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Abstract

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal
symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated
families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified
apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are
proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of
mutation data revealed a significantly increased number of rare variants across 58 neuropathy
associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy
cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy
genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in
families were shown to interact genetically in a zebrafish assay exacerbating the phenotype
established by the suppression of single genes. Our findings suggest that the combinatorial effect
of rare variants contributes to disease burden and variable expressivity.

Introduction

Charcot-Marie-Tooth (CMT) disease, first described clinically in 1886 [Charcot and Marie,
1886; Tooth, 1886], is a common hereditary peripheral neuropathy with an estimated
prevalence of 1/1200 [Braathen, 2012] to 1/2500 [Skre, 1974] individuals. The disease is
characterized by distal symmetric polyneuropathy (DSP) with progressive muscle weakness
and atrophy, and sensory loss. Two major clinical types are distinguished by
electrophysiologic and neuropathologic studies and the type of cells (glia or neurons)
primarily affected. CMT1 affects the glia-forming Schwann cells and presents with nerve
conduction velocities (NCV) of <38 m/s; CMT?2 affects the axons of neurons and usually
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presents with NCVs of >38m/s or slightly reduced motor NCVs but with diminished
amplitudes. Other forms of CMT with additional clinical features have been described,
including an intermediate form with overlapping demyelinating and axonal CMT features
[Nicholson et al., 2006] and one in which CMT occurs in conjunction with
glomerulonephritis [Boyer et al., 2011].

Observed inheritance patterns include: autosomal dominant, autosomal recessive and X-
linked (dominant and recessive) forms [Allan, 1939; Rossor et al., 2012]. Nevertheless, most
patients present with apparent sporadic disease, attributable partially to the extreme clinical
variability and age dependent penetrance of the phenotype. New mutation, however, is often
the cause of sporadic CMT, with the de novo CMT1A duplication of 17p11.2 being
responsible for 76-90% of sporadic cases [Raeymaekers, et al., 1991; Lupski et al., 1991;
Hoogendijk et al., 1992; Nelis et al., 1996]. Locus-specific screening for mutations in known
CMT genes concludes a molecular diagnosis for approximately 70-80% of patients [Szigeti
and Lupski, 2009; DiVincenzo et al., 2014]. More than 40 genes are known to be causative,
but it has been estimated that 30-50 ‘CMT genes’ remain to be discovered [Braathen, 2012;
Timmerman et al., 2014].

CMT1A [MIM #118220] is caused by a recurrent 1.4 Mb duplication that encompasses the
dosage sensitive myelin gene PMP22 [Lupski et al, 1991; Hoogendijk, 1992; Patel et al.,
1992; Lupski et al., 1992], an essential component of compact PNS myelin [Li et al, 2012].
The reciprocal deletion of the identical 17p11.2 region causes hereditary neuropathy with
liability to pressure palsies (HNPP) [MIM #162500] [Chance et al, 1993; Chance et al.,
1994]. A recent study of 17,000 patients with neuropathy established a molecular diagnosis
in 18.5% of these; ~80% of molecular diagnoses were either duplication or deletion CNV of
PMP22 [DiVincenzo, et al. 2014]. Point mutations and indels in PMP22 have also been
found in patients with CMT1A or HNPP without duplication or deletion [Roa et al., 1993
(a); Nicholson et al., 1994], and in the more severe early-onset phenotype of hypertrophic
neuropathy of Dejerine-Sottas [MIM #145900] [Dejerine and Sottas, 1893; Roa et al., 1993
(a); Roa et al., 1993 (b); Li et al., 2012]. Additionally, non-recurrent and complex
rearrangements can account for the missing heritability in CMT1A and HNPP, including
upstream CNVs that do not include PMP22 coding sequence [Zhang et al., 2010; Weterman
et al., 2010].

The second most common form of CMT is CMTX1 [MIM #302800] caused primarily by
point mutations that occur in almost every amino acid of GJB1/connexin32 [Kleopa et al.,
2006; Scherer et al., 2012]; gene deletions have also been described [Gonzaga-Jauregui et
al., 2010]. GJB1 encodes a gap junction protein involved in the formation of connexon
hemichannels that facilitate the communication and exchange of ions and other small
molecules between Schwann cells and axons [Scherer et al., 2012].

The third most common cause of CMT, and the most common form of CMT2, are
heterozygous mutations in MFN2 (CMT2A; [MIM #609260]) [Ben Othmane et al., 1993;
Zichner et al., 2004; Verhoeven et al., 2006], essential for mitochondrial fusion and
function [Kijima et al., 2005] and maintenance of mitochondrial morphology. Mutations in
MFNZ2 lead to mitochondrial dysfunction due to mtDNA depletion [Vielhaber et al., 2013].
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Results

Mutations in GDAP1 cause a recessive form of CMT, which can be either demyelinating
(CMT4A; [MIM #214400]) [Cuesta et al., 2002], axonal (CMT2K; [MIM #607831]) [Nelis
et al., 2002] or intermediate (CMTRIA; [MIM #608340]) [Senderek et al., 2003] and have
been reported to affect mitochondrial fission in Schwann cells and neurons [Niemann et al.,
2005].

Known CMT genes encode proteins that span a wide range of functions, from GTPases
(RAB7, DNM2), lipid phosphatases (FIG4, MTMR?2), to structural myelin proteins (MPZ,
PMP22) and gap junction channel components (GJB1). Cellular functions include myelin
assembly (PMP22, MPZ, PRX, Cx32), membrane and endocytic trafficking (MTMR2, SBF2,
FIG4, SH3TC2) and mitochondrial dynamics (MFN2, GDAP1) [Niemann et al., 2005;
Azzedine et al., 2012]. Another predominant contributing gene group is that of aminoacyl-
tRNA synthetases, an essential class of enzymes that ligate amino acids onto cognate tRNA
molecules [reviewed in Wallen and Antonellis, 2013].

Other complex forms of CMT?2 (e.g. spinocerebellar ataxia with axonal neuropathy,
SCAN1) have been associated with mutations in TDP1, important for DNA single strand
break repair (SSBR) [McKinnon et al., 2007; Caldecott, 2008]. Mutations in SETX, a
helicase involved in transcriptional termination and RNA maturation, cause recessive ataxia
ocular motor apraxia type 2 (AOA2; #606002) [Moreira et al., 2004] possibly due to
transcriptional/translational defects [Anhelm et al., 2012], also disturbing DNA SSBR
[Caldecott, 2008]. SETX mutations have been associated with familial amyotrophic lateral
sclerosis (ALS), susceptibility that recently was also associated with heterozygous FIG4
mutation carrier states [Chow et al., 2009].

Substantial genetic and clinical heterogeneity of CMT neuropathy makes it challenging for
molecular diagnosis by single gene and gene panel testing; the diagnostic utility of genome-
wide sequencing approaches has been demonstrated [Lupski et al., 2010; Montenegro et al.,
2011; Choi et al., 2012; Lupski et al, 2013]. We performed whole exome sequencing (WES)
in a cohort of 40 patients with peripheral neuropathy from 37 unrelated families in whom
extensive genetic evaluation had failed to identify a causative mutation or establish a
molecular diagnosis (Table 1). Analysis of WES data was performed in two stages: a first-
pass analysis that focused on known or novel variants in known CMT and related
neuropathy genes, and a second stage analysis to search for rare variants in likely novel
candidate genes (Supplementary Figure 1). Our rare variant analyses revealed potential
neuropathy candidate ‘disease genes’. Surprisingly, we uncovered evidence for a mutational
burden in affected individuals versus a large sample of unrelated control individuals. We
show experimentally that genetic interactions implicated by burden contribute to phenotypic
variability and potentially to susceptibility to common neuropathies beyond the well
characterized Mendelian forms.

Known alleles in known neuropathy genes

We identified known disease-causing alleles in six of the 37 index patients (see
Supplementary Information for detailed clinical information). Two represented phenotypic
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expansions of CMT2 caused by mutations in MFN2 (Figure 1A), where the clinical
presentation made screening for MFN2 unlikely. One family showed two separate
segregating causes of CMT [Verny et al., 2004], one X-linked and the other caused by
compound heterozygous mutations in MED25. A novel, likely disease causing allele was
found in trans with the only known disease causing allele in this gene [Leal et al., 2001;
Leal et al., 2009]. In a proband with autosomal dominant neurosensory deafness and axonal
neuropathy we found a recently reported mutation in MYH14 [Choi et al., 2011]. Finally, in
a consanguineous family, we detected a 14kb homozygous deletion CNV encompassing
exon 1 of ABHD12 segregating with the complex neuropathy phenotype observed in the
proband and affected siblings [Fiskerstrand et al., 2010] (Supplementary Figure 2). An
additional homozygous GDAP1 novel variant was also identified in some affected
individuals of this family posing the possibility of an additive contribution from intragenic
deletion CNV plus SNV variation.

Novel alleles in known neuropathy genes

Rare non-synonymous, frameshifting, or splicing variants were identified in known CMT/
neuropathy disease genes, illustrating the complexity that can underscore ‘simple’

mendelian conditions (see Supplementary Information for detailed clinical information). We
identified a patient with mutations in both MFN2 and GDAP1, both of which are involved in
mitochondrial dynamics. Concurrent mutations in these genes have been reported,
suggesting the possibility of epistasis or modifying effects [Cassereau et al., 2011; Vital et
al., 2012]. In a family with three generations affected by autosomal dominant intermediate
CMT, we sequenced two individuals and identified a novel variant in YARS affecting a
residue previously reported to be mutated in disease [Jordanova et al., 2006] (Figure 1B).
Functional analyses revealed that the identified YARS allele is a functional hypomorph,
unable to complement fully deletion of the endogenous yeast gene, TYSL, in growth
complementation assays (Supplementary Figure 3), supporting a pathogenic role for this
mutation in CMT. A male patient with Sotos syndrome [MIM #117550] due to NSD1
deletion, plus clinical neuropathy was found to carry several predicted deleterious variants in
different CMT genes in addition to a novel potentially pathogenic variant in the X-linked
AIFM1 gene [Rinaldi et al., 2012]. Compound heterozygous truncating mutations in SURF1
were identified in a proband with demyelinating CMT. Loss of function mutations in SURF1
were recently described in patients with autosomal recessive severe demyelinating
neuropathy of childhood onset [Echaniz-Laguna, 2013], consistent with this patient’s
clinical and molecular findings.

Genetic and functional evidence for potential candidate CMT genes

We identified variant alleles implicating three potential new candidate neuropathy genes,
PMP2, SPTLC3, and DNAJBS, in 3 different families. In a family with a clinical diagnosis
of autosomal dominant demyelinating CMT1 neuropathy, we found a candidate missense
variant in myelin protein P2, PMP2 (c. T128A; p.143N) as the most likely disease causing
variant. We confirmed this variant in the proband and his affected father, and its absence in
both unaffected mother and sister (Figure 1D). PMP2 is a major stabilizing component of
the myelin sheath that insulates the axons in the PNS [Majava et al., 2010], but to date has
not been associated with any genetic peripheral neuropathy. PMP2 is predominantly
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expressed in myelinating Schwann cells, with specific expression in sciatic nerve
endoneurium and dorsal root ganglia [Zenker et al, 2014]. Homozygous knockout
(Pmp27~/~) mice have significantly reduced temporal motor nerve conduction velocities,
although no major structural changes in the myelin sheath and peripheral nerves were
observed [Zenker et al, 2014].

In vivo modeling experiments interrogated the potential impact of PMP2 loss of function
and of this specific novel variant. Two orthologues exist in zebrafish; suppression of either
using morpholino (MO) knockdown led to a motor neuron phenotype, including failure of
the motor neuron axons to extend from the notochord, as well as pathfinding errors where
the axons failed to innervate the myotomes appropriately (Figure 2A-B). These phenotypes
could be rescued by co-injection of the MO with wild-type human PMP2; however contrary
to wild-type, human mRNA carrying the variant identified in our proband failed to restore
the MO induced phenotype (Figure 2A-D and E). Upon overexpression, wild-type human
mRNA induced a phenotype similar to the one observed with MO alone in >50% of injected
embryos, suggestive of a dosage-sensitive transcript, similar to PMP22. Overexpression of
human mutant (p.143N) PMP2 mRNA exacerbated the phenotype significantly (~20%
increase; p=0.0003 Figure 2E-F); consistent with a dominant-negative mechanism of
pathogenesis for this allele.

Of note, antibodies against PMP2 fragments were identified initially in experimental allergic
neuritis, an autoimmune peripheral neuropathy in animals like rats and rabbits, and a model
for Guillain-Barre syndrome (GBS) [Ishaque et al., 1981; Ishaque et al., 1982]. One of the
main characteristics of GBS is the autoimmune attack to the peripheral nerves’ myelin
sheath causing demyelination. Antibodies against myelin protein zero (MPZ, PO) and most
significantly to myelin protein 2 (PMP2, P2) have been detected in patients with GBS and
chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) characterized by
primary demyelination and lymphocytic infiltration of the peripheral nerve [Inglis et al.,
2007]. Thus, discovery of this mutation in a CMT patient suggests a potential mechanistic
link between auto-immune neuropathy and inherited neuropathy.

We identified a novel variant in SPTLC3 (c.T448C; p.W150R) changing a highly conserved
residue and predicted to be damaging by bioinformatic algorithms in a patient; no parental
samples were available. The proband presented with neuropathy with a marked sensory but
no apparent autonomic involvement. SPTLC3 is the third subunit of the serine
palmitoyltransferase enzyme (SPT) involved in the de novo biosynthesis of sphingolipids
[Hornemann et al., 2009]. Heterozygous mutations in subunit 1 of SPT, SPTLC1, were first
identified as the cause of hereditary sensory and autonomic neuropathy type 1A [HSAN1A;
MIM #162400] [Dawkins et al., 2001]. Both genes encoding the additional subunits of SPT,
SPTLC2 and SPTLC3, were screened for mutations in a cohort of typical HSAN patients.
Heterozygous missense mutations were identified in SPTLC2 in a fraction of patients but no
mutations were found in SPTLC3 [Rotthier et al., 2010]. Consistent with a neuropathy
‘disease gene’, suppression of the sptlc3 orthologue in zebrafish embryos showed motor
neuron axon defects that phenocopied suppression of other known CMT genes (Figure 2H-
). The specific phenotype could be rescued by co-injection with SPTLC3 wild-type human
MRNA (Figure 2H-L). Injection of human mRNA carrying the variant identified in the
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proband was unable to rescue the phenotype, supporting the contention that the missense
variant represents a hypomorphic or possible loss of function allele (Figure 2H-L).

In a large family with an inheritance pattern consistent with an autosomal dominant
myopathy/neuropathy, we identified 10 shared variants in three affected individuals, of
which 9 did not segregate with the disease. A novel variant in DNAJB5 (¢.C43T; p.P15S)
was the only rare variant that co-segregated with the phenotype (Figure 1C). This rare
variant was observed in four other independent individuals in our exome database of ~3,000
individuals; however no phenotypic information is available for these individuals. The
variant is also present in the heterozygous state in a single individual in the Exome
Aggregation Consortium (EXAC) compiled dataset (MAF=0.00004858). This DNAJB5
variant affects a highly conserved amino acid in the DnaJ domain of the protein. A
homozygous mutation in DNAJB2 was identified in a large family segregating recessive
distal hereditary motor neuropathy of early adulthood onset [Blumen et al., 2012]. Mutations
in DNAJB6 have also been implicated in autosomal dominant myopathy [Harms et al., 2012;
Sarparanta et al., 2012] and have a dominant negative toxic effect increasing the stability of
the cytoplasmic form of the protein and interfering with its chaperone function [Sarparanta
et al., 2012]. These three genes encode members of the HSP40/DNAJ family of molecular
co-chaperones which protect proteins from irreversible aggregation during protein synthesis
or molecular stress. Functional testing of this gene by MO knockdown in zebrafish showed
abnormal peripheral nerve axonal architecture supporting a role of this gene in peripheral
nerve pathophysiology but had no apparent effect on muscle architecture (Supplementary
Figure 4). We propose DNAJB5 as a potential candidate for myopathy/neuropathy based on
its relationship with previously reported genes involved in similar phenotypes; HSPB8
(HSP27) and HSPB1 (HSP22) are known genes associated with peripheral neuropathy
[Evgrafov et al., 2004; Irobi et al., 2004].

Rare variant contributions to phenotypic manifestations — evidence for a mutation burden

WES of neuropathy patients often identified more than one rare variant in a neuropathy gene
within a given personal genome (Table 2). As described above, we identified the
predominant highly penetrant Mendelizing variants (HPMV) in multiple patients, as
evidenced by co-segregation with disease or de novo appearance in sporadic neuropathy.
However, we also identified potential contributing or modifying rare variants in other
neuropathy associated genes (Figure 3). These latter rare variants are not likely the
mutations predominantly responsible for trait manifestation because they are inherited from
an unaffected parent or do not conform to Mendelian expectations (i.e. exceptions to co-
segregation with neuropathy in the family). For example, we observed a higher than
expected heterozygous carrier frequency of the reported MED25 (p.A335V) mutation in our
cohort (10% of patients; MAF = 5.0%) compared to that observed in the NHLBI ESP study
sample (65/6498 individuals; MAF=0.5% [P-value=0.001]), a group of 266 controls (2/266
individuals; MAF=0.375% [P-value=0.003]), and the ARIC European-American (ARIC-
EA) study participants (80/ 5748 individuals; MAF=0.7%][P-value=0.003]). Although in 3
of 4 cases in our patient cohort there is no ‘second hit” in MED25 to cause the CMT2B2
phenotype, we cannot discount the possibility of a second pathogenic non-coding variant not
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captured by WES or the potential contribution of this mutation in a mutational aggregation
model to the overall phenotype of these patients.

Of note, we identified an average of 2.3 nonsynonymous rare variants per individual in 58
known neuropathy-associated genes in the entire patient cohort (37 samples) versus 1.3
nonsynonymous rare variants in 5748 ARIC-EA control individuals (P < 0.0001; Figure
4A). Cases with a definitive molecular diagnosis had an average of 2.9 variants per
individual (including the HPMV) while the undetermined cases had an average of 1.8
variants per individual. After implementing a stringent filter where we subtracted the HPMV
of each molecularly defined case, we still found an average of 1.8 variants in the CMT
cohort vs. 1.3 in controls (P=0.007), similar to the average of mutations in only the cases
without a yet definitive HMPV (Supplementary Figure 5). These data suggest that the
mutation burden in CMT genes remains the same between patients with a known versus
unknown HMPV and is significantly greater than the background load in unaffected
controls.

As a further test of this mutational burden observation, we calculated repeatedly the average
number of rare, nonsynonymous variants in the 58 neuropathy genes in 40 randomly
selected individuals from the BHCMG_EU sample set compared to the 5748 ARIC_EA
controls. Upon conclusion of 100 resamplings (with replacement), we only found three
instances in which the p-value was lower than the p-value observed in our original US CMT
(subtracting the HPMV) vs. ARIC_EA analysis;. These data reinforce the notion that the
background mutation load in these 58 neuropathy genes is specific to the population of
neuropathy patients.

To further investigate our observation of neuropathy gene mutation burden in neuropathy
patients, we analyzed WES data from an independent cohort of 32 patients (30 families)
from Turkey with a clinical diagnosis of CMT. When compared to population-matched
unrelated Turkish controls, the Turkish neuropathy cohort had a mutation burden of 2.1 vs.
1.6 (P = 0.013) nonsynonymous rare variants per individual, lending further credence to the
mutation burden hypothesis (Figure 4B, Supplementary Figure 5). The smaller difference in
the number of rare variants per individual may also reflect a greater number of private
variants in the Turkish population (particularly recessive alleles) or the contribution of
consanguinity in this population.

Functional testing of the mutation burden hypothesis

We hypothesized that the “mutation burden’ observed in the CMT cohorts would be
reflected in the functional consequences of CMT gene knockdown, and combinations
thereof, in a zebrafish model. This functional assay evaluated the integrity and innervation
of motor neuron axons along the body axis (Figure 5). A subset of genes was tested for
potential genetic interactions and mutation burden effects on phenotype based on our initial
cohort’s observed mutation events. Specifically, we suppressed each of mfn2, gdap1,
abhd12, med25, hspbl, and wnk1l separately and in pair-wise combinations of sub-effective
doses and tested the functional consequences of the genetic interactions between the selected
CMT genes. Consistent with our hypothesis, we observed increased severity in the
phenotype of aberrant axon extension, branching, pathfinding, and morphology of peripheral
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neurons in our zebrafish model when we injected pairwise combinations of these genes
(Figure 5). In each case, we observed likely multiplicative effects, although the magnitude
of interaction was unique for each pairing. For example, sub-effective co-injection of MOs
against mfn2 and gdap1, which by themselves gave no phenotype at the dose tested, yielded
a milder exacerbated phenotype (Class I/Il motor neuron pathology in 80-100% of embryos
tested); whereas co-suppression of mfn2 and med25 yielded 80-100% affected embryos,
with 1/3 of the embryos affected severely (Class I11/1V). These data support the prediction of
genetic interaction for loss of function events in bona fide CMT genes. To assess the
specificity of our in vivo model we also tested for genetic interaction between GDAP1, a
bona fide CMT driver, and 3 genes that have not been associated previously with peripheral
neuropathy. Two of those are expressed in the CNS and cause other neuropathologies (SIX6:
optic nerve atrophy [Carnes et al., 2014]; RP1L1: retinal degeneration and cerebellar
disorganization [Davidson et al., 2013]), and the third is expressed ubiquitously and causes
VACTERL (ANKRDG; unpublished data). We injected sub-effective doses of each of the
tested genes alone and also in pair-wise combinations (Supplementary Figure 6). Though
RP1L1 yields a 20% increase in the percentage of embryos with abnormally formed
peripheral neuronal axons when injected alone, we observed no exacerbation of the
phenotype when each of those genes was suppressed in combination with GDAP1.

Discussion

Whole exome sequencing (WES) allows genome-wide assessment of SNV coding variation
in the fraction of the human diploid genome that we can potentially interpret. However, even
in genetic conditions with known associated genes, interpretation can be complicated by the
presence of novel variants in more than one causative gene [Yang et al., 2013; Yang et al.,
2014]. Additionally, the contribution of variants in a multiplicity of genes for a single
condition within an individual personal genome and how variation in these can contribute to
or modify the phenotype has rarely been assessed.

We identified the apparent HPMV and likely primary disease driver of the neuropathy
phenotype in 17/37 (45.9%) families studied and suggest a potential candidate gene for 3
additional families. We discovered a mutational burden of 2.3 damaging variants in CMT
patients versus 1.3 in controls for the 58 neuropathy associated genes examined (P <
0.0001). After a highly stringent additional filter consisting of subtraction of the HPMV,
neuropathy patients carry a mutation burden consisting of an average of 1.8 rare variants in
neuropathy-related genes, as compared to an average of 1.3 rare variants in a control
population (P=0.007). A mutation burden (P = 0.013) was replicated in a second, ethnically
distinct CMT cohort in comparison to ethnically matched controls. This mutation burden
may well influence the phenotype, contributing to the clinical heterogeneity and the
spectrum of severity observed in the disease [Haldane, 1941]. We explored this hypothesis
in vivo examining phenotypic consequences of genetic interaction between select pairs of
neuropathy genes. We observed increased severity of the phenotype in zebrafish consistent
with potential additive and positive genetic interactions between neuropathy genes.

Our cohort has an intrinsic bias since individuals had previous extensive clinical and
molecular screening for disease causing variation in the most common CMT genes prior to
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consideration for WES. As anticipated, we found a low frequency of known mutations as
these samples were previously screened for such variants. We found variants in known CMT
or neuropathy genes in 17 cases; including one (MFN2) showing phenotypic expansion in a
CMT1 family. By expanding our candidate list to include additional neuropathy-associated
genes, we achieved a 45.9% (17/37) mutation detection rate. Furthermore, we identified
likely candidate genes PMP2, SPTLC3, and DNAJBS in an additional 3 families potentially
providing molecular insights into 20/37 (54.1%) of the families. We also provide functional
evidence for the pathogenicity of the identified variants in PMP2 and SPTLC3 (Figure 2)
and the effect of dnajb5 suppression on motor neurons (Supplementary Figure 4). However,
conclusive proof for these genes representing bona fide ‘neuropathy disease genes’ will
require the identification of pathogenic variants in additional patients.

Analysis of the WES data from this neuropathy cohort illustrates limitations of clinical
phenotyping. Detailed phenotypic information is required for correlating potential disease
causing variants to the clinical phenotype of patients. As illustrated in 12 of the study
subjects, 8 from the initial cohort and 4 from the Turkish cohort originally referred for a
presumptive clinical diagnosis of CMT, after a molecular diagnosis by WES and upon
retrospective re-evaluation of clinical records, the broader spectrum of additional clinical
features suggested other disorders associated with neuropathy. Moreover, these further
refined phenotypes were consistent with the molecular findings from WES in each of the
identified genes (Supplementary Table 1). The phenotype driven paradigm for clinical
diagnosis is limited by the: i) presentation of the patient at the given time, ii) individual
examiner and iii) underlying assumption of a singular unifying diagnosis; the latter
potentially not applicable to either a mutation aggregation model or a mutation burden
hypothesis.

In 29/40 (72.5%) patients we identified additional “carrier status’ mutations in other CMT or
neuropathy associated genes besides the apparent HPMV (Table 2). These additional
variants might contribute to the variability of expression of the clinical phenotype [Haldane,
1941]. Furthermore, in the cases where specific HPMVs were not identified, novel loci
potentially await to be recognized as main disease drivers (Supplementary Table 2), but the
mutation burden may still contribute to variable expressivity of the neuropathy phenotype. It
is possible that mutation burden and combinatorial effects of rare variants in genes that
interact genetically in the same biological pathways, such as those of tRNA biogenesis,
endocytic recycling or mitochondrial dynamics, modify the phenotype due to synergistic
(exemplified by MFN2 and GDAP1 co-occurring mutations in the same patient) or
counteracting effects [Klassen et al., 2011; Davis and Katsanis, 2012]. Alternatively, or
additionally, the cumulative mutation burden in genes dispersed across various biological
pathways or ‘networks’ might interplay to destabilize or compensate the system and thus
modulate the penetrance and/or expressivity of the overall phenotype. Although robust, the
capacity of biological networks to buffer perturbations may be limited if various mutational
events are coincident in a personal genome. Studies of the human disease network [Goh et
al., 2007; Hidalgo et al., 2009] at the genomic scale will likely contribute to our
understanding of both disease and homeostatic states in human biology.
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Genome-wide approaches have shown that rare variants are more common than previously
thought [Coventry et al., 2010; Marth et al., 2011]; a robust observation for both SNV and
CNYV disease associated alleles [Boone et al., 2013]. The overall phenotype of a given
individual may to a greater extent represent contribution of either de novo or more recent
and private mutational events with bigger effects on the whole system function, the “driver’
genes that occurred in the recent ancestors of the individual or clan [Lupski et al., 2011],
rather than more distributed common variants shared in a population or throughout several
populations. This mutation burden hypothesis and its role in clan genomics is further
illustrated in CMT1A duplication families wherein a phenotypic outlier in the family is
recognized when the duplication becomes a triplication [Liu et al., 2014] ora CMT1A
duplication is “homozygosed’ in a severe neuropathy patient born to heterozygous affected
parents [Lupski et al., 1991].

Interestingly, within peripheral neuropathies, several disorders once thought to be mostly
caused by environmental factors, have been subsequently shown to have a genetic
susceptibility component. A key example is provided by CNV at the PMP22 locus. The
reciprocal to the CMT1A duplication, deletion of 17p11.2, causes Hereditary Neuropathy
with Liability to Pressure Palsies (HNPP) [Chance et al., 1993]. Trait manifestation is
usually associated with an environmental insult, trauma to a specific nerve and often those
that come anatomically close to the surface (e.g. the ulnar nerve responsible for the “funny
bone’ phenomena of numbness and tingling upon hitting the elbow). Locus-specific
molecular studies revealed the majority of individuals that carry the HNPP deletion go
undiagnosed [Turner et al., 2008] due to phenotypic variability or lack of clinical symptoms
[Kumar et al., 1999]. However, association of the deletion carrier status with susceptibility
to developing carpal tunnel syndrome (CTS) has been documented [Cruz-Martinez and
Arpa, 1998; Potocki et al., 1999; Del Colle et al., 2003]. Additionally, 24 of 51 patients
diagnosed with multifocal neuropathies, not considered a genetic disease, were found to
carry the HNPP deletion. Moreover, 37% of mutation positive subjects had no family history
of neuropathy [Tyson et al., 1996]. Consequently, haploinsufficiency of the dosage sensitive
PMP22 gene, either by HNPP deletion (CNV) or loss of function point mutations
[Nicholson et al, 1994; Shy et al., 2006], has been associated with susceptibility to milder
forms of neuropathy. Furthermore, haploinsufficiency of the CMT SH3TC2 gene can also
confer subclinical neuropathy phenotypes in heterozygous carriers, including subclinical
axonopathy and median nerve mononeuropathy associated with susceptibility to CTS
[Lupski et al., 2010].

From this perspective, our identification of a PMP2 variant, a gene whose product has been
linked to experimental autoimmune neuropathy and both Guillain-Barre syndrome (GBS)
and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), in one family
suggests a potential genetic susceptibility to autoimmune neuropathy. Haploinsufficiency of
other CMT or neuropathy genes can also contribute to susceptibility to multifactorial
neuropathies. Moreover a recent study to survey possible underlying genetic contribution to
developing chemotherapy induced peripheral neuropathy (CIPN) due to allelic variability in
known CMT genes identified an association of PRX heterozygous variants in individuals
that developed CIPN versus controls similarly exposed [Beutler et al., 2014]. Additionally,
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three common SNPs in ARHGEF10 were also associated to different outcomes of protection
and susceptibility to CIPN in the same cohort [Beutler et al., 2014]. These findings support
and highlight one of the main hypotheses from the present study; the mutation burden of
carrier status, for neuropathy-associated rare variant recessive alleles, in clinically
unaffected individuals can poise the organism to develop other types of complex
neuropathies later in life upon gene-environment interactions (GXE). External insults,
chemical or mechanical; other pathologic processes like diabetes or infection; or ageing with
concomitant prolonged exposures, and/or reduced biological function of cells (e.g. SSBR,
gene transcription, protein processing and folding, etc.) or functional units like the neuron
can be the critical factor for the system to express the disease later in life. This might also be
true for other traits thought to be complex and having a major environmental influence with
a reduced genetic component that have been elusive to other approaches. Rather than single
locus strong associations across populations, each individual with such a given complex
disorder can carry a handful of rare/private variants in a variety of genes in their personal
genome that are important for the development of the disease process and that through an
oligogenic model confer susceptibility to the individual to develop the disorder upon
additional factors such as diet, exposures, ageing, etc.

In summary, our studies of rare genomic variants in neuropathy identify known pathogenic
alleles, novel variants in known disease genes, and further document phenotypic expansion
for disease gene traits. We identified 3 potential novel candidate neuropathy “disease genes’
as supported by both genetic and functional studies. Moreover, we provide evidence that
genome-wide studies and molecular diagnosis can further assist interpretation of a clinically
based differential diagnosis. Of note, systematic analyses of genes implicated in neuropathy
reveal a mutation burden in patients compared with unaffected control populations and
zebrafish model organism studies show gene interactions for genes implicated by mutation
burden in individual families. This mutation burden is consistent with the concept of clan
genomics (Lupski, et al 2011) contributing significantly to both Mendelian and common/
complex disease trait manifestation.

Experimental Procedures

Samples

We performed WES through the Baylor-Hopkins Center for Mendelian Genomics
(BHCMG). Written informed consent from all participating subjects was obtained for DNA
and genetic analyses though a Baylor College of Medicine Institutional Review Board
approved protocol, also approved by the BHCMG ELSI committee for inclusion into the
BHCMG sequencing project. Some of these samples had been collected and stored over
decades; thus, DNA of parents or other family members was not always available for
additional testing and co-segregation analyses.

Exome sequencing

We performed whole-exome next-generation sequencing according to previously published
methods [Lupski et al., 2013; see Supplementary experimental methods for details],
producing an average of 9.25 Gb of raw data per exome and achieving ~93.5x average depth
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of coverage (median coverage = 97x) per sample with >90% of the captured bases covered
at 20x (Supplementary Table 3). Variant data generated will be released and deposited into
the NCBI database of Genotypes and Phenotypes (dbGaP: http://www.ncbi.nlm.nih.gov/
gap) as part of the Centers for Mendelian Genomics research initiative.

Variant annotation pipeline

Variant calling from the aligned BAM files was performed using the ATLAS [Shen et al.,
2010] and SAMtools suites [Li et al., 2009]. Annotation was performed using Sacbe, an in-
house developed annotation pipeline [Gonzaga-Jauregui et al., 2013] based on ANNOVAR
[Wang et al., 2010] and custom scripts (see Supplementary experimental methods for
details).

Data analysis

We performed an initial analysis focusing on a list of 74 CMT and other neuropathy
associated genes (Supplementary Table 4). Additionally, we interrogated a list of candidate
CMT genes (Supplementary Table 5) based on first degree interactors of known CMT genes
and performed a second pass analysis in those cases where we did not identify candidate
mutations in CMT genes.

The number of rare (i.e., minor allele frequency of <1% in TGP, NHLBI ESP, and the
European subset of NHLBI ESP) nonsynonymous variants in 58 well-established CMT
genes (Supplementary Table 6) was computed for each sample of the neuropathy cohort and
for 5748 Europeans from the ARIC (Atherosclerosis Risk in Communities study) cohort, a
large population-based study of cardiovascular disease and its risk factors. The average
number of rare nonsynonymous variants was then compared between the neuropathy and
ARIC study samples using a non-parametric Mann-Whitney-Wilcoxon test. A permutation
procedure with 100,000 iterations was performed to determine statistical significance. For
the second CMT cohort of Turkish descent, a set of 472 Turkish controls was used that was
sequenced and analyzed using identical protocols, platforms, and standards to those of the
cases.

Functional experiments

See Supplementary experimental methods for details.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Pedigrees of CMT/neuropathy patients and segregation of causative mutations. A. Pedigree
showing de novo occurrence of the known p.V244M MFN2 mutation in proband. B.
Dominant pedigree of a dominant intermediate form of CMT and segregation of the
identified novel variant p.E196Q in YARS. Mutation was inherited to the affected proband
and affected sister from the affected mother. C. Pedigree of a dominant form of CMT and
segregation of the mutation in candidate gene PMP2 (p.143N). The affected proband
inherited the mutation from his affected father, while both unaffected mother and sister do
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not carry the mutation. D. Pedigree of a dominantly inherited myopathy-neuropathy
phenotype in a family with multiple affected individuals where a novel variant in DNAJB5
(p.P15S) was identified.
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Figure 2.
Suppression of pmp2 and sptlc3 in zebrafish causes defects in motor axon pathfinding and

outgrowth. A—F. Lateral views of a control embryo, an embryo injected with pmp2
morpholino (MO) and embryos injected with pmp2 MO+PMP2_WT and pmp2 MO
+PMP2_143N, PMP2_WT and PMP2_143N cocktails, respectively, at 2dpf (days post
fertilization). Controls showed even spacing and normal branching of the motor neuron
axons (A). In the pmp2 MO injected embryos the spacing of neuronal axons is perturbed by
exiting the periphery but failing to extend (asterisks) or presenting pathfinding errors
(arrows; B). Co-injection of pmp2 MO with human PMP2_WT resulted in restoration of the
normal neuronal phenotype (C), but PMP2_143N did not (D). Overexpression of human
PMP2_WT causes mild pathfinding errors (E), suggesting dose sensitivity for PMP2.
However, the human PMP2 mutant p.143N, was significantly more severe than PMP2_WT
when overexpressed (F) and had similar effects to suppression of pmp2 by MO knockdown.
G. Percentage of normal versus abnormal embryos under the conditions being evaluated
above. H-K. Wild type embryos (H) and sptlc3 morphants (I) in which secondary axons fail
to migrate appropriately (white arrows). The phenotype induced by suppression of sptlc3
could be rescued by co-injection with SPTLC3_WT (J) but not SPTLC3_R150W (K). L.
Quantification of normal embryos vs. embryos with motor neuron axon defects. For
statistical analyses x2 -tests were performed.
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Figure 3.
Neuron schematic of the localization or site of action of the main CMT/ neuropathy gene

products. Legend on left shows patient identifier numbers and causative and possibly
contributing mutations identified by WES. Full shapes correspond to rare presumed
causative mutations deemed Highly Penetrant Mendelizing Variants (HMPVs); while empty
shapes correspond to rare variants that may be contributing to the mutation burden in
neuropathy patients. Each personal genome is distinguished by a unique color/shape. In bold
are some of the canonical CMT genes.
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Figure 4.
Rare variant distribution in studied individuals suggests high carrier frequency for rare

alleles in neuropathy genes in exome sequenced neuropathy cohort. A different extended
cohort of 5748 Europeans from the ARIC-EA study was observed to have a tendency
towards zero or one rare variants in recessive neuropathy genes.
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Figure 5.
Functional assessment of mutation burden hypothesis in a zebrafish model. First and second

column panels show representative images of acetylated-tubulin (a-AcTub) staining of
peripheral neurons in 2-day MO knockdown, single or in pair-wise combinations, zebrafish
larvae. Third column panel shows qualitative assessment of morphant fish evaluated as
defects in peripheral neuron axon extension, branching or pathfinding according to the
scoring system developed. For pair-wise combinations, sub-effective concentrations of each
of the gene-specific MOs were injected as shown in the graphs by the number of abnormal
larvae in each category. However, when injected together increased severity in the
phenotype was observed for all the pair-wise combinations, suggesting in vivo epistatic
effects between these pairs of genes as observed in the a-AcTub fluorescence images and
quantified in the graphs. Asterisks highlight some evidently affected axons.

The scoring system used for assessing PNS defects in zebrafish was developed ad hoc and
implemented here in order to best reflect the observations resulting from our experiments.
Class | category refers to single axon defects; Class 11 category refers to two or more axons
exhibiting defects with the presence of some normal axons; Class Il category refers to
generalized axonal defects; Class IV category refers to complete absence of axonal
extension.
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