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Feather mites are useful models for studying speciation due to their high diversity and

strong degree of host specialization. However, studies to date have focused on the

evolution of higher-level mite taxa while much hidden diversity likely occurs at the level

of host genera and species. In this study, we examined the diversity and evolution

of feather mites infesting six sympatric seabird species from six genera, breeding in

the Cape Verde archipelago. We report 32 feather mite morphospecies categorized

into 10 genera and three families, of which nine correspond to new, undescribed

species. Molecular data corroborated morphological species descriptions, except for

two morphologically-cryptic, but genetically distinct mite lineages related to Zachvatkinia

oceanodromae and Laminalloptes simplex. Using these communities, we then applied

a co-structure approach to test the contribution of ectosymbiont and host factors

in driving feather mite evolution. Most seabird species hosted specific and unique

feather mite species, even under sympatric conditions, and in general, feather mite

species exhibited strong host-driven genetic structure. However, patterns of genetic

differentiation were variable. That is, some mite species are more generalist than others

and mite lineages/haplotypes can be shared by related seabird species. Interestingly,

host-specific mites (e.g., Zachvatkinia spp.) tend to display much higher intra-specific

diversity compared to more generalist mites (e.g., Microspalax and Plicatalloptes

spp.). We discuss ectosymbiont and host life-history traits that might generate these

patterns, such as host dispersal and breeding behavior and/or mite spatial and trophic

specialization. Our findings highlight both the vast and largely unrecognized diversity of

avian feather mites on seabirds, and the intrinsic complexity of the ecological processes

underlying the evolution of these ectosymbionts.

Keywords: host-symbiont systems, cryptic species, co-structure, host-specialization, adaptation,

Procellariiformes, morphology, Analgoidea
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INTRODUCTION

By definition, parasites and symbionts depend almost entirely
on their host for survival and transmission, and thus have
evolved intricate adaptations to optimize their life cycle (de
Meeûs et al., 1998; Criscione et al., 2005). The degree of
host dependency is thought to determine the specificity of the
interaction, and we expect to find higher species diversity and
stronger patterns of host specialization with increasingly intimate
interactions (Poulin and Morand, 2000; Mouillot et al., 2006).
This specificity may be due to limited opportunities for dispersal
and colonization of new hosts (Clayton et al., 1992; Johnson
et al., 2002; Whiteman et al., 2004) or may be determined
by specific adaptations to host structures (e.g., feather, hair,
immune responses), such that parasites/symbionts are incapable
of establishing, surviving and/or reproducing on foreign hosts
(Tompkins and Clayton, 1999; Reed et al., 2000).

Comparative studies of parasite co-structures have been
shown to be useful in elucidating the proximal factors underlying
variation in host-specificity and patterns of parasite/symbiont
genetic structure (Johnson et al., 2002; Criscione, 2008; Mazé-
Guilmo et al., 2016). This approach consists in comparing
population demographic or genetic structures between two or
more interacting species: a parasite/symbiont inhabiting multiple
host species, or multiple parasite/symbiont species on a single
host. Studies of this type have previously been used to improve
our understanding of avian ectoparasite diversity (Johnson et al.,
2002). However, multiple host and parasite/symbiont life-history
traits can influence the specificity of an interaction and the
resulting population structure of the parasite/symbiont (i.e.,
dispersal and drift, host ecology and behavior, symbiont life-
cycle complexity and demography) (Blouin et al., 1995; McCoy
et al., 2003; Criscione and Blouin, 2004; Bruyndonckx et al.,
2009; Mazé-Guilmo et al., 2016). This can lead to conflicting
predictions on patterns of structure. In this context, communities
of ecologically similar and geographically overlapping host
species provide an ideal framework to investigate the proximate
factors involved in the divergent evolution of their parasites
and symbionts. This scenario also offers the opportunity to
test parasite/symbiont structure at hierarchical spatial scales
(among host individuals, populations and communities), and
make predictions on selection and adaptation processes (McCoy
et al., 2001). Not surprisingly, few studies have used this multi-
species and multi-scale approach (but see Johnson et al., 2002;
Rivera-Parra et al., 2015).

Feather mites (Acari: Astigmata: Analgoidea and
Pterolichoidea) are particularly useful models to study
divergence and speciation processes. They are common obligate
ectosymbionts of birds, with approximately 2,500 species
described from extant avian orders (Gaud and Atyeo, 1996;
Proctor, 2003; Mironov and Proctor, 2008). Feather mites cannot
survive in the off-host environment, and have evolved diverse
habitat and trophic specializations to the host environment
(Dabert and Mironov, 1999; Doña et al., 2015a; Stefan et al.,
2015). This strong dependency has led to the “paradigm” that
feather mites are highly host-specific, and co-evolved with their
bird hosts. However, previous studies reported varying degrees

of co-phylogenetic patterns among mite groups, calling this
paradigm into question (Gaud and Atyeo, 1996; Proctor, 2003;
Doña et al., 2017a,b). That is, some feather mite species appear
restricted to one or a few closely-related host species, others
are associated with a wide range of hosts from different genera,
and there have even been a couple of records of mite species
infesting hosts from different avian families and orders (Doña
et al., 2017b). One of the main difficulties in evaluating specificity
in feather mite-host associations is the potential presence of
cryptic diversity. Indeed, the morphological identification of
feather mites is difficult. Immature stages of many taxa and
females of closely-related species are often indistinguishable,
while male morphological characterization is a laborious task
even for experienced taxonomists (Doña et al., 2015b). Molecular
studies hold much promise for documenting and understanding
diversity in this group, but are still relatively scarce (but see
Dabert et al., 2001, 2015; Klimov and OConnor, 2008; Knowles
and Klimov, 2011; Štefka et al., 2011; Doña et al., 2015b).

In feather mites, divergence might be affected by either
host-related factors; feather structure and dynamics (i.e.,
moult), defenses (i.e., preening), and/or ectosymbiont life-
history traits; dispersal abilities, population size, generation
time (Table 1, Proctor, 2003; Pap et al., 2005; Jovani et al.,
2006; Clayton et al., 2010; Fernández-González et al., 2015).
Due to the dependency of feather mites on host, as their
main environment, and the assumed predominant role of
vertical transmission, host factors could act as important
selective forces promoting the specialization of mite traits. For
example, in our previous study, we showed that competition
has likely led to within-host spatial and trophic niche
partitioning in two co-occurring seabirdmite species (M. brevipes
and Z. ovata), which in turn correlates with mite-specific
morphological traits (Stefan et al., 2015). These adaptations
have been hypothesized to shape mite genetic structure and
divergence (Gaud and Atyeo, 1996; Dabert and Mironov,
1999; Proctor and Owens, 2000; Proctor, 2003). However,
comparative studies examining multiple feather mite species
and considering various host and spatial factors are currently
lacking.

In the present study, we explore the diversity and genetic
structure of feather mite species inhabiting the community
of procellariform seabirds of the Cape Verde Islands. These
colonial seabirds represent excellent hosts for investigating
divergence processes in feather mites. Seabirds are highly pelagic
birds that breed in large colonies on remote oceanic islands.
These colonies represent spatially discrete and hierarchical
habitats, with extremely high host densities. Most seabird
species show strong interannual fidelity and natal philopatry
to their breeding sites, features that can favor parasite
specialization and host specificity (Brooke, 2004; McCoy et al.,
2013). However, seabirds are also long distance migrants and
frequently breed sympatrically in mixed species colonies, which
in turn can promote dispersal and host switching in their
ectosymbionts.

The specific aims of our study were: (1) to characterize the
diversity of feather mites inhabiting the community of seabirds
breeding in the Cape Verde Archipelago; (2) to compare genetic
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TABLE 1 | Key differences in life-history traits of the feather mite genera.

Zachvatkinia Microspalax Brephosceles Plicatalloptes Laminalloptes Onychalloptes

Micro-habitat

occupied on the

host body

Flight feathers Flight feathers Soft body feathers and wing

coverts, occasionally on

flight feathers

Soft body feathers and wing

coverts, occasionally on

flight feathers

Flight feathers Flight feathers

Body size Large

(400–700µm)

Small

(330–360µm)

Small

(230–400µm)

Small

(330–380µm)

Large

(500–900µm)

Relatively large

(410–440µm)

Body sclerotization Heavy Heavy Weak Weak Heavy Heavy

References Mironov and

Stefan, 2013

Atyeo and Gaud,

1991

Peterson, 1971 Mironov, 1996 Mironov and

Stefan, 2016

Peterson and

Atyeo, 1968

structure among feather mite species using different hosts in
sympatric and allopatric breeding conditions, and (3) to evaluate
the role of different host (breeding and nesting behavior) and
mite (dispersal ability and within host habitat use) factors in
generating these patterns.

MATERIALS AND METHODS

Study Species and Feather Mite Sampling
The Cape Verde Archipelago is located in the mid-Atlantic
Ocean (16◦N 24◦W) approximately 570 km off the west coast
of Africa. Mite sampling was performed on six seabird species,
five from the order Procellariiformes (Cape Verde shearwater,
Calonectris edwardsii; Boyd’s shearwater, Puffinus boydi; Bulwer’s
petrel, Bulweria bulwerii; band-rumped storm petrel, Hydrobates
castro; Cape Verde petrel, Pterodroma feae) and one from
the order Phaethontiformes (the red-billed tropicbird, Phaethon
aethereus), breeding on five islands and islets of the archipelago:
Raso, Ilhéu Cima, Ilhéu Grande, Curral Velho and Fogo
(Figure 1). All sampled islands harbor multiple seabird species,
except Fogo, which is inhabited by a single procellariiform
species. From 2004 to 2012, feather mites were collected from
captured adult birds using the dust-ruffling method (Walther
and Clayton, 1997) and stored in absolute ethanol for subsequent
morphological identification and molecular analyses. A total of
453 birds (C. edwardsii: 46, P. boydi: 60, B. bulwerii: 83, P. feae:
76, H. castro: 173 and P. aethereus: 15) were sampled; details on
the geographic locations and number of individuals sampled per
locality and host species are shown in Figure 1. Main life-history
characteristics of the feather mite genera and seabird hosts are
detailed in Table 2.

Morphological Identifications
Initial screening of feather mites used morphological criteria
to characterize the feather mite community composition on a
host. Mites were cleared in lactic acid for 24 h and mounted on
microscope slides in PVA medium (BioQuip Products, Rancho
Dominguez, California). The slides were cured on a slidewarmer
at 40◦C for 4 days and then examined using a Leica DM 5000B
light microscope with differential interference contrast (DIC)
illumination. Mites were identified using the identification keys
for bonnetellines (Mironov, 1989a,b, 2000), xolalgids (Dabert
and Ehrnsberger, 1991; Mironov and Palma, 2006) and alloptids
(Peterson and Atyeo, 1968; Peterson, 1971; Atyeo and Gaud,

FIGURE 1 | Map of the Cape Verde Archipelago showing the five islands

where feather mites were sampled. The name of seabird species and the

number of dust-ruffling samples examined per host species and locality are

shown in boxes.

1991; Mironov, 1996; Mironov and Stefan, 2016). Feather mite
specimens of each identified morphospecies are deposited in the
Zoological Institute of the Russian Academy of Sciences, Saint
Petersburg, Russia (ZISP) and in the Museum of the Faculty
of Biology (Centro de Recursos de Biodiversidad Animal),
University of Barcelona, Spain.

DNA Isolation, Amplification and
Sequencing
When possible, five specimens of each feather mite
morphospecies per seabird host and island and from different
host individuals were selected for the molecular analyses.
Total numbers of mites were: 50 specimens from the genus
Zachvatkinia (five species), 37 from the genus Microspalax
(four species), 66 from the genus Brephosceles (nine species),
19 from the genus Plicatalloptes (one species), 13 from the
genus Laminalloptes (three species) and 5 specimens from
Onychalloptes (one species) (Table S1). The mite genera:
Rhinozachvatkinia, Promegninia, Ingrassia and Opetiopoda, were
not included in the molecular analyses due either to low sample
size and/or failure to obtain DNA sequences.
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DNA extractions were performed on each individual mite
using a DNeasy Tissue Kit (Qiagen, Valencia, CA, USA) and
the non-destructive method described by Dabert et al. (2008).
After DNA extraction, mite exoskeletons were recovered,
mounted on microslides, re-identified morphologically
and kept as reference vouchers. Partial sequences of two
mitochondrial genes, 12S rRNA (12S) and 16S rRNA (16S),
were amplified for each feather mite using the following
primers: SR-J-14199 (5′-TACTATGTTACGACTTAT-3′)
and SR-N-14594 (5′-AAACTAGGATTAGATACCC-3′) for
the 12S gene (Kambhampati and Smith, 1995); and 16SA2
(5′-TTTAATTGGTTACTTGTATGAATG-3′) and 16C2 (5′-
CGCTGTTATCCCTAGAGTAT-3′) for the 16S gene (Dabert
et al., 2001). Amplifications were carried out in a total volume
of 25 µl containing 2.5 µl 10x reaction buffer with 15mM
MgCl2 (Roche Diagnostics), 2mM MgCl2, 0.2mM of each
dNTP, 0.4µM of each primer, 1.25U Taq DNA polymerase
(Roche Diagnostics) and 2 µl of DNA template. Amplification
conditions for the 12S rRNA gene consisted of an initial step of
2min at 94◦C, followed by 10 cycles of denaturation at 94◦C for
30 sec, annealing at 40◦C for 30 sec, and extension at 68◦C for
1min, and 35 cycles of denaturation at 94◦C for 30 sec, annealing
at 43◦C for 30 sec, and extension at 68◦C for 1min, with a
final step of 5min at 72◦C. For the 16S rRNA gene, the PCR
conditions followed Black and Piesman (1994). Amplification
products were separated by electrophoresis in a 2% agarose gel
and visualized under UV light. Successful amplifications were
sent for sequencing to Beckman Coulter Genomics (France).
Only mite specimens with complete sequence information for
the two mitochondrial genes were included in the analyses.
DNA sequences were checked and edited using Bioedit version
7.0.5.3 (Hall, 1999) and all variable sites were confirmed by visual
inspection of the chromatograms. Sequences were aligned for
each gene independently using MAFFT version 7, with default
parameters.

Molecular Diversity and Species
Delimitation
We tested for neutrality for each gene of each mite genus
using Tajima’s D test included in DNASP v.5 (Librado and
Rozas, 2009). Genetic statistics (number of polymorphic sites,
number of haplotypes, nucleotide and haplotype diversity) for
each gene and morphospecies/genetic lineage were assessed
using DNASP v.5. Mean genetic distances within and between
morphospecies/genetic lineages were calculated with MEGA 4.1
using Kimura’s 2-parameter (K2P) distance model (Tamura et al.,
2007).

Following the initial morphological characterization of all
mites and to control for the potential presence of cryptic species,
we conducted two different species delimitation analyses on
the molecular data. First, we applied the general mixed Yule-
coalescent (GMYC) method (Pons et al., 2006). This method
infers an ultrametric tree and, based on this topology, attempts
to detect transitions in the tree where branching patterns switch
from being attributed to speciation (one lineage per species) to
being attributed to an intra-species coalescent process (multiple

lineages per species). The GMYC analysis was conducted using
the “splits” package (Species Limits by Threshold Statistics)
in R version 3.0.3. The single threshold method was applied
in order to find the Maximum Likelihood solution of the
GMYC model. The ultrametric tree was generated using BEAST
v.1.6.2 (Drummond and Rambaut, 2007) after removing identical
sequences. In order to choose the most appropriate tree prior, we
considered different parameter combinations: Yule vs. coalescent
tree priors which refers to the model used to express the
expected branching pattern on the tree, and strict clock vs.
relaxed uncorrelated lognormal clock, which is compared to
determine the model of molecular evolution. Secondly, for
each mite genus, we inferred haplotype networks using the
concatenated sequences of the two mitochondrial genes to which
we applied the statistical parsimony algorithm implemented in
TCS version 1.21 (Clement et al., 2000). This method partitions
the data into independent haplotype sub-networks connected
by changes that are non-homoplastic with a 95% probability
(Templeton, 2001). Although this threshold does not necessarily
correspond to species boundaries, the algorithm has been
shown to be useful in separating independent lineages, which
in most cases correspond to good species (Hart and Sunday,
2007).

Genetic Structure
To examine the genetic structure of the mites, we first
mapped host and geographic information onto themitochondrial
haplotype network of each mite species. In general, each host
species harbored its own set of feather mite species, except for
three mite species (M. brevipes, B. puffini, and Plicatalloptes sp.1)
shared by the Cape Verde and Boyd’s shearwaters (see results).
For these mite species, we evaluated the partitioning of genetic
variation within and between feather mite populations (in this
case at host species and host individual levels), using one-way
analyses of molecular variance (AMOVA) in ARLEQUIN version
3.5 and determined significance using 10,000 permutations.
We also calculated overall and pairwise estimates of FST in
ARLEQUIN (Excoffier and Lischer, 2010) and then examined
genetic structure over geographic space. We ran AMOVA
analyses, partitioning genetic variation among islands and among
individuals within islands for each mite species that occurred on
at least two islands.

RESULTS

Morphological Diversity of Feather Mites
Thirty-two feather mite species belonging to ten genera and
three families were found on the six studied seabird species based
only on morphological criteria: Zachvatkinia, Rhinozachvatkinia,
Promegninia (Avenzoariidae), Microspalax, Brephosceles,
Plicatalloptes, Laminalloptes, Onychalloptes (Alloptidae),
Ingrassia, and Opetiopoda (Xolalgidae) (Table 3). Many of
these genera, such as Zachvatkinia, Microspalax, Brephosceles
and Ingrassia, co-occurred in multiple seabird species in the
Cape Verde Islands, whereas the genera Rhinozachvatkinia,
Promegninia, Opetiopoda, Plicatalloptes, Laminalloptes, and
Onychalloptes were restricted to one or two host species
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TABLE 3 | Feather mite richness for each seabird species breeding in the Cape Verde Islands.

Cape Verde

shearwater

(46)

Boyd’s

Shearwater

(60)

Bulwer’s

petrel

(83)

Cape Verde

petrel

(76)

Band-rumped

storm-petrel

(173)

Red-billed

tropicbird

(15)

Locality

Fam. Avenzoariidae

Zachvatkinia ovata + (29) Raso, Curral Velho

Z. sp.1 + (23) Raso, Ilhéu Cima

Z. sp.2 + (24) Raso, Ilhéu Cima, Ilhéu Grande

Z. oceanodromae + (29) Raso, Curral Velho, Ilhéu Cima,

Ilhéu Grande

Z. sp.3 + (10) Fogo

Rhinozachvatkinia calonectris + (8) Raso, Curral Velho

Promegninia calonectris + (1) Raso

P. bulweriae + (2) Raso, Ilhéu Cima

Fam. Alloptidae

Microspalax brevipes + (37) + (13) Raso, Curral Velho, Ilhéu Cima

M. bulweriae + (9) Raso, Ilhéu Cima, Ilhéu Grande

M. cymochoreae + (12) Raso, Curral Velho, Ilhéu Cima

M. pterodromae + (1) Fogo

Brephosceles puffini + (27) + (22) Raso, Curral Velho, Ilhéu Cima

B. sp.1 + (29) Raso, Ilhéu Cima, Ilhéu Grande

B. sp.2 + (4) Raso, Ilhéu Cima

B. sp.3 + (2) Ilhéu Cima

B. sp.4 + (5) Raso

B. sp.5 + (3) Raso

B. decapus + (42) Raso, Curral Velho

B. lanceolatus + (12) Raso, Curral Velho, Ilhéu Cima

B. disjunctus + (20) Fogo

Plicatalloptes sp.1 + (25) + (12) Raso, Curral Velho, Ilhéu Cima

Laminalloptes phaetontis + (12) Raso

L. minor + (12) Raso

L. simplex + (11) Raso

Onychalloptes microphaeton + (14) Raso

Fam. Xolalgidae

Ingrassia calonectris + (30) Raso, Curral Velho

I. dubinini + (23) Raso, Ilhéu Cima

I. micronota + (26) Raso, Ilhéu Cima, Ilhéu Grande

I. oceanodromae + (59) Raso, Curral Velho, Ilhéu Cima

I. aequinoctialis + (9) Raso

Opetiopoda bulweriae + (4) Raso

Total number of mite species 8 6 8 3 5 5

The number of birds sampled for each species is indicated. The number of birds on which a given mite species was found is indicated in brackets preceded by the “+” symbol.

(Table 3). The procellariiform seabirds harbored distinct
acarofauna compared to the phaethontiform species, being
Ingrassia the only mite genus shared by the two avian orders.

Nine of the recorded mite species corresponded to new
undescribed species, and six were recently described species
(Rhinozachvatkinia calonectris, Promegninia calonectris,
Promegninia bulweriae, Opetiopoda bulweriae, Ingrassia
calonectris, and Ingrassia micronota) (Stefan et al., 2013,
2014; Mironov et al., 2015). The Cape Verde shearwater and

Bulwer’s petrel hosted the greatest number of feather mite
species (eight each) with the highest number of new species
(three for the Cape Verde shearwater and four for Bulwer’s
petrel), whereas the Cape Verde petrel harbored the lowest
mite richness with only three species found. Except for three
feather mite species (M. brevipes, B. puffini, and Plicatalloptes
sp.1) which were shared by Cape Verde and Boyd’s shearwaters,
each host species harbored its own feather mite assembly
(Table 3).
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Molecular Diversity and Structure of
Feather Mites
In total, 190 sequences for each of the two mitochondrial genes
were obtained for 23 out of the 32 morphologically distinct
species (Table S1).

The number of haplotypes per mite species ranged from 1
to 11 for the 12S gene and from 1 to 6 for the 16S gene.
Haplotype diversity ranged from 0 to 1 for both genes, while
nucleotide diversity ranged from 0 to 0.0051 once cryptic
lineages were accounted for (Table S2). No deviation from
neutrality was found for any mite genus or gene (12S and 16S)
(all P > 0.05), except for the 12S data of Plicatalloptes sp.1,
which may indicate purifying selection or population expansion
(Tajima’s D = −1.87; P < 0.05). A Tajima’s test could not be
computed for the 16S data of Onychalloptes due to a lack of
polymorphism.

Sequence divergence between feather mite morphospecies
within each genus are shown in Table S3. Mean divergences
ranged from 3.7% (Brephosceles) to 24.9% (Laminalloptes) for
the 12S, and from 1.9% (Brephosceles) to 32.2% (Laminalloptes)
for the 16S gene (Table S3). Mean genetic distances between
mite individuals within morphospecies ranged from 0 to 0.7%
for all species from all genera and for both genes, except for
Z. oceanodromae (1%, SE = 0.002 for 12S gene and 1.5%,
SE = 0.006 for 16S gene; bootstrap 1,000 replicates) and L.
simplex (2.8%, SE = 0.005 for 12S gene and 4.4%, SE = 0.010
for 16S gene, respectively; bootstrap 1,000 replicates), indicating
a high degree of intra-specific diversity and the presence of
putative distinct genetic lineages within these twomorphospecies
(Table S2). Sequence divergence between the genetic lineages of
Z. oceanodromae A and Z. oceanodromae B was 6.6% for the 12S
gene and 7% for the 16S gene, whereas between L. simplex A and
L. simplex B it was 11.2 and 16.4%, respectively for the two genes.

The GMYC analysis suggested the presence of 26 putative
mite species within Cape Verde Islands when considering
the Yule-strict clock combination [NGMYC = 29 (CI 28–30),
LGMYC = 732.49; where N = number of species including the
3 outgroups and L = likelihood of GMYC model]. For the
coalescent strict clock, the GMYC analysis resulted in 25 putative
mite species [NGMYC = 28 (CI 28–30], LGMYC =738.21) (Figure
S1). For both models (Yule and coalescent), the GMYC method
indicated that there are two species within Z. oceanodromae
and two within L. simplex. The only disagreement between
the two models used to delimit species concerned M. brevipes,
which was partitioned into two distinct species corresponding
to different host species (Cape Verde and Boyd’s shearwaters)
for the Yule-strict clock combination. Neither the coalescent
strict clock nor the TCS network analysis (see below) recognized
these as separate lineages. In favor of this split, the Bayes
factor of the Yule prior with a strict clock gave a slightly
better fit than a coalescent prior (Yule: −5755.31, coalescent:
−5741.33).

The mtDNA networks revealed high levels of haplotypic
diversity, with 102 distinct haplotypes, based on the concatenated
12S and 16S sequences. These sequences grouped into 25
different networks, which agrees with the 25 genetic lineages

identified by the GMYC approach. Furthermore, we a high
degree of correspondence between morphological and molecular
data (Figures 2A–F). Again, the only exceptions were Z.
oceanodromae from band-rumped storm petrels and L. simplex
from red-billed tropicbirds for which two different sub-networks
were found (Z. oceanodromae A and B; Figure 2A and L. simplex
A and B; Figure 2E).

As outlined above, clear patterns of host-associated genetic
structure were apparent in most of the feather mite genera
analyzed. Twenty out of the 23 mite species examined showed
a one-host one-mite species pattern (Figure 2). M. brevipes,
B. puffini, and Plicatalloptes sp.1 were shared by two related
hosts, Cape Verde and Boyd’s shearwaters (Figure 2). The two
shearwater hosts share breeding habitats, but differ in their
breeding phenology (Table 2). In accordance with this temporal
isolation, AMOVA results showed significant host-associated
genetic differentiation for M. brevipes (8 = 0.669, P = 0)
and B. puffini (8 = 0.225, P = 0.010) (Table 4). This was
not the case for Plicatalloptes sp.1 (8 = 0.048, P = 0.069), in
which genetic structure between host species was not statistically
significant. In contrast, when testing for the effect of geography,
the TCS parsimony networks showed only weak spatial genetic
structure in the feather mite species that occurred on more
than one island population (Figures 3A–D). Indeed, almost all
mite species shared haplotypes among islands. Furthermore, the
AMOVA analyses with island as a grouping factor supported this
observation, with only Zachvatkinia sp.1 andM. brevipes showing
a tendency for island-related genetic structure (Table S4).

DISCUSSION

In studying the diversity of feather mites on procellariiform
and phaenthontiform seabirds from Cape Verde, we uncovered
a unique mite fauna composed of 32 morphologically distinct
species belonging to ten genera, of which nine are new,
undescribed species. All seabird species examined in this
study hosted at least three feather mite species, with Cape
Verde shearwaters and Bulwer’s petrels presenting the richest
mite communities (eight species each). This number is in
line with mite richness documented in other groups of
birds, including seabirds (Fitzpatrick and Threlfall, 1977; Doña
et al., 2016). For instance, other procellariiform seabirds
are known to harbor more than one mite species: Puffinus
gravis (nine), Oceanodroma leucorhoa (eight), and Puffinus
tenuirostris (seven) (Bourgeois and Threlfall, 1979; Doña et al.,
2016).

The host-feather mite associations found in the present
study are largely in agreement with previous records in the
literature (Peterson, 1971; Mironov, 1989a; Atyeo and Gaud,
1991; Stefan et al., 2013; Mironov and Stefan, 2016), although
some inconsistencies were detected. First, Z. ovatawas previously
reported from Calonectris diomedea borealis and different species
of Puffinus shearwaters (Mironov, 1989a). Our study clearly
shows that these two host genera harbor distinct species
of Zachvatkinia. Another disagreement concerns Brephosceles
puffini, previously known only from Puffinus hosts (Peterson,
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FIGURE 2 | Continued
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FIGURE 2 | Continued
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FIGURE 2 | Statistical parsimony haplotype networks for seabird feather mites Zachvatkinia (A), Microspalax (B), Brephosceles (C), Plicatalloptes (D), Laminalloptes

(E), and Onychalloptes (F) from the Cape Verde Islands based on the concatenation of two mitochondrial genes (12S and 16S). Haplotypes are colored according to

the hosts harboring the mites (green – C. edwardsii, blue – P. boydi, red – B. bulwerii, purple – O. castro, orange – P. feae, and gray – P. aethereus). Circle sizes are

proportional to the number of individuals possessing each haplotype, indicated in brackets; when no number is indicated, only one mite individual presented this

haplotype. Black dots represent mutational steps. The number of mite individuals analyzed per each bird species is shown in brackets.

TABLE 4 | Analysis of molecular variance (AMOVA) on mitochondrial haplotypes partitioned by seabird host.

Species Partition d.f. Sum of squares % Variation 8ST P

Microspalax brevipes Among-host populations 1 15.800 66.91 0.669 0

Within-host populations 18 13.400 33.09 – –

Brephosceles puffini Among-host populations 1 2.150 22.54 0.225 0.010

Within-host populations 18 9.900 77.46 –

Plicatalloptes sp.1 Among-host populations 1 1.503 4.82 0.048 0.069

Within-host populations 17 17.655 95.18 – –

This analysis was conducted on the three feather mite species that are shared by Cape Verde shearwater and Boyd’s shearwater.

1971); the present study revealed that B. puffini also inhabits
Calonectris shearwaters. This does not seem to be a spurious
result given that B. puffini specimens were found in various
localities in which the two seabird genera (Calonectris and
Puffinus) are not sympatric.

One of the difficulties in measuring diversity and in studying
host-parasite associations is the presence of cryptic species.
Cryptic speciation appears to be common in ectosymbionts,
such as lice (Malenke et al., 2009) and mites (Miller et al.,
2013; Doña et al., 2015b). The strong host-associated adaptive
pressures on these ectosymbionts can promote convergence
in morphology, rendering traditional morphological methods

insufficient for species identification (Doña et al., 2015b).
To address this problem, we integrated morphological and
molecular data. We found that, in general, morphospecies
correlated well with genetic lineages, with the exception of
two species (Zachvatkinia oceanodromae, Laminalloptes simplex).
Similar examples of cases of hidden diversity were found in the
literature in avian skin (Whiteman et al., 2006), nasal and feather
mites (Doña et al., 2015b). In the case of Z. oceanodromae, some
small morphological differences could be detected on secondary
examination (i.e., slightly shorter incision in the interlobar
membrane; S. Mironov personal observation). Therefore, in
order to confirm the existence of the two cryptic species found
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FIGURE 3 | Continued
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FIGURE 3 | Geographic distribution of haplotypes for seabird feather mites Zachvatkinia (A), Microspalax (B), Brephosceles (C), and Plicatalloptes (D) from the Cape

Verde Islands based on the concatenation of two mitochondrial genes (12S and 16S). Each color represents a different haplotype and the size of each haplotype is

proportional to the number of individuals having that haplotype. The number of mite individuals analyzed in each locality is shown in brackets.

in the present study, more specimens belonging to each species
should be collected and redescribed using multilocus genetic data
and more quantitative morphological methods (e.g., geometric
morphometrics).

Hosts are the most important driving force generating
diversity in symbionts due to the selective pressure imposed

by the host environment, i.e. immune and behavioral responses
(Magalhães et al., 2007). This selection can result in host
adaptation, which in turn, can promote specialization and
diversification (Gandon and Michalakis, 2002; Lajeunesse and
Forbes, 2002; Malenke et al., 2009). In agreement with the
hypothesis of host-driven diversification, this study revealed
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that most seabird species hosted specific and unique mite
species, even under sympatry. When mite species were shared, it
was between phylogenetically related seabird host taxa (“clade-
limited switches”) (Krasnov et al., 2010; Poulin, 2010; Poulin
et al., 2011; Braga et al., 2015). For example, Zachvatkinia,
Microspalax, Brephosceles and Plicatalloptes, all occurred on
multiple host species, but with evident host-associated genetic
structure that conforms with the high degree of trophic, spatial
and morphological specialization reported in previous studies
(Dabert and Mironov, 1999; Dabert et al., 2015; Stefan et al.,
2015). Our findings are also in agreement with previous co-
phylogenetic studies reporting that host switching is infrequent
and likely plays a relatively minor role in the diversification of
these ectosymbionts (Doña et al., 2016, 2017b).

Despite the high level of host-specificity, we observed
differences in host-driven feather mite genetic structuring. That
is, Zachvatkinia appear highly genetically structured by the
host. In contrast, M. brevipes and B. puffini occur in two
related shearwater species but with low host-associated genetic
divergence. More extreme is the case of Plicatalloptes sp.1 which
showed no genetic differentiation among mites inhabiting each
of the two host species. Accumulating evidence suggests that
multiple parasite and host life-history traits are important in
determining the adaptative dynamics and population structure
of parasites (Mazé-Guilmo et al., 2016). In this context, studying
multiple host-symbiont/parasite associations, where hosts and
symbionts/parasites differ in key characteristics such as dispersal
and behavior, can provide insight on the factors that affect
their microevolutionary dynamics. In lice, differences in specific
habitat use within the host body has been shown to alter patterns
of among-host dispersal, with body lice having reduced dispersal
potential compared to wing lice (Johnson et al., 2002). In the case
of feather mites, ecological characteristics linked to differential
dispersal abilities betweenwing and bodymites are not congruent
with host-associated patterns of structure. Zachvatkinia and
Microspalax are large vane-dwelling wing mites with heavily
sclerotized bodies that occupy exposed areas along the ventral
surfaces of flight feathers (Stefan et al., 2015), features that should
favor dispersal. In contrast, Brephosceles and Plicatalloptes are
small bodied mites with weakly sclerotized bodies that occupy
more protected areas, wing coverts and soft body feathers, and
are less mobile (Peterson, 1971; Bourgeois and Threlfall, 1979;
Dabert et al., 2015; L. Stefan personal observations). These
incoherencies suggest that successful host-switching in this group
may depend more on host behavior and ecology than mite life
histories per se.

Due to high host-specificity, host dispersal is generally
assumed to drive parasite dispersal, such that their genetic
structure is expected to conform to that of their hosts (McCoy
et al., 2003; Barrett et al., 2008). However, empirical studies
show contrasting results in relation to the degree of co-structure;
some parasites mirroring host spatial genetic structuring whereas
others appear completely undifferentiated (Mazé-Guilmo et al.,
2016). Dispersal opportunities in otherwise highly host-specific
mite lineages may arise by the fact that phylogenetically related
seabird host species breed sympatrically and may even share
nest sites, promoting host switching (i.e., Cape Verde and Boyd’s

shearwaters). However, in the case of the shearwaters in Cape
Verde, although they share habitat, they are often temporally
isolated during the breeding season. Temporal segregation
should “a priori” prevent host-switching given that feather mites
are not able to live for long periods outside of the host body
(Dubinin, 1951; Proctor, 2003; Doña et al., 2017c). It could
be that feather mites survive in molted feathers in the nest
substrate for relatively long periods of time, but this explanation
seems unlikely given the escape behavior of feather mites during
molting (Jovani and Serrano, 2001). That is, it has been shown
that feather mites tend to avoid the feathers destined to be molted
and leave these feathers shortly before they are dropped (Pap
et al., 2005).

In contrast to strong host-associated structure, we found little
geographic differentiation between mites of different islands.
Direct physical contact among hosts of the same species could
occur during mating and chick rearing throughout the breeding
period. Mite dispersal between host populations could also
be favored by juvenile birds that prospect among breeding
colonies, or adult birds that change their breeding locality
(Boulinier et al., 2016), or even by phoresy (Harbison et al.,
2009). This is supported by previous population genetic studies
of the seabird hosts that show weak genetic structuring at
local geographic scales and high between island population
gene flow (Gómez-Díaz et al., 2006, 2009; Friesen et al., 2007).
Regardless of the specific mechanism of dispersal, the weak
structure found at relatively large geographic scales suggest
that mite dispersal regularly occurs among host populations
and occasionally between certain seabird host species, i.e.,
host switch. This supports the hypothesis that host-associated
selection, rather than simple isolation, is likely responsible
for the strong patterns of host-associated divergence in these
ectosymbionts. Variation among some mite species in genetic
diversity and geographic structure may then arise through
interspecific differences in generation times and population sizes
that lead, in turn, to a variable impact of genetic drift (Johnson
et al., 2003). Regular population bottlenecks have been proposed
to explain strong structure in contact-transmitted wing mites
of social bats (Bruyndonckx et al., 2009). Unfortunately, with
the genetic markers at hand and the limited knowledge on the
biology of seabird mites, the drift hypothesis is difficult to test
in our system. At present, we only have mite abundance data on
individual hosts for two species, M. brevipes and Z. ovata, and
both species show similar infestation levels (Stefan et al., 2015).
Mitochondrial DNA is typically useful to resolve taxonomic
uncertainties, but records few traces of contemporary events.
Future studies employing more powerful SNP or microsatellite
markers, combined with temporal samples on the same bird
host will be needed to explore these alternatives more in-
depth.

Overall, this study highlights the rich and diverse fauna
of feather mites exploiting seabirds. Our morphological and
molecular data have revealed the presence of nine new
species and suggest the existence of at least two putative
cryptic species. Our findings also reinforce the hypothesis
that host specialization is a major driver of parasite/symbiont
diversification with infrequent host-switching between related
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seabird host species. Different degrees of host-associated genetic
structure among mite species may reflect different transmission
probabilities and/or genetic drift effects linked to mite life-
history traits and population dynamics. Detailed examination of
specific parasite/symbiont traits associated with host specificity
combined with field-transplantation experiments, and temporal
population genetic studies are now called for to test the relative
roles of isolation and adaptation in generating mite diversity.
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