Complete Genome Sequences of Three Leptospira mayottensis Strains from Tenrecs That Are Endemic in the Malagasy Region
Colette Cordonin, Céline Toty, Patrick Mavingui, Pablo Tortosa

To cite this version:
Colette Cordonin, Céline Toty, Patrick Mavingui, Pablo Tortosa. Complete Genome Sequences of Three Leptospira mayottensis Strains from Tenrecs That Are Endemic in the Malagasy Region. Microbiology Resource Announcements, American Society for Microbiology, 2018, 7 (15), pp.e01188-18. 10.1128/MRA.01188-18. hal-01960074

HAL Id: hal-01960074
https://hal.umontpellier.fr/hal-01960074
Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Complete Genome Sequences of Three *Leptospira mayottensis* Strains from Tenrecs That Are Endemic in the Malagasy Region

Colette Cordonin,a Céline Toty,b Patrick Mavingui,a @Pablo Tortosaa

aUnité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), Université de La Réunion, INSERM 1187, CNRS 9192, Plateforme de recherche CYROI, Sainte-Clotilde, La Réunion, France

bUnité Mixte de Recherche Maladies Infectieuses et Vecteurs: Évolution, Génétique, Écologie, Contrôle (UMR MIVEGEC), Université de Montpellier, UMR 5290 CNRS/IRD, UR 244 IRD, Montpellier, France

ABSTRACT Leptospirosis is a zoonosis caused by *Leptospira*, a diversified genus containing more than 10 pathogenic species. Tenrecs are small terrestrial mammals endemic in the Malagasy region and are known to be reservoirs of the recently described species *Leptospira mayottensis*. We report the complete genome sequences of three *L. mayottensis* strains isolated from two tenrec species.

Leptospirosis is an environmental infectious disease caused by spirochetal bacteria belonging to the genus *Leptospira*. Humans usually get infected during recreational or work-related outdoor activities through contact with urine excreted by animal reservoirs. This zoonosis is estimated to cause more than one million human cases and 58,900 deaths each year (1). Disease incidence is highest on tropical islands, notably in the southwestern Indian Ocean, where investigations carried out under a One Health framework have revealed distinct transmission chains in the different islands (2–5), including the occurrence of *Leptospira mayottensis*, a pathogenic *Leptospira* species recently recognized as new to science (6). Representatives of *L. mayottensis* (formerly known as *Leptospira borgpetersenii* group B) were originally isolated from human acute cases (7) and later identified in tenrecs (2, 5, 8), a diversified family of mammals endemic to Madagascar (9, 10).

Three *L. mayottensis* strains were isolated in the field from two tenrec species, namely, *Tenrec ecaudatus* on Mayotte (MDI222 and MDI272) (2) and *Microgale dobsoni* on Madagascar (VS2413) (5). Frozen isolates were thawed in liquid Ellinghausen-McCullough-Johnson-Harris (EMJH) medium containing albumin fatty acid supplements (AFAS) (3), and they were further subcultured in EMJH supplemented with AFAS, 1% fetal calf serum, and 8% rabbit serum. DNA was extracted with the EZ1 virus minikit v.2.0 (Qiagen, Germany), and sequencing was performed on PacBio platforms. The sequence for VS2413 was assembled de novo with SMRT Analysis HGAP.2, those for MDI222 and MDI272 were assembled de novo using Canu 1.6, and contigs were circularized using AMOS v.3.1 (11).

Overall, genome sizes and structures (see Table 1) are close to those of previously published ones, with comparably low (~40%) GC contents, two chromosomes, and, in the case of *T. ecaudatus*-borne strains, an additional plasmid (12).

Automatic annotation was performed with the NCBI Prokaryotic Genome Annotation Pipeline (13), which revealed that the VS2413, MDI272, and MDI222 genomes are composed of 3,893, 3,917, and 4,136 coding sequences, respectively.

Human leptospirosis on Mayotte is peculiar because it is associated with four distinct bacterial species, including *L. mayottensis* (14), and characterized by a relatively low fatality rate (0.9%) (15). The epidemiology is clearly distinct in the neighboring Seychelles and on Reunion Island, where *L. interrogans* is overwhelmingly dominant and fatality rates are higher (11.8% in the Seychelles and 3 to 5% on Reunion Island) (3, 4, 16). An attenuated virulence of *Leptospira* species prevailing on Mayotte, including *L. mayottensis*, may be at

Received 29 August 2018 Accepted 14 September 2018 Published 18 October 2018

Editor Jason Stajich, University of California, Riverside

Copyright © 2018 Cordonin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Pablo Tortosa, pablo.tortosa@univ-reunion.fr.

C.C. and C.T. contributed equally to this work.
least in part responsible for this contrasted regional epidemiology. The genomes presented herein will accelerate comparative genomic approaches aimed at delineating the main genomic features involved in *Leptospira* virulence.

Data availability. Genome sequences were deposited in DDBJ/EMBL/GenBank under the accession numbers CP030142 and CP030143, CP030144 to CP030146, and CP030147 to CP030149 for strains VS2413, MDI222, and MDI272, respectively, as well as BioProject PRJNA477299. Raw sequence data are available from the NCBI Sequence Read Archive (accession number SRP154442).

ACKNOWLEDGMENTS

We are thankful to Pierre Lefeuvre, Frédéric Pagès, and Claire Valiente-Moro for fruitful discussions.

This work was financed by European Regional Development Funds ERDF PO INTERREG V ECOSPIR number RE6875 and was carried out in the framework of Colette Cordonin’s Ph.D. degree, financed by the French Ministry of Higher Education, Research and Innovation. We thank members of the IRD i-trop Plantes Santé bioinformatics platform for providing HPC resources and support.

REFERENCES

TABLE 1 Genome architecture of *L. mayottensis* isolates

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Source host</th>
<th>Sampling location</th>
<th>Chromosome length (bp)</th>
<th>Plasmid length (bp)</th>
<th>No. of reads</th>
<th>N50 length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDI222</td>
<td>Tenrec ecaudatus</td>
<td>Mayotte</td>
<td>3,934,331 (not circularized)</td>
<td>330,241</td>
<td>111,328</td>
<td>44,976</td>
</tr>
<tr>
<td>MDI272</td>
<td>Tenrec ecaudatus</td>
<td>Mayotte</td>
<td>3,861,885</td>
<td>332,647</td>
<td>52,509</td>
<td>52,101</td>
</tr>
<tr>
<td>VS2413</td>
<td>Microgale dobsoni</td>
<td>Madagascar</td>
<td>3,787,562</td>
<td>300,219</td>
<td>55,595</td>
<td>21,656</td>
</tr>
</tbody>
</table>

a All but one replicon were successfully circularized.