, vol.7, pp.2123-2137, 2008.

S. Ayyadevara, M. Balasubramaniam, P. A. Parcon, S. W. Barger, W. S. Griffin et al., Proteins that mediate protein aggregation and cytotoxicity distinguish Alzheimer's hippocampus from normal controls, Aging Cell, vol.15, pp.924-939, 2016.

H. Olzscha, S. M. Schermann, A. C. Woerner, S. Pinkert, M. H. Hecht et al., Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions, Cell, vol.144, pp.67-78, 2011.

T. Ratovitski, E. Chighladze, N. Arbez, T. Boronina, S. Herbrich et al., Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis, Cell Cycle, vol.11, 2006.

C. Betzer, A. J. Movius, M. Shi, W. Gai, J. Zhang et al., Identification of synaptosomal proteins binding to monomeric and oligomeric ?-synuclein, PLoS ONE, vol.10, 2015.

G. Xu, S. M. Stevens, B. D. Moore, S. Mcclung, and D. R. Borchelt, Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of alzheimer-type amyloidosis, Hum. Mol. Genet, vol.22, pp.2765-2774, 2013.

F. Hosp, S. Gutiérrez-Ángel, M. H. Schaefer, J. Cox, F. Meissner et al., Spatiotemporal proteomic profiling of Huntington's disease inclusions reveals widespread loss of protein function, vol.21, pp.2291-2303, 2017.

S. Ayyadevara, M. Balasubramaniam, Y. Gao, L. R. Yu, R. Alla et al., Proteins in aggregates functionally impact multiple neurodegenerative disease models by forming proteasome-blocking complexes, Aging Cell, vol.14, pp.35-48, 2015.

D. Kryndushkin, N. Pripuzova, B. G. Burnett, and F. Shewmaker, Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells, J. Biol. Chem, vol.288, pp.27100-27111, 2013.

D. Kryndushkin, M. P. Wear, and F. Shewmaker, Amyloid cannot resist identification. Prion, vol.7, pp.464-468, 2013.

M. P. Wear, D. Kryndushkin, R. O'meally, J. L. Sonnenberg, R. N. Cole et al., Proteins with intrinsically disordered domains are preferentially recruited to polyglutamine aggregates, PLoS ONE, vol.10, pp.1-27, 2015.

A. A. Nizhnikov, A. I. Alexandrov, T. A. Ryzhova, O. V. Mitkevich, A. A. Dergalev et al., Proteomic screening for amyloid proteins, PLoS ONE, vol.9, 2014.

K. S. Antonets, K. V. Volkov, A. L. Maltseva, L. M. Arshakian, A. P. Galkin et al., Proteomic analysis of Escherichia coli protein fractions resistant to solubilization by ionic detergents, Biochemistry, vol.81, pp.34-46, 2016.

A. A. Nizhnikov, T. A. Ryzhova, K. V. Volkov, S. P. Zadorsky, J. V. Sopova et al., Interaction of prions causes heritable traits in Saccharomyces cerevisiae, PLOS Genet, vol.12, 2016.

A. F. Saifitdinova, A. A. Nizhnikov, A. G. Lada, A. A. Rubel, Z. M. Magomedova et al., NSI + ]: A novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae, Curr. Genet, vol.56, pp.467-478, 2010.

A. A. Nizhnikov, Z. M. Magomedova, A. A. Rubel, A. M. Kondrashkina, S. G. Inge-vechtomov et al., NSI + ] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet, vol.58, pp.35-47, 2012.

L. Reiter, M. Claassen, S. P. Schrimpf, M. Jovanovic, A. Schmidt et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry, Mol. Cell. Proteom, vol.8, pp.2405-2417, 2009.

D. Teschendorf and C. D. Link, What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases?, Mol. Neurodegener, vol.4, 2009.

A. G. Alexander, V. Marfil, and C. Li, Use of C. elegans as a model to study Alzheimer's disease and other neurodegenerative diseases, Front. Genet, vol.5, p.279, 2014.

M. Newman, E. Ebrahimie, and M. Lardelli, Using the zebrafish model for Alzheimer's disease research, Front. Genet, vol.5, pp.1-11, 2014.

S. Moussaud, D. R. Jones, E. L. Moussaud-lamodière, M. Delenclos, O. A. Ross et al., Alpha-synuclein and tau: Teammates in neurodegeneration?, Mol. Neurodegener, vol.9, p.43, 2014.

P. Fernandez-funez, L. De-mena, and D. E. Rincon-limas, Modeling the complex pathology of Alzheimer's disease in Drosophila, Exp. Neurol, vol.274, pp.58-71, 2015.

S. Baker and J. Götz, What we can learn from animal models about cerebral multi-morbidity, Alzheimers Res. Ther, vol.7, pp.1-9, 2015.

H. Sasaguri, P. Nilsson, S. Hashimoto, K. Nagata, T. Saito et al., APP mouse models for Alzheimer's disease preclinical studies, EMBO J, vol.36, pp.2473-2487, 2017.

E. Drummond and T. Wisniewski, Alzheimer's disease: Experimental models and reality, Acta Neuropathol, vol.133, pp.155-175, 2017.

E. Masliah, E. Rockenstein, I. Veinbergs, Y. Sagara, M. Mallory et al., ?-amyloid peptides enhance ?-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease, Proc. Natl. Acad. Sci, vol.98, pp.12245-12250, 2001.

J. L. Guo, D. J. Covell, J. P. Daniels, M. Iba, A. Stieber et al., Distinct ?-synuclein strains differentially promote Tau inclusions in neurons, Cell, vol.154, pp.103-117, 2013.

A. L. Mougenot, A. Bencsik, S. Nicot, J. Vulin, E. Morignat et al., Transmission of prion strains in a transgenic mouse model overexpressing human A53T mutated ?-synuclein, J. Neuropathol. Exp. Neurol, vol.70, pp.377-385, 2011.

E. Masliah, E. Rockenstein, C. Inglis, A. Adame, C. Bett et al., Prion infection promotes extensive accumulation of ?-synuclein in aged human ?-synuclein transgenic mice, Prion, vol.6, pp.184-190, 2012.

J. A. Parker, M. Metzler, J. Georgiou, M. Mage, J. C. Roder et al., Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity, J. Neurosci, vol.27, pp.11056-11064, 2007.

B. Roy and G. R. Jackson, Interactions between Tau and ?-synuclein augment neurotoxicity in a Drosophila model of Parkinson's disease, Hum. Mol. Genet, vol.23, pp.3008-3023, 2014.

D. Patel, C. Xu, S. Nagarajan, Z. Liu, W. O. Hemphill et al., Alpha-synuclein inhibits Snx3-retromer-mediated retrograde recycling of iron transporters in S. cerevisiae and C. elegans models of Parkinson's disease, Hum. Mol. Genet, 2018.

R. Menezes, S. Tenreiro, D. Macedo, C. Santos, and T. Outeiro, From the baker to the bedside: Yeast models of Parkinson's disease. Microb, Cell, vol.2, pp.262-279, 2015.

J. J. Heinisch and R. Brandt, Signaling pathways and posttranslational modifications of tau in Alzheimer's disease: The humanization of yeast cells, Microb. Cell, vol.3, pp.135-146, 2016.

G. Ciaccioli, A. Martins, C. Rodrigues, H. Vieira, and P. Calado, A powerful yeast model to investigate the synergistic interaction of ?-synuclein and Tau in neurodegeneration, PLoS ONE, vol.8, 2013.

T. K. Rostovtseva, P. A. Gurnev, O. Protchenko, D. P. Hoogerheide, T. L. Yap et al., ?-synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease, J. Biol. Chem, vol.290, pp.18467-18477, 2015.

P. Chandramowlishwaran, M. Sun, K. L. Casey, A. V. Romanyuk, A. V. Grizel et al., Mammalian amyloidogenic proteins promote prion nucleation in yeast, J. Biol. Chem, vol.293, pp.3436-3450, 2018.

M. Snyder and J. E. Gallagher, Systems biology from a yeast omics perspective, FEBS Lett, vol.583, pp.3895-3899, 2009.

A. Brückner, C. Polge, N. Lentze, D. Auerbach, and U. Schlattner, Yeast two-hybrid, a powerful tool for systems biology, Int. J. Mol. Sci, vol.10, pp.2763-2788, 2009.

B. Stynen, H. Tournu, J. Tavernier, and P. Van-dijck, Diversity in genetic in vivo methods for protein-protein interaction studies: From the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol, Mol. Biol. Rev, vol.76, pp.331-382, 2012.

H. Goehler, M. Lalowski, U. Stelzl, S. Waelter, M. Stroedicke et al., A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease, Mol. Cell, vol.15, pp.853-865, 2004.

L. S. Kaltenbach, E. Romero, R. R. Becklin, R. Chettier, R. Bell et al., Huntingtin interacting proteins are genetic modifiers of neurodegeneration, PLoS Genet, vol.3, pp.689-708, 2007.

F. Fiumara, L. Fioriti, E. R. Kandel, and W. A. Hendrickson, Essential role of coiled coils for aggregation and activity of Q/N-rich prions and polyQ proteins, Cell, vol.143, pp.1121-1135, 2010.

S. Petrakis, M. H. Schaefer, E. E. Wanker, and M. A. Andrade-navarro, Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners, BioEssays, vol.35, pp.503-507, 2013.

F. Totzeck, M. A. Andrade-navarro, and P. Mier, The protein structure context of polyQ regions, PLoS ONE, vol.12, pp.2-11, 2017.

D. Harbi and P. M. Harrison, Interaction networks of prion, prionogenic and prion-like proteins in budding yeast, and their role in gene regulation, PLoS ONE, vol.9, 2014.

K. V. Biza, K. C. Nastou, P. L. Tsiolaki, C. V. Mastrokalou, S. J. Hamodrakas et al., The amyloid interactome: Exploring protein aggregation, PLoS ONE, vol.12, 2017.

R. K. Kalathur, J. Pinto, B. Sahoo, G. Chaurasia, and M. E. Futschik, HDNetDB: A molecular interaction database for network-oriented investigations into Huntington's disease

J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson et al., The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci, vol.99, pp.9196-9201, 2002.

J. Guo, T. Arai, J. Miklossy, and P. L. Mcgeer, A? and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease, Proc. Natl. Acad. Sci, vol.103, pp.1953-1958, 2006.

J. Oláh, O. Vincze, D. Virók, D. Simon, Z. Bozsó et al., Interactions of pathological hallmark proteins: Tubulin polymerization promoting protein/p25,?-amyloid, and ?-synuclein, J. Biol. Chem, vol.286, pp.34088-34100, 2011.

Y. Zhou, D. Smith, B. J. Leong, K. Brannstrom, F. Almqvist et al., Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms, J. Biol. Chem, vol.287, pp.35092-35103, 2012.

Y. J. Oh, M. Hubauer-brenner, H. J. Gruber, Y. Cui, L. Traxler et al., Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds, Sci. Rep, vol.6, 2016.

I. Grundke-iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein ? (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci, vol.83, pp.4913-4917, 1986.

J. Sepulcre, A. P. Schultz, M. Sabuncu, T. Gomez-isla, J. Chhatwal et al., In vivo Tau, amyloid, and gray matter profiles in the aging brain, J. Neurosci, vol.36, pp.7364-7374, 2016.

K. B. Rank, A. M. Pauley, K. Bhattacharya, Z. Wang, D. B. Evans et al., Direct interaction of soluble human recombinant tau protein with A? 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, FEBS Lett, vol.514, pp.263-268, 2002.

P. T. Kotzbauer, B. I. Giasson, A. V. Kravitz, L. I. Golbe, M. H. Mark et al., Fibrillization of ?-synuclein and tau in familial Parkinson's disease caused by the A53T ?-synuclein mutation, Exp. Neurol, vol.187, pp.279-288, 2004.

D. J. Irwin, M. Grossman, D. Weintraub, H. I. Hurtig, J. E. Duda et al., Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis, Lancet Neurol, vol.16, pp.55-65, 2017.

H. W. Kessels, L. N. Nguyen, S. Nabavi, and R. Malinow, The prion protein as a receptor for amyloid-?, Nature, vol.466, pp.3-4, 2010.

J. Laurén, D. A. Gimbel, H. B. Nygaard, J. W. Gilbert, and S. M. Strittmatter, Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers, Nature, vol.457, pp.1128-1132, 2009.

J. W. Um, A. C. Kaufman, M. Kostylev, J. K. Heiss, M. Stagi et al., Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer A? oligomer bound to cellular prion protein, Neuron, vol.79, pp.887-902, 2013.

M. Larson, M. A. Sherman, F. Amar, M. Nuvolone, J. A. Schneider et al., The complex PrP c -Fyn couples human oligomeric A? with pathological Tau changes in Alzheimer's disease, J. Neurosci, vol.32, pp.16857-16871, 2012.

L. Debatin, J. Streffer, M. Geissen, J. Matschke, A. Aguzzi et al., Association between deposition of beta-amyloid and pathological prion protein in sporadic Creutzfeldt-Jakob disease, Neurodegener. Dis, vol.5, pp.347-354, 2008.

N. Ghoshal, I. Cali, R. J. Perrin, S. A. Josephson, N. Sun et al., Codistribution of amyloid ? plaques and spongiform degeneration in familial Creutzfeldt-Jakob disease with the E200K-129M haplotype, Arch. Neurol, vol.66, pp.1240-1246, 2009.

E. Scherzinger, R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach et al., Huntingtin encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo, Cell, vol.90, pp.549-558, 1997.

C. C. Huang, P. W. Faber, F. Persichetti, V. Mittal, J. P. Vonsattel et al., Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins, Somat. Cell Mol. Genet, vol.24, pp.217-233, 1998.

S. W. Davies, M. Turmaine, B. A. Cozens, M. Difiglia, A. H. Sharp et al., Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation, Cell, vol.90, pp.537-548, 1997.

F. C. Nucifora and . Jr, Interference by Huntingtin and Atrophin-1 with CBP-mediated transcription leading to cellular toxicity, Science, vol.291, pp.2423-2428, 2001.

S. Li, A. L. Cheng, H. Zhou, S. Lam, M. Rao et al., Interaction of Huntington disease protein with transcriptional activator Sp1, Mol. Cell. Biol, vol.22, pp.1277-1287, 2002.

J. S. Steffan, A. Kazantsev, O. Spasic-boskovic, M. Greenwald, Y. Z. Zhu et al., The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription, Proc. Natl. Acad. Sci, vol.97, pp.6763-6768, 2000.

J. M. Boutell, P. Thomas, J. W. Neal, V. J. Weston, J. Duce et al., Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet, vol.8, pp.1647-1655, 1999.

T. Shimohata, T. Nakajima, M. Yamada, C. Uchida, O. Onodera et al., Expanded polyglutamine stretches interact with TAF(II)130, interfering with CREB-dependent transcription, Nat. Genet, vol.26, pp.29-36, 2000.

H. Doi, S. Koyano, Y. Suzuki, N. Nukina, and Y. Kuroiwa, The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases, Neurosci. Res, vol.66, pp.131-133, 2010.

Z. Yu, S. Li, H. Nguyen, and X. Li, Huntingtin inclusions do not deplete polyglutamine-containing transcription factors in HD mice, Hum. Mol. Genet, vol.11, pp.905-914, 2002.

C. L. Benn, T. Sun, G. Sadri-vakili, K. N. Mcfarland, D. P. Dirocco et al., Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner, J. Neurosci, vol.28, pp.10720-10733, 2008.

M. L. Duennwald, S. Jagadish, F. Giorgini, P. J. Muchowski, and S. Lindquist, A network of protein interactions determines polyglutamine toxicity, Proc. Natl. Acad. Sci, vol.103, pp.11051-11056, 2006.

V. N. Urakov, A. B. Vishnevskaya, I. M. Alexandrov, V. V. Kushnirov, V. N. Smirnov et al., Interdependence of amyloid formation in yeast: Implications for polyglutamine disorders and biological functions, Prion, vol.4, pp.45-52, 2010.

G. V. Serpionov, A. I. Alexandrov, and M. Ter-avanesyan, Distinct mechanisms of mutant huntingtin toxicity in different yeast strains, FEMS Yeast Res, vol.17, 2017.

A. A. Nizhnikov, K. S. Antonets, S. G. Inge-vechtomov, and I. L. Derkatch, Modulation of efficiency of translation termination in Saccharomyces cerevisiae, Prion, vol.8, pp.247-260, 2014.

S. Chakrabortee, J. S. Byers, S. Jones, D. M. Garcia, B. Bhullar et al., Intrinsically disordered proteins drive emergence and inheritance of biological traits, Cell, vol.167, pp.369-381, 2016.

B. P. Culver, J. N. Savas, S. K. Park, J. H. Choi, S. Zheng et al., Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis, J. Biol. Chem, vol.287, pp.21599-21614, 2012.

D. I. Shirasaki, E. R. Greiner, I. Al-ramahi, M. Gray, P. Boontheung et al., Network organization of the huntingtin proteomic interactome in mammalian brain, Neuron, vol.75, pp.41-57, 2012.

P. Langfelder, J. P. Cantle, D. Chatzopoulou, N. Wang, F. Gao et al., Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice, Nat. Neurosci, vol.19, pp.623-633, 2016.

L. Söderberg, N. Bogdanovic, B. Axelsson, B. Winblad, J. Näslund et al., Analysis of single Alzheimer solid plaque cores by laser capture microscopy and nanoelectrospray/tandem mass spectrometry, Biochemistry, vol.45, pp.9849-9856, 2006.

Y. M. Gozal, D. M. Duong, M. Gearing, D. Cheng, J. J. Hanfelt et al., Proteomics analysis reveals novel components in the detergent-insoluble subproteome in Alzheimer's disease, J. Proteome Res, vol.8, pp.5069-5079, 2009.

C. C. Liu, T. Kanekiyo, H. Xu, and G. Bu, Apolipoprotein e and Alzheimer disease: Risk, mechanisms and therapy, Nat. Rev. Neurol, vol.9, pp.106-118, 2013.

A. Rostagno, T. Lashley, D. Ng, J. Meyerson, H. Braendgaard et al., Preferential association of serum amyloid P component with fibrillar deposits in familial British and Danish dementias: Similarities with Alzheimer's disease, J. Neurol. Sci, vol.257, pp.88-96, 2007.

K. Yasojima, C. Schwab, E. G. Mcgeer, and P. L. Mcgeer, Up-regulated production and activation of the complement system in Alzheimer's disease brain, Am. J. Pathol, vol.154, pp.927-936, 1999.

N. Sondheimer, S. Lindquist, and . Rnq1, An epigenetic modifier of protein function in yeast, Mol. Cell, vol.5, pp.163-172, 2000.

I. L. Derkatch, M. E. Bradley, J. Y. Hong, and S. W. Liebman, Prions affect the appearance of other prions: The story of, Cell, vol.106, pp.171-182, 2001.

M. E. Bradley, H. K. Edskes, J. Y. Hong, R. B. Wickner, and S. W. Liebman, Interactions among prions and prion "strains" in yeast, Proc. Natl. Acad. Sci, vol.99, pp.16392-16399, 2002.

G. Suzuki, N. Shimazu, and M. Tanaka, A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, vol.336, pp.355-359, 2012.

I. L. Derkatch, M. E. Bradley, S. V. Masse, S. P. Zadorsky, G. V. Polozkov et al., Dependence and independence of [PSI + ] and [PIN + ]: A two-prion system in yeast, EMBO J, vol.19, pp.1942-1952, 2000.

S. Bagriantsev and S. W. Liebman, Specificity of prion assembly in vivo: [PSI + ] and [PIN + ] form separate structures in yeast, J. Biol. Chem, vol.279, pp.51042-51048, 2004.

C. Schwimmer and D. C. Masison, Antagonistic interactions between yeast [PSI + ] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p, Mol. Cell. Biol, vol.22, pp.3590-3598, 2002.

Z. Du, K. Park, H. Yu, Q. Fan, and L. Li, Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae, Nat. Genet, vol.40, pp.460-465, 2008.

Z. Du and L. Li, Investigating the Interactions of Yeast Prions, Genetics, vol.197, pp.685-700, 2014.

R. Halfmann, J. R. Wright, S. Alberti, S. Lindquist, and M. Rexach, Prion formation by a yeast GLFG nucleoporin, Prion, vol.6, pp.391-399, 2012.

Z. Du, Y. Zhang, and L. Li, The yeast prion [SWI + ] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression, Cell Rep, vol.13, pp.2865-2878, 2015.

T. A. Chernova, K. D. Wilkinson, and Y. O. Chernoff, Prions, chaperones, and proteostasis in yeast, Cold Spring Harb. Perspect. Biol, vol.9, 2017.

K. D. Allen, R. D. Wegrzyn, T. A. Chernova, S. Müller, G. P. Newnam et al., Hsp70 chaperones as modulators of prion life cycle, Genetics, vol.169, pp.1227-1242, 2005.

C. W. Helsen and J. R. Glover, Insight into molecular basis of curing of [PSI + ] prion by overexpression of 104-kDa heat shock protein (Hsp104), J. Biol. Chem, vol.287, pp.542-556, 2012.

S. Ohta, S. Kawai-noma, A. Kitamura, C. G. Pack, M. Kinjo et al., The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy, Biochem. Biophys. Res. Commun, vol.442, pp.28-32, 2013.

S. M. Doyle, O. Genest, and S. Wickner, Protein rescue from aggregates by powerful molecular chaperone machines, Nat. Rev. Mol. Cell Biol, vol.14, pp.617-629, 2013.

J. Winkler, J. Tyedmers, B. Bukau, and A. Mogk, Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation, J. Cell Biol, vol.198, pp.387-404, 2012.

D. A. Kiktev, J. C. Patterson, S. Muller, B. Bariar, T. Pan et al., Regulation of Chaperone Effects on a Yeast Prion by Cochaperone Sgt2, Mol. Cell. Biol, vol.32, pp.4960-4970, 2012.

J. Li, T. Mcquade, A. B. Siemer, J. Napetschnig, K. Moriwaki et al., The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis, Cell, vol.150, pp.339-350, 2012.

X. N. Wu, Z. H. Yang, X. K. Wang, Y. Zhang, H. Wan et al., Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis, Cell Death Differ, vol.21, pp.1709-1720, 2014.

A. V. Kajava, K. Klopffleisch, S. Chen, and K. Hofmann, Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal heterokaryon incompatibility factor HET-s/HET-s. Sci

B. Turcq, C. Deleu, M. Denayrolles, and J. Begueret, Two allelic genes responsible for vegetative incompatibility in the fungus Podospora anserina are not essential for cell viability, MGG Mol. Gen. Genet, vol.228, pp.265-269, 1991.

C. Seuring, J. Greenwald, C. Wasmer, R. Wepf, S. J. Saupe et al., The mechanism of toxicity in HET-S/HET-s prion incompatibility, PLoS Biol, vol.10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787324

M. Maddelein, S. Reis, S. Duvezin-caubet, B. Coulary-salin, and S. J. Saupe, Amyloid aggregates of the HET-s prion protein are infectious, Proc. Natl. Acad. Sci, vol.99, pp.7402-7407, 2002.

C. Ritter, M. L. Maddelein, A. B. Siemer, T. Lührs, M. Ernst et al., Correlation of structural elements and infectivity of the HET-s prion, Nature, vol.435, pp.844-848, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00068263

A. Daskalov, B. Habenstein, D. Martinez, A. J. Debets, R. Sabaté et al., Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold, PLOS Biol, vol.13, 2015.

A. Loquet and S. Saupe, Diversity of amyloid motifs in NLR signaling in fungi, vol.7, p.38, 2017.

M. Mompeán, W. Li, J. Li, S. Laage, A. B. Siemer et al., The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex, Cell, vol.173, pp.1244-1253, 2018.

U. Baxa, T. Cassese, A. V. Kajava, and A. C. Steven, Structure, function, and amyloidogenesis of fungal prions: Filament polymorphism and prion variants, Adv. Protein Chem, vol.73, pp.125-180, 2006.

R. A. Azizyan, A. Garro, Z. Radkova, A. Anikeenko, A. Bakulina et al., Establishment of constraints on amyloid formation imposed by steric exclusion of globular domains, J. Mol. Biol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01971837

S. A. Bondarev, O. V. Bondareva, G. A. Zhouravleva, and A. V. Kajava, BetaSerpentine: A bioinformatics tool for reconstruction of amyloid structures, Bioinformatics, vol.34, pp.599-608, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968793

A. Kleino, N. F. Ramia, G. Bozkurt, Y. Shen, H. Nailwal et al., Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate Drosophila NF-?B signaling, vol.47, pp.635-647, 2017.

W. J. Kaiser and M. K. Offermann, Apoptosis induced by the Toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif, J. Immunol, vol.174, pp.4942-4952, 2005.

W. J. Kaiser, J. W. Upton, and E. S. Mocarski, Receptor-interacting protein homotypic interaction motif-dependent control of NF-?B activation via the DNA-dependent activator of IFN regulatory factors, J. Immunol, vol.181, pp.6427-6434, 2008.

M. Rebsamen, L. X. Heinz, E. Meylan, M. Michallet, K. Schroder et al., DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-?B, EMBO Rep, vol.10, pp.916-922, 2009.

H. Guo, S. Omoto, P. A. Harris, J. N. Finger, J. Bertin et al., Herpes simplex virus suppresses necroptosis in human cells, Cell Host Microbe, vol.17, pp.243-251, 2015.

Z. Huang, S. Wu, Y. Liang, X. Zhou, W. Chen et al., RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice, Cell Host Microbe, vol.17, pp.229-242, 2015.

X. Wang, Y. Li, S. Liu, X. Yu, L. Li et al., Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense, Proc. Natl. Acad. Sci, vol.111, pp.15438-15443, 2014.

A. Daskalov, On the evolutionary trajectories of signal-transducing amyloids in fungi and beyond, Prion, vol.10, pp.362-368, 2016.

M. R. Chapman, Role of Escherichia coli Curli operons in directing amyloid fiber formation, Science, vol.295, pp.851-855, 2002.

A. P. White, S. K. Collinson, P. A. Banser, D. L. Gibson, M. Paetzel et al., Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae, J. Mol. Biol, vol.311, pp.735-749, 2001.

X. Wang, D. R. Smith, J. W. Jones, and M. R. Chapman, In vitro polymerization of a functional Escherichia coli amyloid protein, J. Biol. Chem, vol.282, pp.3713-3719, 2007.

N. D. Hammer, J. C. Schmidt, and M. R. Chapman, The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization, Proc. Natl. Acad. Sci, vol.104, pp.12494-12499, 2007.

Q. Shu, S. L. Crick, J. S. Pinkner, B. Ford, S. J. Hultgren et al., The E. coli CsgB nucleator of curli assembles to b-sheet oligomers that alter the CsgA fibrillization mechanism, Proc. Natl. Acad. Sci, vol.109, pp.6502-6507, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00069382

L. P. Blanco, M. L. Evans, D. R. Smith, M. P. Badtke, and M. R. Chapman, Diversity, biogenesis and function of microbial amyloids, Trends Microbiol, vol.20, pp.66-73, 2012.

S. Alberti, The wisdom of crowds: Regulating cell function through condensed states of living matter, J. Cell Sci, vol.130, pp.2789-2796, 2017.

M. Kato, T. W. Han, S. Xie, K. Shi, X. Du et al., Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels, Cell, vol.149, pp.753-767, 2012.

N. L. Kedersha, M. Gupta, W. Li, I. Miller, and P. Anderson, RNA-binding proteins Tia-1 and Tiar link the phosphorylation of Eif-2? to the assembly of mammalian stress granules, J. Cell Biol, vol.147, pp.1431-1442, 1999.

N. Gilks, N. Kedersha, M. Ayodele, L. Shen, G. Stoecklin et al., Stress granule assembly Is mediated by prion-like aggregation of TIA-1, Mol. Biol. Cell, vol.15, pp.5383-5398, 2004.

X. Li, J. B. Rayman, E. R. Kandel, and I. L. Derkatch, Functional role of Tia1/Pub1 and Sup35 prion domains: Directing protein synthesis machinery to the tubulin cytoskeleton, Mol. Cell, vol.55, pp.305-318, 2014.

S. Kroschwald, S. Maharana, D. Mateju, L. Malinovska, E. Nüske et al., Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules, vol.4, pp.1-32, 2015.

K. Bourgade, G. Dupuis, E. H. Frost, and T. Fülöp, Anti-Viral Properties of Amyloid-? Peptides, J. Alzheimers Dis, vol.54, pp.859-878, 2016.

M. Torrent, D. Pulido, M. V. Nogués, and E. Boix, Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation, PLoS Pathog, vol.8, 2012.

S. V. Paushkin, V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-avanesyan, Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: Implications for prion-dependent regulation, Mol. Cell. Biol, vol.17, pp.2798-2805, 1997.

I. Stansfield, K. M. Jones, M. D. Ter-avanesyan, and M. F. Tuite, The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, EMBO J, vol.14, pp.4365-4373, 1995.

G. Zhouravleva, L. Frolova, X. Le-goff, R. Le-guellec, S. Inge-vechtomov et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J, vol.14, pp.4065-4072, 1995.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2018 by the authors. Licensee MDPI