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Abstract

Background

The aim of this study is to describe the major evolutionary historical events among Leish-
mania, sandflies, and the associated animal reservoirs in detail, in accordance with the geo-

graphical evolution of the Earth, which has not been previously discussed on a large scale.

Methodology and Principal Findings

Leishmania and sandfly classification has always been a controversial matter, and the

increasing number of species currently described further complicates this issue. Despite

several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in

the Old and NewWorld, no consistent agreement exists regarding dissemination of the

actors that play roles in leishmaniasis. For this purpose, we present here three centuries of

research on sandflies and Leishmania descriptions, as well as a complete description of

Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly

group during different geographical periods, from 550 million years ago until now. We

discuss critically the different approaches that were used for Leishmana and sandfly classifi-

cation and their synonymies, proposing an updated classification for each species of Leish-
mania and sandfly. We update information on the current distribution and dispersion of

different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level),

and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic,

Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of

the potential and proven sandfly vectors for each Leishmania species in the Old and New

World. Finally, we address a classical question about digenetic Leishmania evolution: which
was the first host, a vertebrate or an invertebrate?
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Conclusions and Significance

We propose an updated view of events that have played important roles in the geographical

dispersion of sandflies, in relation to both the Leishmania species they transmit and the ani-

mal reservoirs of the parasites.

Introduction
Leishmaniases are vector-borne diseases caused by obligate protozoan parasites from the genus
Leishmania (Trypanosomatida: Trypanosomatidae). Leishmaniases are endemic in large areas
of the tropics, subtropics, and the Mediterranean basin, including more than 98 countries,
where there are a total of 350 million people at risk and 12 million cases of infection. Canine
leishmaniasis is a serious problem, and it is estimated that 2.5 million dogs are infected in the
Mediterranean basin only [1]. Among the endemic regions on five continents, there is an esti-
mated incidence of 0.7–1.2 million cases of cutaneous leishmaniasis (CL) and 0.2–0.4 million
cases of visceral leishmaniasis (VL) in these countries [2]. The disease is absent in New Zealand
and the southern Pacific. Leishmaniasis is transmitted by the bite of infected female sandflies,
whose hosts are animals such as canids, rodents, marsupials, hyraxes, or human beings.
Approximately 53 Leishmania species have been described (without considering the synonyms
and including all five subgenera and complexes: Leishmania, Viannia, Sauroleishmania, L.
enriettii complex, and Paraleishmania); of these, 31 species are known to be parasites of mam-
mals and 20 species are pathogenic for human beings. Leishmania parasites cause four main
clinical forms of the disease—according to the location of the parasite in mammalian tissues—
referred to as visceral, cutaneous, diffuse cutaneous, and mucocutaneous leishmaniasis. The
most common form is cutaneous disease, and the ten countries of Afghanistan, Algeria,
Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa Rica, and Peru together account for
70% to 75% of the global estimated CL incidence [2]. Regarding visceral leishmaniasis, more
than 90% of all cases occur in just the six countries of India, Bangladesh, Sudan, South Sudan,
Brazil, and Ethiopia [2]. Leishmaniasis currently constitutes a major global public health prob-
lem, showing an increasing burden over the last decade [2].

Leishmaniasis has a long history, dating to 2,500 B.C., with several primitive descriptions of
the disease having been found in ancient writings and recent molecular findings from ancient
archeological material. A detailed history of Leishmania descriptions is gven in Table 1.

Comprehension of the evolutionary relationships between sandflies and Leishmania is cru-
cial for the future prediction of Leishmania transmission patterns, leishmaniasis epidemiology,
and for developing intervention and control strategies. To achieve such an understanding, bet-
ter information on the worldwide distribution of Leishmania parasites in relation to their
sandfly vectors and intermediate hosts will be required. It is therefore necessary to obtain infor-
mation on the origin of Leishmania and phlebotomine sandflies and their chronological history
of coevolution. In this paper, we present a detailed review of the relevant literature on the Phle-
botominae and Leishmania and update and discuss theories on their classification, origin, evo-
lution, and dispersion.

Sandflies
Among more than 800 recognized sandfly species, approximately 464 species are found in the
NewWorld and 375 in the Old World [3,4]. The classification of both Old and NewWorld
sandflies has historically been based mainly on a phenetic approach to identifying overall simi-
larity relationships between genera and subgenera, rather than on ancestor–descendant rela-
tionships. This approach has led to a proliferation of taxa, particularly at the subgeneric level,
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Table 1. History of Leishmania descriptions.

Century Author (Year): Description

B.C. (2,500 to 1,500 B.C.): First description of conspicuous lesions similar to current cutaneous leishmanisis (CL) lesions. (2,000 B.C.): Leishmania
donovani infection in ancient Egyptian and Christian Nubian mummies. (1,500 B.C.): Report of Leishmania DNA in northern Sudan. (800 B.C.):
Leishmania infection in a 6-year-old girl mummy in Peru. (700 B.C.): Similar descriptions of CL discovered on tablets from King Ashurbanipal.
(650 B.C.): Records of what seems to be CL in the Tigris–Euphrates basin.

A.D. (First century A.D.): Evidence for the presence of the cutaneous form of the disease in Ecuador and Peru, South America. Avicenna (10th century A.
D.): Description of cutaneous lesions called Balakh sore and probability of mosquito intervention. (15th and 16th centuries A.D.: Inca period):
Notification of "valley sickness," "Andean sickness," or "white leprosy," which are likely to be South American CL.

18th century Russell (1756): First detailed clinical description of the disease. Indian physicians (1756): Description of kala azar clinical symptoms (kālā āzār: kālā
meaning black and āzār meaning fever or disease). Cosme Bueno (1764): First suspicions reporting the probable role of phlebotomine sandflies
in disease transmission in the New World.

19th century Villar (1859): Earliest traceable clinical description of the Peruvian ‘‘uta,” similar to the "Aleppo button." Borovsky (1898): First accurate description of
the causative agent of the oriental sore, reference to Protozoa.

first half of 20th century Leishman (1901): Identification of organisms, as "trypanosomes," in smears from the spleen of an Indian patient deceased from "dum-dum fever."
Donovan (1901): Confirms the presence of what became known as Leishman-Donovan bodies in the smears from Indian patients. First
description of the link between Leishman-Donovan bodies and kala azar. Ross (1903): Proposed the name of Leishmania donovani for the
Leishman-Donovan bodies. Wright (1903): Description of Helcosoma tropica (L. tropica). Leishman and Rogers (1904): Demonstrated oval
intracellular amastigotes can differentiate into flagellated promastigotes. Rogers (1904): First successful in vitro cultivation of the flagellated
forms. Laveran and Chatoin (1904): First case of kala azar in the Mediterranean region. Sergent and colleagues (1905): First report of CL
transmited by sandflies of the Phlebotomus genus. Patton (1907): Evidence of the presence of Leishman-Donovan bodies in peripheral blood
lymphocytes and its flagellated forms in the sandfly's gut. Nicolle (1908): Isolation of Leishmania parasites from a child or "infant," leading to
name Leishmania infantum. Differentiation between the Mediterranean visceral leishmaniasis caused by L. infantum and the Indian kala azar due
to L. donovani. Nicolle and Comple (1908): Isolation of Leishmania parasites from infected dogs. Lindenberg, Carini, and Paranhos (1909):
Confirm the presence of autochthonous cutaneous leishmaniasis, "Baurú ulcer," in the Americas. Wenyon (1911): Incrimination of Phlebotomus
as the probable vector of diseases caused by Leishmania in the Old World. Splendore (1911): Leishmania as the causative agent of
mucocutaneous lesions "Espundia." Vianna (1911): Description of L. braziliensis. Migone (1913): First report of visceral leishmaniasis in the
Americas. Yakimoff and Schokhor (1914): Proposition of the names L. tropica minor and L. tropica major to separate parasites causing "dry
urban" and "wet rural" cutaneous leishmaniasis. Casteliani and Chalmers (1919): L. donovani archibaldi as the ethiological agent of a lethal form
of visceral leishmaniasis. Aragão (1922): Reproduced in a dog the clinical signs of leishmaniasis by injecting squashed infected sandflies.
Montenegro (1923): Experimental inoculation of L. braziliensis, introduction of the intradermal test (Montenegro skin test), still in use for the
diagnosis of leishmaniasis. Penna (1934): First record of the Amazonian visceral leishmanaisis. Chagas (1936): Description of visceral
leishmaniasis in Brazil. Cunha and Chagas (1937): Isolation of L. chagasi from Brazilian VL. Swaminath and colleagues (1942): Demontrated the
process of Leishmania transmition to humans by sandflies using a group of volunteers. Hoare (1948): Demonstrated the Leishmania circulation in
sandflies, indicating the flagellates being set free and multiplying in the sandfly intestine; the infection later is caused through the posterior station
(like Trypanosoma cruzi). Kirk (1949): Classification of Leishmania according to their morphology, culture characteristics, clinical and
epidemiological aspects of infections in human and other natural hosts, cross-immunity, serological tests, and xenodifferentiation. Propose a
complete nomenclature of the Leishmania genus and their synonyms.

second half of 20th
century

Biagi (1953): Discription of various Leishmania species. Pessôa (1961): Present the first list of known Leishmania species in the Americas. Use of
the trinomial system for Leishmania. Adler (1962): Reports transient cryptic infections in mice by L. adleri, which usually infects lizards, that lead
to the proposal of the evolution of Leishmania species infecting mammals from reptilian parasites. Adler (1963 and 1964): Differentiates L.
tropica, L. mexicana, and L. braziliensis with serological techniques. Proposed a taxonomy for Leishmania infecting hummans and lizards. Shaw
(1964): Demostrates the transmission of Endotrypanum schaudinni by Phlebotomus species. Hoare and Wallace (1966): Introduced new terms
for the description of the Leishmania developmental stages. Lainson and Shaw (1970): Subdivide Leishmania species into two groups: "fast-
growing (L. mexicana)" and "slow-growing (L. braziliensis)." Lainson and Shaw (1972): First proposal of complexes of species for Neotropical
Leishmania causing CL: the mexicana complex and the braziliensis complex. Schnur and colleagues (1972): serotype Leishmania with
promastigotes excreted factors. Ranquein (1973): First proposal of a separate genus for Sauroleishmania. Bray (1973): Use the systematic
concept for description of Leishmania species. Vickerman (1976): Proposed Leishmania that do not infect mammals as “not strictly being”
Leishmania species, giving the status "Incertae sedis" to Leishmania isolated from reptiles. Gardener (1977): Proposed a taxonomy of the
Leishmania genus that includes nomenclature, classification, and synonomies for the principal species and a list of species that do not normally
infect humans. Hommel (1978), Wilson and Southgate (1979): Consider the identification and nomenclature under two titles of “traditional” and
“modern” taxonomic criteria. Consider parasites that do not infect mammals as “not strictly being” Leishmania species. Lainson and Shaw (1979):
Proposed a revised classification for American Leishmania species, based on their developmental patterns in Lutzomyia longipalpis. Subdivision
into three groups: (i) Hypopylaria (L. agamae and and L. ceramodactyli), (ii) Peripylaria (L. braziliensis complex), (iii) Suprapylaria (L. donovani, L.
mexicana, L. hertigi, and L. tropica complexes). Tait (1980): Suggests sexual recombination in trypanosomatids. Saf'janova (1982): Created a
subgenus of Leishmania and proposed the term of Sauroleishmania Ranque, 1973 for parasites infecting lizards. Le Blancq and Peters (1986):
Consider isoenzyme electrophoresis as a discriminatory system for Leishmania identification. Lainson and Shaw (1987): Division of Leishmania
genus into two subgenera, based on the developmental pattern of Leishmania in the sand fly's gut: Leishmania (Suprapylorian) and Viannia
(Peripylorian). Rioux and colleagues (1990): New classification of the Leishmania genus based on the use of intrinsic and extrinsic characters
with Linnean and Adansonian methods. WHO (1990): Categorised the Leishmania species into three subgenera: Leishmania, Sauroleishmania,
and Viannia. Momen (1993): Proposes the synonimy of L. chagasi (responsible for VL in the New World) and L. infantum. Shaw (1994): Proposes
that the genus Leishmania encompass 30 species infecting mammals and 21 species infecting human. Cupolillo and colleagues (1994): Describe
the monophyly of the subgenus Viannia. Dedet and colleagues (1999): Categorize the history of Leishmania classification into four periods of
Linnean classifications, Adansonian classifications, phenetic classifications, and phylogenetic classifications.

(Continued)
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and to the simplification and incorporation of higher taxonomic categories into species. Sand-
flies belong to the order Diptera, suborder Nematocera, family Psychodidae, and subfamily
Phlebotominae. Initially, studies on phlebotomine sandfly taxonomy were exclusively based
on morphological aspects of dead specimens. Because of the introduction of several new
methods, such as chromosome analysis, multivariate morphometrics, laboratory rearing and
colonization, isoenzyme, molecular and phylogenetic analysis and, more recently, mass spec-
trometry, our knowledge of phlebotomine sandfly systematics has increased. These advances
have led to better identification and classification of sandfly specimens, which together with
an appreciation of sandfly flight range (approximately 1.5 km per day), have helped to clarify
the intraspecific and interspecific variations within sandfly subgenera and populations. A
large portion of the literature regarding phlebotomine sandfly systematics addresses their gen-
eral classification and relationships with other groups [3,5–8] as well as the phylogenetics of
the Psychodidae, based on insect fossils [9], phlebotomine sandfly evolution [5], phenetic and
phylogenetic analyses of phlebotomine sandflies [10], and the molecular systematics and phy-
logenetic relationships of phlebotomines using DNA analysis [11]. Many classification sys-
tems for phlebotomine sandflies have been proposed since that of Newstead 1911, including
those of Abonnenc, Davidson, Fairchild, Leng, Lewis, Quate, and Theodor. However, despite
this extensive literature, there is no universal agreement regarding the ranking of taxa above
the species level.

The history of sandfly taxonomy can be roughly divided into two distinct periods (Table 2).
During the first period, taxa were distinguished according to the analysis of certain external
structures (e.g., the structure of the male genitalia, wing venation indices and other external
measurements, known as phlebotometry). In the second period, descriptions of internal struc-
tures such as the spermathecae, cibarium, and the pharynx were employed [12]. Based on the
classification performed by Theodor [6,13], Lewis et al. [14] have proposed subdivision of the
phlebotomine sandflies into two genera for Old World species, Phlebotomus (Rondani) and
Sergentomyia (França), and three genera for NewWorld species, Lutzomyia (França), Brump-
tomyia (França and Parrot), andWarileya (Hertig). The genus Chinius (Leng, 1987) belongs to
a distinct taxon that is used for some Chinese sandfly species with primitive characters [15].
Rispail and Léger [10] proposed a new genus and subgenus classification for Old World sand-
flies, based on a morphological study suggesting their division into seven genera, including
Phlebotomus, Australophlebotomus, Idiophlebotomus, Spelaeophlebotomus, Sergentomyia, Spe-
laeomyia, and Chinius (Table 2). In addition to the mentioned classification, some subgenera
from the genus Phlebotomus, such as Abonnencius and Legeromyia, have been recently
described and could be retained until a complete classification is proposed for the entire genus
Phlebotomus.

Table 1. (Continued)

Century Author (Year): Description

2000 until now Cupolillo and colleagues (2000), Schoenian and colleagues (2010): Leishmania genus composed of two groups: (i) Euleishmania
(Leishmania and Viannia subgenera) and (ii) Paraleishmania (L. hertigi, L. deanei, L. colombiensis, L. equatorensis, L. herreri,
and Endotrypanum species). Moreira and colleagues (2004): Present an updated classification of kinetoplastid protists. Fraga
and colleagues (2010): New concepts, based on molecular data, concerning the reduction of the number of species,
suppression of some species, and downgrading some to subspecies level. Kuhls and colleagues (2011), Leblois and
colleagues (2011): Import of L. infantum (ca. 500 years ago) from the Old World (namely Portugal) to the New World as a result
of finding a suitable vector there. Lukeš and colleagues (2014): Trypanosomatidae family consists of 13 genera: Trypanosoma,
Phytomonas, Leishmania, Leptomonas, Crithidia, Blastocrithidia, Herpetomonas, Sergeia, Wallacemonas, Blechomonas,
Angomonas, Strigomonas, and Kentomonas.

doi:10.1371/journal.pntd.0004349.t001
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Table 2. History of sandfly descriptions.

Century Author (Year): Description

17th century Bonanni (1691): First recognizable description of a sandfly as a species of Culex, or mosquito.

18th century Linnaeus (1735): Description of Angioptera in the insect order that includes the Tipulary flies. Scopoli (1786): Description of
Phlebotomus papatasi (Bibio papataci) as first species of described "Psychodidae," with no mention of a particular
classification level. Latreille (1796): Description of the "Pschoda" genus that diverges from Bibio and Tipula.

first half of 19th
century

Meigen (1818): Description of the Muchen (Tipularia) family that encompasses: Eulermuchen, Gallmucken (Gallicolae). Latreille
(1825): Changed Tipulariae into Nemocera (Nematocera) family that included the tribe of Tipulariae and the group of
Gallicolae (Psychode). Newman (1834): Gathered Psychoda genus in the order of Psychodite (Currently known as
Psychodidae). Rondani (1840): Named sandflies as "Flebotomus" and put them into the tribe of Flebotomidae, family of
Flebotominae. Renamed later as "Phlebotomus" by Lewis (1845). Rondani (1843): Includes sandflies in the tribe of Tipulidae,
family of Hebotomina. Loew (1844): Description of Haemasson minutus (Sergentomyia minuta) that belongs to the family of
"Tipularia gallicola," Psychodina. Walker (1848): Gathered Psychoda and Sycorax in the family of Tipularia, Noctuaeforme.
Zetterstedt (1850): Includes Psychoda genus into the Psychodidae family.

second half of 19th
century

Walker (1851): Considered the Phlebotomidae as a family belonging to Diptera. Bigot (1854), Rondani (1864), Schiner (1864):
Gathered Phloebotomus, Psychoda, and some other genera in the Psychodidae family. Rondani (1856): Separation of the
Phloebotomidae into Phloebotomina and Psychodina. Walker (1856): Gathered Sycorax and Psychoda and some other genera
in the Phlebotomidae family. Loew (1862): Subdivided the Psychodidae family into Psychodina and Phlebotomina. Philippi
(1865): Included the Psychoda genus into the "Tipularia gallicola" family. Hennig (1872): Proposed to use the name
"Psychodites" as the generic name of fossil sandflies. Rondani (1873): Classification of sandflies into the Tipulidae tribe, family
of Hebotomina (probably a syntax error). Eaton (1895), Kertesz (1902): Subdivided the Psychodidae into the Psychodinae and
Phlebotominae subfamilies.

first half of 20th
century

Kertesz (1903): Includes Phlebotomus and Sycorax into the Phlebotominae subfamily. Newstead (1911): First systematic study
of the Phlebotomus genus. Subdivision of sandflies based on the dorsum hairs of the abdomen: erected or recumbent.
Franca (1919, 1920): Subdivided sandfly species into Phlebotomus and Prophlebotomus subgenera. Formation of the first
New World subgenus "Lutzia," encompassing Phlebotomus longipalpis Lutz and Neiva, 1912. Franca and Parrot (1921): Use
phlebotometry to subdivide the Phlebotomus genus into five subgenera: Phlebotomus, Prophlebotomus, Brumptomyia,
Lutzia (Lutzomyia), and Sergentomyia. Franca (1921): Proposed three subgenera; Phlebotomus, Sergentomyia, and Lutzia.
Tonnoir (1922): Separated Trichomyia and Sycorax from the Phlebotominae and included them into the Trichomyiinae
subfamily. France (1924): Substituted the name Lutzia for Lutzomyia. Adler and Theodor (1926): Highlighted the taxonomic
value of the pharyngeal armatures and the spermathecae morphology. Sinton (1928): Noted a correlation between species
defined by Newstead on the basis of erected or recumbent hairs and the female spermathecae morphology. Divided
sandflies into three groups: erect-haired, recumbent-haired, and intermediate species. Dyar (1929): Updated the knowledge
of the American flebotomíneos, proposing Brumptomyia (type species: P. brumpti), Lutzomyia, Neophlebotomus (type
species: P. malabaricus), and Shannonomyia (type species: P. panamensis) subgenera. Adler and Theodor (1929): Defined
sandflies as a formal member of the Phlebotomidae family. Nitzulescu (1931): Description of Larroussius and Adlerius
subgenera, based on the pharyngeal armature and spermathecae structure. Proposed five subgenera: Phlebotomus s. str.,
Larroussius (type species: P. major), Adlerius (type species: P. chinensis), Sintonius (type species: P. hospittii), and
Brumptius (type species: P. minutus). Sinton (1931): First illustrated identification keys for the Indian subcontinent sandflies.
Theodor (1932): Phlebotominae subfamily composed of three tribes, further subdivided into genera and subgenera. Parrot
(1934): Phlebotomus genus with two subgenera: Phlebotomus and Prophlebotomus. Raynal (1935): Tentative classification
based on the spermathecae structure, male genitalia, and pharynx morphology. Mangabeira (1942): Created five subgenera
for American sandfly species: Evandromyia, Psychodopigus, Viannamyia, Pressatia, and Castromyia. Dampf (1944): Put
Prophlebotomus and Brumplills in synonymy with Sergentomyia, agreed with the subgenera Brumptomyia, Shannonomyia,
Castromyia, and Pintomyia. Addis (1945): Created Dampfomyia as a new Neotropical subgenus. Kirk and Lewis (1946):
Modified Parrot's (1934) classification and proposed three subgenera: Phlebotomus, Sintonius, and Prophlebotomus.
Theodor (1948): Noted that two distinct periods characterize the progress in sandflies taxonomy: the first one that uses
external morphological characters (phlebotometry) and the second one that uses internal characters. Four genera:
Phlebotomus and Sergentomyia in the Old World, Lutzomyia and Brumptomyia in the New World. Description of six
subgenera (Paraphlebotomus, Synphlebotomus, Euphlebotomus, Anaphlebotomus, Australophlebotomus, and
Spelaeophlebotomus) that with three previously described (Phlebotomus, Larroussius, and Adlerius) made nine subgenera in
total. Subdivided the Sergentomyia genus into three subgenera (Sergentomyia, Sintonius, and Spelaeomyia). Hertig (1948),
Fairchild (1949): Description of Warileya (type species: W. phlebotomanica) and Hertigia (type species: H. hertigi) genera.

(Continued)
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Table 2. (Continued)

Century Author (Year): Description

second half of 20th
century

Jung (1954): Defines the Sycoracinae subfamily. Barretto (1955): Challenges Theodor's classification, proposed Brumptomyia
and Warileya genera as being constitutive of New World species (166 species for the Old World and 199 from New World).
Fairchild (1955): Subdivided Psychodidae into Phlebotominae (Nemopalpus and Bruchomyia), Trichomyiinae (Horaiella and
Sycorax and others), and Psychodina. Theodor (1958): Erection of Parrotomyia, Rondanomyia, and Grassomyia as new
subgenera of the Sergentomyia genus. Quate and Fairchild (1961): Addition of Idiophlebotomus as a new subgenus of the
Phlebotomus genus. Barretto (1961): Stated that New and Old World sandflies must be phylogenetically distinct. Creation of
the subgenus Trichopygomyia in the Lutzomyia genus. Barretto (1962): Confirmation of Warileya, Brumptomyia, and
Lutzomyia genera in the New World and subdivision of Lutzomyia into fifteen subgenera: Lutzomyia s.str., Pintomyia,
Evandromyia, Psychodopygus, Viannamyia, Pressatia, Dampfomyia, Micropygomyia, Sciopemyia, Helcocyrtomyia,
Trichophoromyia, Coromyia, Trichopygomyia, Nyssomyia, and Psathyromyia. Theodor and Mesghali (1964): Erection of
Parvidens as a new subgenus of Sergentomyia. Rohdendorf (1964): Included sandflies in the Phlebotomidae family.
Separated sandflies from other Psychodidae because of their blood feeding habit. Theodor (1965): Hertigia, Warileya,
Brumptomyia, and Lutzomyia genera for the New World. Subdivision of Lutzomyia into eight subgenera and 16 species
groups. Perfil'ev (1966): Proposed a taxonomy based on external characters (phlebotometry) and internal structures (e.g.,
cibarium, pharynx, or spermathecae). Lewis (1971): Agrees with Perfil'ev (1966), divided Phlebotomidae into six genera (two
in the Old World and four in the New World). Subdivided the Phlebotomus genus into 11 subgenera and Sergentomyia into
six. Forattini (1971): Proposed seven genera for New World sandflies: Brumptomyia, Lutzomyia, Pintomyia, Psychodopygus,
Viannamyia, Pressatia, and Warileya. Divides the Lutzomyia genus into six subgenera: Lutzomyia, Dampfomyia,
Micropygomyia, Coromyia, Trichopygomyia, and Barretomyia. Hennig (1972): Considered Phlebotominae as a monophyletic
group composed of three monophyletic genera: Phlebotomus, Sergentomyia (without Parvidens), and a genus gathering
species from the Brumptomyia and Lutzomyia genera. Recognized the subfamilies Bruchomyiinae, Phlebotominae,
Trichomyiinae, and Psychodinae within the Psychodidae family. Trichomyiinae familly encompasses three extinct genera
(Eophlebotomus, Eatonisca, Pasthon) and three extant genera (Horaiella, Sycorax, Trichomyia). Abonnenc (1972): Agreed
with Fairchild’s (1955) classification, recognised only three genera: Phlebotomus, Warileya, and Hertigia. Gathered
Spelaeophlebotomus and Idiophlebotomus into the Phlebotomus genus. Raised the Phlebotomus, Sergentomyia, and
Lutzomyia subgenera to a generic rank. Hennig (1973): Considered the Psychodoidae superfamily as a monophyletic
infraorder of Psychodomorpha. Duckhouse (1973): Six subfamilies for the Psychodidae family: Phlebotominae,
Bruchomyiinae, Sycoracinae, Trichomyiinae, Horaellinae, and Psychodinae. Forattini (1973): Considered Phlebotomus,
Sergentomyia, and Lutzomyia as genera. Gathered the Hertigia genus within the Bruchomyiinae subfamily. Proposed ten
genera for the Phlebotominae subfamily. Lewis (1973): included Hertigia (currently known as Warileya) into the
Phlebotominae subfamily. Young and Fairchild (1974): Proposed a classification similar to Theodor (1965), with some
modifications. Lewis (1974): Six genera for the Phlebotomidae subfamily (two for Old World species and four for the New
World ones). Lewis (1975): 11 subgenera for Phlebotomus and six for Sergentomyia. Abonnenc and Leger (1976): The
Phlebotomidae family with three subfamilies: Euphlebotominae (only Old World), Neophlebotominae (only New World), and
Disphlebotominae (Old and New World). Lewis and colleagues (1977), Lewis (1978): First stable classification of
Phlebotominae with five genera: Warileya (two subgenera), Phlebotomus (ten subgenera), Sergentomyia (seven subgenera
with 54 unplaced species), Brumptomyia, and Lutzomyia (26 subgenera and 19 unplaced species). Ready and colleagues
(1980): Proposed a “flexible” classification with “exclusive” characters supporting the proposed genera of Phlebotomus,
Sergentomyia, Brumptomyia, Warileya, and Psychodopygus, without considering Lutzomyia. Lewis (1982): Described and
added a new subgenus, Kasaulius. Published a distribution map for Old World sandflies. Artemiev and Neronov (1984): 14
genera for Phlebotominae: Australophlebotomus, Brumptomyia, Demeillonius, Grassomyia, Hertigia, Idiophlebotomus,
Lutzomyia, Parvidens, Phlebotomus, Psychodopygus, Sergentomyia, Spelaeomyia, Spelaeophlebotomus, and Warileya.
Description of the Transphlebotomus subgenus. Leng (1987): Description of new genus of Chinius. Artemiev (1991): Two
tribes, seven subtribes, 24 genera, 40 subgenera, and 70 species constitute the Phlebotominae subfamily. Divided Old World
sandflies into Phlebotomus, Australophleotomus, Idiophlebotomus, Spelaeophlebotomus, Sergentomyia, Spelaeomyia,
Chinius, and Parvidens. Lane (1993): Genus Phlebotomus composed of 12 subgenera. Added the genus Chinius into the
Phlebotominae subfamily. Young and Duncan (1994): Neotropical sandflies composed of Lutzomyia, Brumptomyia, and
Warileya. Galati (1995): Created a new subtribe (Sergentomyiina) that gathered species from the Sergentomyia genus and
some reptile-biting species from the Lutzomyia genus. Division of Phlebotominae into Hertigiini (Hertigiina, Idiophlebotomina)
and Phlebotomini (Phlebotomina, Australophlebotomina, Brumptomyiina, Sergentomyiina, Lutzomyiina, and Psychodopygina)
tribes. Rispail and Leger (1998): Proposed seven genera for Phlebotominae sandflies: Phlebotomus, Australophlebotomus,
Idiophlebotomus, Spelaeophlebotomus, Sergentomyia, Spelaeomyia, and Chinius. The Phlebotomus genus includes nine
subgenera: Adlerius, Anaphlebotomus, Euphlebotomus, Kasaulius, Larroussius, Paraphlebotomus, Phlebotomus,
Synphlebotomus, and Transphlebotomus. The Sergentomyia genus includes six subgenera: Demeillonius, Grassomyia,
Neophlebotomus, Parrotomyia, Sergentomyia, and Sintonius.

2000 until now Galati (2003): Proposed to subdivide the Phlebotominae familly into two tribes: Hertigiini (subtribes of Hertigiina and
Idiophlebotomina) and Phlebotomini (subtribes of Phlebotomina, Australophlebotomina, Brumptomyiina, Sergentomyiina,
Lutzomyiina, and Psychodopygina). Galati (2009): Upgraded many of the Lutzomyia subgenera, cited in Young and Duncan,
1994, to a generic status. Galati (2014): Revised the classification proposed by Galati, 2003, leading to an increase in genera
numbers.

doi:10.1371/journal.pntd.0004349.t002
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A classification first proposed by Lewis et al. [14] and later reviewed by Young and Duncan
[8] subdivides the Neotropical sandflies into Lutzomyia, Brumptomyia, andWarileya. This
classification is still accepted by a majority of sandfly taxonomists. A new system of classifica-
tion has been proposed by Galati [3], who revised the existing proposals for NewWorld sand-
flies. The system recognized 464 species of Neotropical phlebotomine sandflies, grouped into
23 genera, 20 subgenera, three species groups, and 28 series. This classification includes a com-
plete review and reorganization of the subfamily Phlebotominae, which is further classified
into two tribes, Hertigiini (Hertigiina and Idiophlebotomina subtribes) and Phlebotomini
(Phlebotomina, Australophlebotomina, Brumptomyiina, Sergentomyiina, Lutzomyiina, and
Psychodopygina subtribes).

In 2014, Galati revised her previous publication and proposed a new version of classification
for Phlebotominae sandflies [3,16]. Based on her classification, the Phlebotomini tribe includes
931 extant species (916 valid species and 15 with uncertain taxonomic status) classified in six
subtribes:

• Phlebotomina (Phlebotomus genus, 110 spp.)

• Australophlebotomina (Australophlebotomus genus, ten spp.)

• Brumptomyiina (Brumptomyia [26 spp.] and Oligodontomyia [three spp.] genera)

• Sergentomyiina (Sergentomyia [310 spp.], Deanemyia [five spp.], andMicropygomyia [55
spp.] genera)

• Lutzomyiina (Sciopemyia [eight spp.], Lutzomyia [74 spp.],Migonemyia [seven spp.], Pinto-
myia [57 spp.], Dampfomyia [20 spp.], Expapillata [two spp.], Pressatia [eight spp.], Tricho-
pygomyia [16 spp.], and Evandromyia [42 spp.] genera)

• Psychodopygina (Psathyromyia [43 spp.], Viannamyia [four spp.],Martinsmyia [11 spp.],
Bichromomyia [six spp.], Psychodopygus [40 spp.], Nyssomyia [20 spp.], and Trichophoro-
myia [39 spp.] genera).

The genus Edentomyia, including one species (Edentomyia piauiensis), was described by
Galati [3] without indicating the taxonomic position in the Phlebotomini tribe.

The Hertigiini tribe contained two subtribes of Hertigiina (Warileya andHertigia genera)
and Idiophlebotomina (Spelaeophlebotomus, Idiophlebotomus, and Chinius genera), with five
genera and 28 extant species.

Currently, a conservative approach based on practical criteria has led to subdivision of the
Phlebotominae into six genera: three genera from the Old World (Phlebotomus [13 subgenera],
Sergentomyia [ten subgenera], and Chinius [four species]) and three from the NewWorld (Lut-
zomyia [26 subgenera and groups], Brumptomyia [24 species], andWarileya [six species]) (Fig
1) [8,17]. This classification is currently widely used.

OldWorld Sandflies
The Old World sandflies include three genera: Phlebotomus, Sergentomyia, and Chinius, which
are found in the Palaearctic, Afrotropical, Malagasy, Oriental, and Australian regions.

Genus Phlebotomus (Rondani and Berté, 1840) includes 13 subgenera: Adlerius, Anaphlebo-
tomus, Australophlebotomus, Euphlebotomus, Idiophlebotomus, Kasauliuls, Larroussius,
Madaphlebotomus, Paraphlebotomus, Phlebotomus, Spelaeophlebotomus, Synphlebotomus, and
Transphlebotomus (Fig 1). They are present only in the Old World and are particularly preva-
lent in the Palaearctic region, which is the main temperate area of the Old World. Most Phlebo-
tomus species are inhabitants of semiarid and savannah areas rather than forests. Therefore,

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004349 March 3, 2016 7 / 40



the geographical distribution of the genus Phlebotomus extends from the Mediterranean, Afro-
tropical, Middle East, and Oriental regions to central Asia. They are found in a wide range of
altitudes, from Jericho of Palestine (~300 metres below sea level) to Mashad in Iran (3,600
metres above sea level). In tropical areas, only a few species of Phlebotomus are present, such as
in sub-Saharan Africa, Southeast Asia, or the Pacific region. They feed mainly on mammals,
although there are some exceptions. This genus includes many human blood feeders and some
endophilic species. All of the vectors of human cutaneous and visceral leishmaniasis found in
Eurasia and Africa belong to this genus.

Genus Sergentomyia (Franca and Parrot, 1920) is subdivided into ten subgenera: Capenso-
myia, Grassomyia, Neophlebotomus, Parrotomyia, Parvidens, Rondonomyia, Sergentomyia, Sin-
tonius, Spelaeomyia, and Vattieromyia (Fig 1). This genus contains some ungrouped species.
Members of this genus are widespread in the Old World and are dominant in tropical areas
where Phlebotomus species are scarce. Their distribution comprises Afrotropical, Oriental, and
Australasian regions, the Indian subregion, sub-Saharan Africa, and Asia. Most species are
likely to feed chiefly on cold-blooded vertebrates, but some species occasionally bite mammals
[18]. Some Sergentomyia specimens have been found to contain Sauroleishmania (a subgenus
of Leishmania) and Trypanosoma parasites that are often identified as parasites from lizards
[19], but current evidence indicates human Leishmania parasites are not transmissible by Ser-
gentomyia flies [20].

Genus Chinius (Leng, 1987) includes four known species: Chinius junlianensis, C. barba-
zani, C. eunicegalatiae, and C. samarensis. The geographical repartitioning of Chinius corre-
sponds to the classical Oriento-Australasian track, and they are found in caves in high
mountainous regions.

The geographical distribution of the currently known Old World sandfly species encom-
passes the following areas:

Fig 1. Updated classification of Leishmania and sandfly. Panel A. Classification of Leishmania species. Panel B. Phlebotominae sandfly classification,
according to Theodor [6,13], Quate and Fairchild [163], Theodor and Mesghali [22], Lewis [5], Leng [15], and Young and Duncan [8].

doi:10.1371/journal.pntd.0004349.g001
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1. The Palaearctic region: species belonging to the Phlebotomus genus are dominant in the
Palaearctic region, as it is the main temperate area of the OldWorld. Nearly 200 sandfly spe-
cies belong to various Phlebotomus subgenera; Adlerius, Anaphlebotomus, Euphlebotomus,
Idiophlebotomus, Larroussius, Paraphlebotomus, Phlebotomus, Synphlebotomus, and Trans-
phlebotomus, as well as the Chinius and Sergentomyia genera, are found in the Palaearctic
region. (Iran [6,21,22], Pakistan [23], the former U.S.S.R. [12], France [24], Turkey [25],
Morocco [26], Yemen [27], Spain [28], Tunisia [29], Afghanistan [30], Saudi Arabia [31],
Iraq [32], Algeria [33], Egypt [34], Greece [35], China [15,40], Jordan [4,10,36–39].)

2. The Afrotropical region: subgenera of Anaphlebotomus, Larroussius, Paraphlebotomus, Phle-
botomus, Spelaeophlebotomus, and Synphlebotomus from the genus Phlebotomus, together
with the genus Sergentomyia, are distributed in this region. Surprisingly, however, some Phle-
botomus species that are known to be inhabitants of this region are absent from western
Afrotropical regions. (Gabon [41], Sudan [17], Central African Republic [4,10,39,42], Ethio-
pia [43], Southern Africa [44].)

3. The Malagasy region (Madagascar and nearby Indian Ocean islands): Species belonging to
the genera of Phlebotomus (Anaphlebotomus andMadaphlebotomus subgenera) and Sergen-
tomyia are present in this region. Despite their presence, no sandfly species has been reported
as a disease vector in this region [45].

4. The Oriental region: Approximately 122 sandfly species belonging to the Phlebotomus, Chi-
nius, and Sergentomyia genera are present in this region. In the mainly dry western area, the
sandfly fauna is essentially Eremian (The Eremian zone has an arid climate, and its vegeta-
tion ranges from barely vegetated desert and hills to a variety of semiarid shrub savannas,
semiarid tussock grasslands, and hummock grasslands). In eastern India, Phlebotomus
argentipes is an important vector of kala azar. In the far eastern area, including Vietnam,
sandflies known to bite humans are rare or absent, and there appear to be rather few phlebo-
tomine species in this area, with the exception of the Philippines [46,47,48].

5. The Australian region: the Australasian phlebotomine fauna is bipolar in origin, with the
genus Phlebotomus (Australophlebotomus: eight spp.) originating from the south and the
subgenus Idiophlebotomus (one sp.) and Sergentomyia (24 spp.) from the north [49]. The
co-occurrence of some sandfly species (e.g., S. hoogstraali, S. vanella) in both Australia and
New Guinea supports the hypothesis proposed by Schodde and Calaby [50] regarding the
simultaneous development of the New Guinea sandfly fauna along with the eastern Austra-
lia sandflies. Sandflies are generally abundant in both regions where there is rainfall of less
than 635 mm, as well as in the wetter northern zone, where the dry season is long. These
areas, unlike the Eremian zone of the northern hemisphere, support only a few Phlebotomus
species, and humans and livestock are rarely attacked (New Guinea [49,51–53]).

NewWorld Sandflies
The NewWorld sandflies include three genera: Lutzomyia,Warileya, and Brumptomyia,
which are found in the Nearctic and Neotropical regions:

Genus Lutzomyia Franca, 1924. This is a large genus, with nearly 434 species and several sub-
genera, including the Coromyia (Delpozoi group),Dampfomyia (Saulensis group), Evandromyia,
Helcocyrtomyia, Lutzomyia,Micropygomyia (Pilosa andOswaldoi groups), Nyssomyia, Pinto-
myia, Pressatia (Baityi group), Psathyromyia (Aragaoi, Dreisbachi, and Lanei groups), Psycho-
dopygus, Sciopemyia (Migonei and Verrucarum groups), Trichophoromyia, Trichopygomyia, and
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Viannamyia (Rupicola group), as well as some ungrouped species (Fig 1). The Lutzomyia genus
is more diverse than its OldWorld counterparts. Nevertheless, vector species are found only in
some subgenera (Nyssomyia, Psychodopygus, and Lutzomyia s.str.). Sandflies are of little impor-
tance in temperate North America but are abundant in tropical America. Lutzomyia is the most
important genus in terms of species diversity and medical importance and exhibits a wide dis-
persion area. Species of this genus are found only in the NewWorld, with a distribution ranging
from the southern areas of the Nearctic region throughout the Neotropical ecozone. Sandflies
are found mainly in forest areas in Central and South America. Wide morphological variations
have been described for Lutzomyia species, which are greater than those of the OldWorld spe-
cies. Therefore, the classification of Lutzomyia species remains largely unresolved and relies on
divisions based on morphological taxonomic characters that are still controversial.

GenusWarileya (Hertig, 1948) includes six species, which are mainly found in the Neotrop-
ical ecozone.

Genus Brumptomyia (Franca and Parrot, 1921) comprises approximately 24 species, which
are broadly distributed in Central and South America. None of these species are known to bite
humans. Brumptomyia species constitute a group of sandflies commonly associated with arma-
dillo burrows and sometimes tree trunks. The specific identification of species belonging to this
genus is based entirely on male structures [3,54,55].

Sandflies from the NewWorld are present only in Nearctic and Neotropical ecozones:

1. The Nearctic region: only 14 species, a majority of which come from theMicropygomyia
subgenus, are present in the Nearctic, but five are restricted to this ecozone. Most of these
species exhibit a preference for hot temperatures and humidity. The temperate climate
found in the Nearctic is unfavourable for phlebotomine development, particularly for
immature stages. This characteristic supports the idea that phlebotomine sandflies might
have originated in the tropics, with only a few species dispersing into temperate regions.
The sandfly species that are currently found in North America likely arose from the
Palaearctic or from South America during the arid phase in the Tertiary period. Therefore,
their decreased presence may be a consequence of the constant climatic fluctuations that
have occurred during the Quaternary period, causing many sandfly species to become
extinct or displaced into the tropics, where hotter and more humid conditions are present
[3,56,57].

2. The Neotropical region: approximately 450 sandfly species are found in this ecozone. The
distribution centre of the present-day Lutzomyia genus in the Neotropics is thought to be
the forested lowlands present in the east of the Andes. This situation is probably a conse-
quence of the dry periods that occurred during the Pleistocene that isolated conspecific pop-
ulations, some of which became reproductively isolated and have colonized more humid
areas present in the northern and western parts of the subcontinent [10]. The varied sandfly
fauna present in wet areas includes many potential sandflies that feed on the blood of
human beings. However, only a few are endophilic species (Colombia [58], Ecuador [59],
Costa Rica [60], Peru [61], Brazil [62], French Guiana [63], Venezuela [3,8,55,64–67]).

Sandfly Fossil Evidence
Fossils, including the remains of living organisms from the past, are one of the best forms of
evolutionary evidence. They allow for comparisons with current organisms and are of particu-
lar importance in allowing knowledge of primitive character states (plesiomorphic) and
derived specialized states (apomorphic) to be obtained. Fossils provide information about the
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origin of vector flies in relation to infectious agents, host coevolution, and geographic locations.
Therefore, research on sandfly fossils is of great importance for highlighting the evolution and
phylogeny of these insects. As mentioned above, phlebotomine sandflies are found in a wide
range of ecozones, which could be due to their long evolutionary history with their origins in
the Palaeozoic or Mesozoic eras [68].

Arthropods first arose towards the end of the Precambrian period, approximately 550 mil-
lion years ago (MYA). The first Parainsecta appeared in the Devonian (408 MYA), and the
earliest insect orders emerged during the subsequent Carboniferous period. Variegation con-
tinued to occur in the Permian (286 MYA), which was the period during which the Diptera
arose. Psychodidae emerged later, during either the Jurassic [69] or the Triassic period [70].
This group was likely well diversified by the Cretaceous, and the majority of these species were
likely to have been blood feeders. These observations together support the theory of a hypo-
thetical phlebotomine-like ancestor for Psychodidae [9]. The sandflies most likely emerged
during the Carboniferous and, thus, before the mammalian hosts of Leishmania. A common
ancestor for Phlebotominae is thought to have occurred in the Triassic period (248 MYA)
(Table 3).

To date, sixteen fossils representative of NewWorld species have been described (15 from
Dominican and one fromMexican amber). These fossils correspond to the Lutzomyia genus,
including subgenera of Lutzomyia (one sp.),Micropygomyia (two spp.), Pintomyia (12 spp.),
and Psathyromyia (one sp.) [71]. Additionally, some old amberic records of phlebotomine-like
species have been recorded from the Old World, including some fossils deposited in France
[72], Germany [73], Spain [74], Burma [75], and Lebanon [76], although the taxonomic place-
ment of some of these species into the Phlebotominae is still unclear. The oldest known species
of Phlebotominae are Phlebotomites longifilis (Hennig, 1972), P. brevifilis (Hennig, 1972),
Mesophlebotomites hennigi (Azar, Solignac, Paicheler, and Bouchet, 1999), and Libanophlebo-
tomus lutfallahi (Azar, Solignac, Paicheler, and Bouchet, 1999), for which there are fossil rec-
ords described from Lebanon, in the south of the Tethys Sea, dated to approximately 120 MYA
[5,9]. Since that time, the evolution of the Phlebotominae was likely to have been driven by
major tectonic events and related climatic changes that affected the break up of Pangaea. Prior
to 120 MYA, the Phlebotominae had likely remained on Pangaea for quite some time, from
which separated sandfly faunas could have developed in the Old World and NewWorld [5].
Sandfly fossil records as well as data on systematics strongly indicate that the current genera
existed quite some time before the Mesozoic, 250 MYA [73]. Palaeomyia burmitis was found in
Burmese amber dated from the Cretaceous period (100 MYA). Trypanosomatids associated
with a fungal food source were discovered in the alimentary tract of sandfly larva. Another
sandfly fossil, P. (Phlebotomiella) tipuliformis (Meunier, l905), was found in Baltic amber dated
from the Eocene (20 MYA). This species may have lived in the forest and fed on thin-skinned
reptiles [9,77]. Sergentomyia succini (Stuckenberg, 1975), is another sandfly fossil found in Bal-
tic amber [77]. Additionally, Phlebotomus pungens (Loew, 1845), and P. khludae (Kaddumi,
2005) [78], reported from the Old World, both were discovered in Jordanian fossil amber.
Sandflies fromMexican ambers from Chiapas were identified asMicropygomyia patterna
(= Lutzomyia paterna [Quate, 1963]) and dated to the Miocene (20 MYA). This species is the
first known phlebotomine among the current reptile-feeding species to exhibit narrow wings
and to feed on blood [9,79]. A sandfly fossil found in Dominican amber was identified as a
female of Lutzomyia adiketis and was dated to approximately 20 MYA. This discovery supports
the hypothesis of the radiation of Lutzomyia species throughout the Neotropics. In addition to
Lutzomyia adiketis, Pintomyia falcaorum, Trichopygomyia killickorum, L. filipalpis, L. succini, L.
miocena, L. paleopestis, L. schleei, P. brazilorum, P. paleotownsendi, P. paleotrichia, andM. bran-
daoi were also found in this Miocene Dominican amber. Two other groups of fossils were found
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by Young and Lawyer [56] and Antoine et al. [80] in Dominican (14 specimens) and Peruvian
(one specimen) ambers, dating from the Miocene. These specimens were not described by the
authors that discovered the ambers.

Currently, there are two hypotheses that attempt to explain how the worldwide dispersion
of sandfly ancestors occurred. The first hypothesis assumes that sandflies evolved in the
Palaearctic ecozone during the Cretaceous period and were then isolated because of the
breakup of Pangaea and underwent independent evolution, resulting in two subgenera, Phlebo-
tomus (that has evolved during the Eocene) and Lutzomyia (which evolved during the Oligo-
cene, after the breaking of the Bering bridge). These two genera include species that are
involved in the transmission of Leishmania in the Old and NewWorlds, respectively [81,82].
According to the second hypothesis, the similarities between the current sandfly taxa and those
recorded in fossils, as well as their external positions on phenetic or cladistic trees, support the
hypothesis that they existed in Gondwana before the continental separation [83].

Leishmania
The Trypanosomatidae family consists of three dixenous genera (life cycle in vertebrates or
plants and invertebrates)—Trypanosoma, Phytomonas, and Leishmania—11 monoxenous gen-
era (life cycle in invertebrates only)—Leptomonas, Crithidia (together with Leishmania form
the subfamily Leishmaniinae), Blastocrithidia, Herpetomonas, Sergeia,Wallacemonas, Blecho-
monas, and Jaenimonas—and three genera that are characterized by the presence of endosym-
biotic bacteria and form the subfamily Strigomonadinae: Angomonas, Strigomonas, and
Kentomonas [84–88].

Leishmania parasites belong to the Kingdom Protista (Haeckel, 1866), Class Kinetoplastea
(Honigberg, 1963 emend. Vickerman, 1976), Subclass Metakinetoplastina (Vickerman, 2004),
Order Trypanosomatida (Kent, 1880), Family Trypanosomatidae (Döflein, 1901), Subfamily
Leishmaniinae (Maslov and Lukeš 2012), and Genus Leishmania (Ross, 1903).

Leishmania species are heteroxenous, meaning that they are able to colonize two hosts.
They live in the phagocytes of the reticulo-endothelial system of mammals and in the intestinal
tract of phlebotomine sandflies, although Forcipomyia spp. (Diptera: Ceratopogonidae) as well
as some tick species have been reported as the potential vectors of Leishmania sp. [89–91].
Mammalian Leishmania species exhibit a worldwide distribution (Table 4). They are present in
tropical and subtropical areas, including North, Central, and South America, as well as in the
Mediterranean basin, Southeast Europe, the Middle East, Central and Southeast Asia, the
Indian subcontinent, Africa, and recent reports also demonstrate their presence in Australia
(Table 4). In the Malagasy region, with the exception of one case of canine leishmaniasis
reported by Buck et al. [92], no autochthonous case of leishmaniasis has been reported. Alvar
et al. [2] presented an overview of the occurrence of leishmaniasis and causative species in all
affected countries. In the Old World, most Leishmania transmissions occur peridomestically in
semiarid areas modified by humans, whereas NewWorld parasites are often associated with
sylvatic habitats, though some species exhibit predominantly peridomestic transmission. Host
preference is also a major factor that affects the modality of Leishmania transmission by a vec-
tor that can occur among wild animals, from animals to man, or among people. Although pre-
dominantly gut-dwelling, Leishmania parasites were rarely detected also in salivary glands of
sand flies. The presence of parasites in the glands was correlated with heavy infections of meta-
cyclic promastigotes in the stomodaeal valve and thoracic midgut of the fly. Therefore, there
was a strong correlation between infected glands and the intensity of infection in the midgut,
linked to the presence of numerous metacyclic forms [93].
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First attempts at the classification of Leishmania were monothetic Linnean classifications
that were proposed between 1916 and 1961, based on extrinsic characters only (Table 1). An
early Leishmania classification was suggested by Nicolle in 1908, which separated L. infantum,
the etiological agent of Mediterranean visceral leishmaniasis, from L. donovani, the causative
agent of Indian kala azar. Then, Biagi proposed the separation of various NewWorld Leish-
mania species [94] (see Table 1). In 1964 [95], Adler discussed the difficulties in accepting a
clinically based taxonomy, as leishmaniasis may demonstrate the same clinical symptoms but
by two different Leishmania species, e.g., visceral leishmaniasis with cutaneous symptoms. The
most intensive and extensive investigations on these parasites were carried out in the Turkme-
nian USSR (reviewed by Belova, [96]). Other attempts to classify mammalian Leishmania in
the traditional way (that is, by naming and defining species and subspecies) were presented by
Lainson and Shaw [97,98] and Bray et al. [99]. In 1976 [100], Vickerman proposed the recogni-
tion of four species complexes within the genus: the donovani complex, the tropica complex,
themexicana complex and the braziliensis complex (adapted later partially by Lainson and
Shaw). In 1979 [101], Lainson and colleagues described three sections of Leishmania, according
to the intravectorial development of the parasite: Hypopylaria (saurian Leishmania developing
in the hindgut), Peripylaria (developing in the hindgut and pylorus), and Suprapylaria (all
development anterior to the pylorus). In 1982 [102], the Russian researcher Saf'janova pro-
posed separation of Leishmania infecting lizards from other Leishmania species that infect
mammals, and she proposed the name Sauroleishmania for these species [103]. The saurian
Leishmania species were then assigned to a separate genus Sauroleishmania by Killick-Ken-
drick et al. [104]. A milestone for Leishmania classification was the system presented by Lain-
son and Shaw in 1987, who divided the genus Leishmania into two subgenera, L. (Leishmania)
for the section Suprapylaria and L. (Viannia) for the section Peripylaria. In the early 1970s,
intrinsic characteristics (immunological, biochemical, and molecular) of Leishmania were
identified and used to develop new classification systems. Isoenzyme electrophoresis, devel-
oped in the 1970s, has been widely used as a typing system and was accepted over decades as
the gold standard for identification and is still a valuable tool as a reference technique for para-
site characterization. Since the 1980s, Adansonian phenetic classification, based on the multiple
similarity-weighted characters (absence of hierarchy) applied simultaneously (polythetic classi-
fication) without an a priori hypothesis, has been employed for Leishmania classification. Sub-
sequently, phylogenetic analyses revealed a parental relationship between different species of
Leishmania. The phenetic and, especially, the cladistic classification confirmed the majority of
the taxonomic groups previously established through Linnean classifications, particularly that
of Lainson and Shaw [19]. Pioneering phenetic classifications based on izoenzymes have been
proposed by Moreno et al. [105], Thomas-Soccol et al. [106], and Cupolillo et al. [107] for the
NewWorld and by Lanotte et al. [108] and Le Blanq et al. [109] for the Old World. Rioux et al.
[110] combined all New and Old World taxa in one classification system. Several of these
authors also applied a phylogenetic concept of classification [111] that is based on the concepts
of monophyletism, parsimony of changes, and nonconvergence of characters [106,112]. The
concordance between these classifications mutually validated both the extrinsic (geographic
distribution, associated clinical syndrome, and developmental features in the sandfly gut) and
intrinsic (biochemical, immunological, and molecular markers) identification criteria applied.
However, cladistic analyses allowed a more detailed analysis of some groups and led to the
establishment of some new complexes of species (L. infantum, L. turanica, L. guyanensis).
However, some of these complexes were later rejected by molecular data. In addition, these cla-
distic analyses led to the proposal to place previously separated species in the same complex
(L. guyanensis, L. panamensis, L. shawi) [113].
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Recently, a new classification for Leishmania has been proposed based on combined
molecular data, which divides Leishmania species into two major phylogenetic lineages
referred to as sections Euleishmania and Paraleishmania [114]. The section Euleishmania
comprises four subgenera: Leishmania (type strain: L. donovani), Viannia (type strain: L. bra-
ziliensis), Sauroleishmania (type strain: L. tarentolae), and L. enriettii complex (type strain: L.
enriettii). Section Paraleishmania includes L. hertigi, L. deanei, L. herreri, L. equatorensis, and
L. colombiensis as well as the former Endotrypanum genus. Of this group, only L. colombiensis
was found to be pathogenic to humans. The evolutionary history of the section Paraleishma-
nia has not been yet resolved, and it is so far a polyphyletic clade within the genus Leishmania.
Based on izoenzyme data, the genus Leishmania was shown to be monophyletic, but inference
of its origin and evolution is complicated by its disjunct geographic distribution [106]. Espe-
cially with respect to the position of Endotrypanum, with its intraerythrocyte developmental
stage as well as distinct morphology (epimastigote or trypomastigote form) within section
Paraleishmania, as shown by molecular data, this remains questionable and has to be carefully
reevaluated. The subgenus Viannia is restricted to the Neotropics, while the subgenus Leish-
mania occurs in both the New and Old World. Fifty-three named species (without synonyms,
including all five subgenera and complexes: Leishmania, Viannia, Sauroleishmania, L. enrittii
complex, and Paraleishmania) are recognized, 29 of which are present in the Old World, 20 in
the NewWorld, three species (“L. siamensis,” L.martiniquensis, and L. infantum) in both Old
and NewWorld, and one species in Australia (“L. australiensis”). Among these recognized
species, 20 (without synonyms) are known to infect humans (updated information from Mar-
oli et al. [39]).

Synonymy was shown for several species using molecular typing, e.g., L. tropica (syn. L. kill-
icki) [117,118,119] and L. donovani (syn. L. archibaldi) [120,121,122]. Synonymy was also sug-
gested for L.mexicana (syn. L. pifanoi) and L. amazonensis (syn. L. garnhami). However, in all
published studies, only a few representatives for these synonyms have been included, and they
should be studied using an adequate sampling strategy. It was also shown by multilocus micro-
satellite typing (MLMT) that one species (L. infantum/L. chagasi) was only recently (ca. 500
years ago) brought from the Old World (namely Portugal) to the NewWorld and that it found
a suitable vector there [123,124]. For a number of species, the phylogenetic status is not yet
resolved (species or subspecies or even synonyms), mainly because of the limited number of
included isolates, e.g., for L. amazonensis, L. garnhami, L. pifanoi, L. venezuelensis, L. aristidesi,
L. forattinii, L. arabica, L. utingensis (represented by only a single sample), L. lindenbergi, L.
enrietti, and those belonging to the Paraleishmania section. Moreover, molecular data based
mainly on hsp70 [125] proved the existence of only nine monophyletic groups. These groups
might represent distinct species, and several other species should be treated as subspecies
within these main groups, which was also confirmed by MLMT studies, e.g., for L. braziliensis
and L. peruviana as subspecies, L. donovani and L. infantum as subspecies, L. guyanensis, L.
shawi, and L. panamensis as subspecies, L.mexicana and L. amazonensis as subspecies, L. tro-
pica and L. aethiopica as subspecies, etc. [126]. However, not all known species have been
included in these studies, especially for the L.mexicana complex.

In conclusion, molecular data based on sequences of different targets and on MLMT do not
support the concept of species complexes presented by Lainson and Shaw [19,127], and the
classification should be revised, including both suppression of several species and also down-
grading some species to the level of subspecies. Ongoing whole-genome sequencing and SNP
analysis as well as further analysis by multilocus sequence typing (MLST) and MLMT and an
adequate sampling and inclusion of representatives of all species (with sufficient numbers of
isolates from different areas of distribution) will contribute to further improvement of the clas-
sification of the Leishmania genus.
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Sauroleishmania was originally described by Ranque in 1973 [103] as a separate genus. It
includes 19 named and two unnamed species (L. [S.] sp. I, L. [S.] sp. II; Telford [210]), accord-
ing to Ovezmukhammedov and Saf'janova [213], Killick-Kendrick et al. [104], and Telford
[128], without specifying their taxonomic positions. Among these, ten species were considered
as valid by Ovezmukhammedov and Saf'janova (Fig 1) [213]. They [213] also reported one spe-
cies as L. (S.) sp. without any additional information about its descriptor (author) and taxo-
nomic position. During the 1980s, Leishmania that infect lizards were placed in a new genus,
Sauroleishmania, which was also primarily based on the use of extrinsic characters [104]. In
1986 [129], Saf’janova proposed that Leishmania species diverged from Leptomonas and that
such parasites were present in primitive sandflies during the Mesozoic period. This idea was
supported later by molecular data [85,130]. The two subgenera that encompass Leishmania
infecting mammals were regarded as having been separated by continental drift during the
Mesozoic, and it was suggested that Sauroleishmania developed only in the Old World because
the presence of the sandfly vectors for these parasites is strictly restricted to the Old World
[129].

The L. enriettii complex and related parasites form a well-supported monophyletic group
(L. enriettii complex) that most likely represents a new subgenus (Pothirat et al. [115]; Kwa-
kye-Nuako et al. [116]). The only two formally described and named members of this group
are L. enriettii, described in 1948 and repeatedly isolated from domestic guinea pigs, and Leish-
mania martiniquensis, described in 2014 as a causative agent of human diseases. Another three
members that have been accommodated into the L. enriettii complex are: (i) never formally
described "L. siamensis" from human patients; (ii) unnamed species sometimes called "L. aus-
traliensis" from Australia marsupials, most likely transmitted by midges; and (iii) very recently
(2015) introduced unnamed Leishmania species from human cases in Ghana. At the moment,
the names of “L. siamensis” and “L. australiensis” are not taxonomically valid names. For this,
these names have been used in this paper with quotation marks.

The Endotrypanum genus belonging to the Paraleishmania group is known as a parasite of
sloths that is transmitted by Lutzomyia species in Central and South America. These parasites
are found within the erythrocytes of the Choloepus and Bradypus sloth genera. Only two spe-
cies, Endotrypanum schaudinni and E.monterogeii, have been described in this genus [131].
The parasites that have been obtained through the in vitro culture of infected blood from sloths
and from Lutzomyia sandfly guts are promastigotes that are indistinguishable from Leishmania
promastigotes. Sloths also serve as a reservoir of L. braziliensis, L. guyanensis, L. herreri, L.
equatoriensis, and L. panamensis, which are transmitted by sandfly vectors. They could be one
of the first vertebrate hosts in which the dixenous life cycle of Leishmania could have emerged.

Leishmania Fossil Evidence
Leishmania belongs to the phylum Kinetoplastida, which is likely related to the phylum of
Euglenids [132]. Both of these groups belong to the eukaryotic supergroup Excavata, for which
fossil evidence suggests emergence during the Ordovician [133]. Leishmaniamight have origi-
nated during the Mesozoic, prior to the separation of Gondwana [106]. The first Leishmania
fossil record was Paleoleishmania proterus, a digenetic Leishmania species associated with a
blood-filled female of the sandfly P. burmitis in Burmese fossil amber (Cretaceous, 100 MYA)
(Table 3) [134]. Within the alimentary canal of this sandfly, amastigotes (n = 20), promasti-
gotes (n = 393), and paramastigotes (n = 64) of digenetic leishmanial trypanosomatids were
observed. The observation of these different parasitic stages in the alimentary tract of the insect
suggests that their presence was likely the result of a blood meal and that they were multiplying
within the midgut. The blood cells were later identified as being of reptilian origin. They also
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described the development of putative amastigotes within whitish, spherical-to-oval vacuoles
associated with some blood cells. The second fossil of Paleoleishmania species described was P.
neotropicum, which was found in Dominican fossil amber (20 MYA). A large number of pro-
mastigotes (n = 20) and amastigotes (n = 20) were found in the gut of L. adiketis. Additionally,
four promastigotes, two paramastigotes, and several amastigotes of P. neotropicum were found
in the proboscis of L. adiketis. The presence of amastigotes demonstrated the digenetic life
cycle of P. neotropicum, as this parasitic life stage is considered to be present only in the verte-
brate host, and no monogenetic flagellates are known to colonize sandflies.

The kingdom Animalia appeared 700 MYA, and the first Leishmania host ancestor likely
also appeared at this time. In this period, the Earth was covered by water with a lower oxygen
concentration [135]. The definitive hosts for primitive Leishmaniamay therefore have been
reptiles or primitive mammals. It was initially suggested that the Leishmania genus originated
in the Palaeocene, following the emergence of the first placental mammals. The ancestors of
Leishmania emerged during the Ordovician [130,136], while winged insects appeared during
the Carboniferous (300 MYA), and the first hematophagous winged insect appeared during the
Cretaceous (140 MYA) [137]. The separation between primitive Phlebotomus and Lutzomyia
arose approximately 200 MYA [138]. While trypanosomatids were present during the Palaeo-
zoic, free-living forms were likely more diverse in the past than today. In this period, the Leish-
mania ancestor was separated into Sauroleishmania (reptile-infecting Leishmania) and the
current Leishmania genus (mammal-infecting Leishmania) [139]. Subsequently, the division of
Leishmania into L. (Leishmania) and L. (Viannia) occurred approximately between 54 to 25
MYA, after the separation of Africa from South America [140]. Geologically, the Earth experi-
enced a cooling and drying period (1.5–2.5 MYA). The grassland biomes required for the
development of the earliest murid rodents likely shifted towards the equator and the tropical
forest biomes [141]. Along with their required biome, sigmodontine rodents (Rodentia: Muri-
dae: Sigmodontinae) travelled across the Panamanian land bridge into South America.

The observation of sandfly larvae that develop in habitats containing trypanosomatid flagel-
lates led to the hypothesis that sandflies host monoxenous trypanosomatids, and that these fla-
gellates were carried through the pupal into the adult stage. This corresponds with the fact that
Leishmania parasites evolved originally from Leptomonasmonoxenous trypanosomatids [85],
which are rarely transmitted to mammalian hosts, including humans [130]. The transmission
of flagellates by an adult sandfly to a vertebrate host, establishing a continuing cycle between
the vector and vertebrate species, likely occurred before the appearance of placental mammals
during the Palaeocene. Thus, the appearance of placental mammals appears to have occurred
after the appearance of the currently known Leishmania vectors, i.e., Phlebotomus and Lutzo-
myia species. Hence, the vector, mammalian host, and fossil record all suggest that leishmania-
sis may have been established during the Palaeocene (65–31 MYA).

Palaearctic Origin of Leishmania
A Palaearctic origin of the genus Leishmania was proposed by Lysenko in 1971 [142]. Fossil evi-
dence indicates that both phlebotomine sandflies and murid rodents originated in the Palaearc-
tic [5,143], making it likely that Leishmania, along with its vectors and reservoirs, could have
evolved in the Palaearctic during the Cenozoic period and dispersed to the Nearctic during the
Oligocene (Eocene), when the Bering land bridge was intact. These species then dispersed into
the Neotropics across the Panamanian land bridge during the Pliocene, when the climate was
sufficiently warm to permit further dispersal of Leishmania (Fig 2) [82,142,144,145].

Molecular analyses of Leishmania strains coming from various Old World endemic areas
suggest that L. donovani and L. infantum, which are responsible for VL, likely diverged
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approximately 1 MYA. Leishmania donovani subsequently invaded India and Africa [146],
and 500 years ago, Leishmania infantum was transported to South America and was named
L. chagasi, which is now considered to be synonymous with L. infantum [146–148].

P. proterus found in sandflies fed with reptile blood in the Palaearctic during the Cretaceous
period led to the hypothesis that reptiles were likely the original hosts of Leishmania. Sauro-
leishmaniamay have then diverged from L. (Leishmania) in the Old World as a consequence
of its adaption to reptiles. Sauroleishmania could have originated in Cretaceous reptiles resid-
ing in the Palaearctic region and subsequently declined during the Cenozoic period because of
cooling of the Earth, as mammals radiated. Thus, the successful establishment of Leishmania
appears to have been assisted by first infecting reptiles. This evolutionary scenario is supported
by some molecular data and the numerous reptilian trypanosomes that are transmitted by
today’s sandflies. The infections then shifted to the murid rodents, which are now the most sig-
nificant reservoirs of Leishmania strains causing CL. Murid rodents likely appeared in the
Palaearctic during the Oligocene era and then dispersed across the Bering land bridge to Nearc-
tic regions during the Eocene era. Mice and rats from the NewWorld evolved in the Nearctic
ecozone before crossing the Panamanian land bridge to the Neotropics during the Pliocene,
after which they underwent a rapid radiation, leading to the introduction of parasites to cavio-
morth rodents, sloths, armadillos, and anteaters [136,141,144]. All of these species act as reser-
voirs and play an important role in the persistence and dispersal of the parasites because of
their relatively long lifespan compared with sandflies [136,141]. The origin and dispersion of
murid rodents has been taken as essential evidence that Leishmania originated in the Palaearc-
tic region. Around this time, phlebotomine species ancestral to both Phlebotomus and Lutzo-
myia adapted to feed on rodents instead of reptiles, likely because their burrows offer humidity
and shelter from cold for both rodents and sandflies. The fossil record indicates that the

Fig 2. Possible routes of dissemination of Leishmania. (i). Red arrow: Palearctic origin of Leishmania (Lysenko [142], Kerr [136,144], Kerr et al. [145]). (ii)
Blue arrow: Neotropical origin of Leishmania (Croan et al. [150], Noyes [149], Noyes et al. [83], Lukeš et al. [146]). (iii) Green arrow: Neotropical/African origin
of Leishmania (Momen and Cupolillo [139]). Distribution of medically important sandflies is highlighted by red symbols. L: Lutzomyia, P: Phlebotomus, S:
Sergentomyia, PS: Relative density and diversity of Phlebotomus as compared to Sergentomyia.

doi:10.1371/journal.pntd.0004349.g002
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phlebotomine sandfly ancestor evolved in the Palaearctic (Cretaceous, 120 MYA) and that
Phlebotomus also evolved in the Palaearctic (Eocene, Baltic amber), and Lutzomyia diverged
from Phlebotomus (Oligocene, Mexican amber) after the breaking of the Bering land bridge
[136,141,145].

Neotropical Origin of Leishmania
In 1998 [149], Noyes suggested a Neotropical origin of Leishmania during the Palaeocene or
Eocene period (36–46 MYA). Subsequently, the parasites invaded the Nearctic ecozone via the
Panamanian land bridge and the Palaearctic via the Bering land bridge during the Miocene.
The greater diversity observed among NewWorld Leishmania species compared with those
from the Old World provides some circumstantial evidence arguing for a Neotropical origin of
Leishmania [19,150]. Nevertheless, if this hypothesis is true, then Sauroleishmaniamight have
evolved later during the Miocene, either in the Nearctic or the Palaearctic area, as a result of
adaptation to reptiles [149]. Sloths (Xenarthra) might have served as the first vertebrate reser-
voirs of Leishmania in the Neotropics. Also, it has been suggested that a number of monoge-
netic and digenetic trypanosomatids can grow in the rectal glands of marsupials. After
adaptation to rodents during the Eocene, infected porcupines would have carried the parasites
across the Panamanian land bridge to the Nearctics and across the Bering land bridge to the
Palaearctic during the Miocene in an unspecified mammalian reservoir (Fig 2) [83,149,150].

Climate change, in combination with the topographic diversity found in the Central and
South America, has certainly played a role in the vicariance of the sigmodontine rodents and
their accelerated speciation. The cricetids (sigmodontines) encompass approximately 40 genera
and more than 200 species that evolved within approximately 2.5 MYA [141]. A similarly
rapid rate of evolution is observed in NewWorld Leishmania [141,151].

Neotropical/African Origin of Leishmania
According to this theory, the genus Leishmania is divided into two sections: Euleishmania
(Leishmania and Viannia subgenera and Sauroleishmania) and Paraleishmania (L. hertigi, L.
deanei, L. colombiensis, L. equatorensis, and L. herreri) [114,139]. It is also speculated that the
separation of Gondwana in the Mesozoic resulted in the evolution of the Leishmania genus
into Leishmania and Sauroleishmania in Africa, and Viannia and Paraleishmania in South
America [139]. The origin and the evolution of Leishmania would have been related to the ori-
gin of humans in eastern Africa, with Leishmania following the dynamics of the human popu-
lation in the Palaearctic (Asia, Africa, and Europe) ecozone. An African origin of Leishmania
was emphasized by Momen and Cupolillo [139], based on the importance of the origins of its
vectors and reservoirs as evidence for this hypothesis and citing the restricted habitat of Arvi-
canthis rodents and Phlebotomus sandflies in Africa. According to this hypothesis, the Old
World Leishmania species (e.g., L. donovani/L. infantum, L. tropica, L.major, and L. aethio-
pica) exhibit an African origin. L. aethiopica is present only in the Ethiopian and Kenyan high-
lands. Because of its restricted geographical distribution, it is reasonable to assume an African
origin for this species as well as for the other L. (Leishmania)–hyrax systems that occur in
Africa [128]. The origin of humans from eastern Africa suggests that Leishmania species with
anthroponotic transmission, i.e., L. tropica and L. donovani, may also have originated in east-
ern Africa (Fig 2) [152].

Relationship between Sandflies and Leishmania
The term “coevolution” was first used to demonstrate a particular type of relationship between
Leishmania and sandfly species in the Old World [147]. Leishmania and sandflies have
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survived over many millions of years under selective pressure, depending on natural ecological
changes. A close relationship has been demonstrated between some sandfly and Leishmania
species, such as L.major and P. papatasi. This longstanding evolutionary history of Leishmania
and sandflies has resulted in a similar distribution. However, there is not always a clear distinc-
tion between coevolution and certain other concepts, such as coassociation (meaning that the
transmission cycle exhibits a distinctive landscape epidemiology), interaction (the molecular
and immunological relationship between the sandfly midgut and the parasite’s external sur-
face), or vector–parasite cospeciation or co-cladogenesis [37]. Most Leishmania parasites are
more restricted regarding the range of sandfly vectors that can transmit them than in the range
of mammalian hosts/reservoirs they are able to infect, suggesting a much closer coevolutionary
relationship with sandflies than with their vertebrate hosts, although it is sometimes difficult to
interpret this coevolutionary relationship [153]. For example, there is a specific relationship
between P. papatasi and L.major because of the presence of specific midgut receptors [154],
and these two species show strong distribution sympatry. Nevertheless, such high specificity of
Leishmania for its sandfly vector appears to be restricted to P. papatasi or P. duboscqi and P.
sergenti. However, the appearance of Leishmania interspecies hybrids might have conse-
quences in terms of specificity and transmission efficiency [155,156].

The incrimination of sandflies as proven or potential vectors of Leishmania is a controver-
sial and debated matter. Five criteria stated by Killick-Kendrick [104] are required to incrimi-
nate a particular sandfly species as a vector, which include the observation of corresponding
epidemiological data, feeding behaviour of the sandflies on the animal intermediate host, the
isolation of promastigote parasites from the sandflies, the occurrence of the complete life cycle
of the parasite in its putative vector, and experimental transmission of the parasite through the
bite of the infected species. Since the 1990s, with PCR invention and advances in molecular
parasitology, molecular evidence was added to the mentioned criteria, and reports regarding
the presence of Leishmania DNA in various sandfly species have dramatically increased. Nev-
ertheless, according to the above-mentioned criteria, the presence of Leishmania DNA within
sandflies should certainly not be considered to be a sufficient criterion to incriminate a sandfly
species as a proven vector. Further evidence highlighting the presence of metacyclic promasti-
gotes within the insect’s gut as well as demonstration of the insect’s capacity to retransmit
Leishmania are essential criteria that need to be investigated to indicate the vectorial compe-
tence of sandflies. Approximately 166 species have been reported to be proven or potential vec-
tors of different Leishmania species in the Old and NewWorld (Table 4). Among these species,
78 are reported as the proven vectors of Leishmania. In the Old World, Leishmania are trans-
mitted by sandflies belonging to the Phlebotomus genus (49 species, 31 are reported as proven),
while Sauroleishmania are transmitted by sandflies of the Sergentomyia genus. In the New
World, Leishmania, Viannia, and Endotrypanum species are transmitted by sandflies belong-
ing to the Lutzomyia genus (118 species, 47 are reported as proven). Among the above-men-
tioned sandfly vectors, seven are involved in the transmission of L.major, seven in the
transmission of L. tropica, 31 in the transmission of L. infantum, and nine in the transmission
of L. donovani. NewWorld sandflies (genus Lutzomyia) are involved in the transmission of dif-
ferent species (see Table 4, updated information from various publications). The stronger
restriction of vectors to cutaneous Leishmania species than to vectors of either the visceralizing
donovani/infantum group [147] or L. (Viannia) [19] provides support for the hypothesis that
cutaneous species evolved first.

Cutaneous leishmaniasis (CL) is a vector-borne zoonotic disease, involving various wild
rodents and humans as vertebrate hosts and different sandfly species as vectors playing a role
in Leishmania transmission. In the Old World, a large majority of CL cases are geographically
restricted to the arid and semiarid areas of the North, Central sub-Saharan, and East African
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regions; the Near East and Middle East; and Central Asia and India. NewWorld CL occurs in
tropical and subtropical areas of Mexico and Central and South America. The Leishmania spe-
cies responsible for CL differ between the Old and NewWorld. In the Old World, the etiologi-
cal agents of CL include L. tropica, L.major, and L. aethiopica, whereas NewWorld CL is
caused by parasites of the L.mexicana complex (L.mexicana, L. amazonensis, L. pifanoi, L.
garnhami, and L. venezuelensis) or the subgenus Viannia (L. braziliensis, L. guyanensis, L.
panamensis, L. naiffi, L. shawi, L. lainsoni, and L. peruviana). In the Old World, the proven
vectors of CL are mainly classified in the subgenera Phlebotomus and Paraphlebotomus, even
though some species of the Adlerius and Larroussius subgenera are thought to be vectors of
parasites causing Old World CL [81,157]. In the NewWorld, the main vectors of CL belong to
the subgenera Nyssomyia, Psychodopygus, Lutzomyia s.str., and Verrucarum (Fig 3) (Table 4).

Diffuse cutaneous leishmaniasis (DCL) was first reported in Kenya in 1969. This disease is
an anergic variant of localized CL, in which lesions are disseminated. The causative agent is L.
aethiopica, which is transmitted by P. pedifer and P. longipes. Nevertheless, DCL caused by L.
amazonensis, transmitted by Lutzomyia-group Olmeca in the NewWorld, has also been
reported.

Mucocutaneous leishmaniasis (MCL), or espundia, occurs exclusively in South America,
showing a greater incidence in Peru, Bolivia, Paraguay, Ecuador, Colombia, and Venezuela. L.
braziliensis (Viannia subgenus) is the main causative agent, and to a lesser extent, L. guyanen-
sis, L. panamensis, and L. amazonensis are also known to be responsible for MCL in this region.
The vectors of this disease mainly belong to the subgenus Psychodopygus (e.g., L. (Ps.) wellco-
mei) [158].

Visceral leishmaniasis (VL) is usually a systemic disease that affects internal organs, particu-
larly the spleen, liver, and bone marrow. L. donovani and L. infantum are the agents responsi-
ble for Old World VL, whereas L. chagasi (synonym with L. infantum) is responsible for New

Fig 3. Geographical distributions of various Leishmania spp.; sandflies and animal reservoirs in the Old and NewWorld. L: Leishmania (species), S:
Sandfly (genus or subgenus), R: Reservoir (genus or family).

doi:10.1371/journal.pntd.0004349.g003
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World VL. Some VL cases caused by L. tropica or L. amazonensis have also been reported
[159]. The main VL vectors belong to the Euphlebotomus, Larroussius, and Synphlebotomus
subgenera [160], but some species of the Adlerius and Paraphlebotomus subgenera have also
been reported as vectors of L. infantum and L. donovani. The vectors involved in the transmis-
sion of NewWorld VL belong to the Lutzomyia sensu stricto,Migonemyia, Nyssomyia, Pifano-
myia, Psychodopygus, and Verrucarum subgenera (Fig 3) [161].

Discussion and Conclusion
Phlebotomine sandfly systematics, particularly at the supraspecific level, have always been
controversial [34,53]. Originally, this family was composed of a single genus: Phlebotomus
Rondani. In 1948, Theodor proposed subdivision of the sandfly family into four genera: Phle-
botomus and Sergentomyia in the Old World and Lutzomyia and Brumptomyia in the New
World. A "stable" classification of the phlebotomine sandflies was proposed in 1977 by Lewis
and colleagues [14], who retained the well-known family, subfamily, and genus names. It was
also proposed that the subgenera and species groups be used as a model to put forward a new
proposal. A “flexible” classification was proposed by Ready and colleagues in 1980 [162]. These
researchers challenged the “stable” classification through a comparative analysis of characters
that were described as “exclusive” characters for their proposed genera, e.g., Phlebotomus, Ser-
gentomyia, Brumptomyia,Warileya, and Psychodopygus, but no such characters were found for
Lutzomyia. The absence of unique characters for the genus Lutzomyia is certainly the weakest
point in their comparative character analysis. New discoveries in later years led to the erection
of new subgenera or genera. One of the difficulties in sandfly classification concerns the posi-
tion of sandfly species at the genus or subgenus level. There is no general agreement regarding
the definition of some groups at the genus or subgenus level. Idiophlebotomus in Phlebotomus,
as well as Parrotomyia, Rondanomyia, and Grassomyia in Sergentomyia were classified by
Quate and Fairchild [163] at the subgenus level, whereas Abonnenc [164] considered Idiophle-
botomus to be genus and Sergentomyia to be a subgenus. Abonnenc and Minter [165] did not
include Parvidens as a subgenus of Sergentomyia, whereas Abonnenc [164] considered Parvi-
dens to be a subgenus of the Phlebotomus genus. Lewis [5] declined to recognize generic status
for Spelaeophlebotomus and Idiophlebotomus, whereas Artemiev and Neronov [166] consid-
ered them at the genus level. Similarly, for NewWorld sandfly species, Young and Duncan [8]
classified Bichromomyia, Dampfomyia, Deanemyia, Evandromyia, Expapillata,Martinsmyia,
Micropigomyia,Migonemyia, Nyssomyia, Pintomyia, Psathyomyia, Psychodopigus, Trichophor-
oymyia, Trichopigomyia, and Viannamyia to be subgenera of the Lutzomyia genus, whereas
Galati et al. [66] elevated these groups to the genus level. These conflicts in classification are
mainly due to (i) differences or variations in the criteria and the methods used for classifica-
tion, such as criteria that are now considered to be outdated or scarce, e.g., the presence of
erected or recumbent abdominal setae; (ii) morphological similarities between species and
some uncertainty in species identification, such as the existence of cryptic or sibling species
and the similarity of morphological characters among females that makes species identification
dependent on male characters (e.g., Adlerius); (iii) the inadequacy of the reported species
descriptions; and (iv) the massive increase in the number of sandfly species described. The con-
struction of a well-supported phylogeny of the generic and subgeneric groups in the Phleboto-
minae subfamily will likely require a supermatrix analysis. This matrix must include molecular
information on several nuclear genes combined with mitochondrial genes—as well as other cri-
teria related to biology—and ecology, which has been successfully applied for the classification
of the Drosophilidae family [167]. This type of analysis would provide a firmer basis for the
classification of Phlebotominae sandflies, in addition to resolving the problem of the proposal
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of classifications suggested for the Old World and NewWorld sandflies. Therefore, a more
extensive molecular phylogenetic analysis, e.g., focussing on gene flow and the phenotypes of
specimens, awaits the development of an accurate and valid protocol for sandfly classification.

A reliable taxonomy of Leishmania species will represent a keystone for biological and epi-
demiological research programs. There is still no universal agreement regarding the classifica-
tion of Leishmania, especially concerning the criteria defined for species definition, or the
method used to address phylogenetic classification. The greatest inconsistency concerns the
assignment of Leishmania at the specific or subspecific level. Although the clustering of Leish-
mania at the subgeneric level and the definition of “complexes” in Leishmania classification
have gained rather wide acceptance since being reported by Lainson and Shaw [98], there are
still serious challenges in terms of the genus composition. Various molecular methods have
been introduced to elucidate the taxonomy of Leishmania, though defining a Leishmania spe-
cies or accepting all of the described species is still not straightforward. The currently accepted
classification of Leishmania proposes the division of this genus into three subgenera: Leish-
mania, Viannia, and Sauroleishmania. Under this proposal, species that cannot be classified
into any of these subgenera are included in the Paraleishmania section, such as yet-unclear-sta-
tus Leishmania parasites. A question that remains open to debate is the position and classifica-
tion of Sauroleishmania. Because this group is of low medical importance, there is little
information about the reliability of its classification at present. Its placement in the Leishmania
phylogeny therefore remains highly debated. Contradictorily, Kerr [144] proposed that the
mammalian Leishmania evolved from lizard Sauroleishmania in the Palaearctic, whereas
Noyes [149] controversially suggested that lizard Sauroleishmania evolved from mammalian
parasites. This group has been placed both at the crown of the phylogeny [83,139,150] and at
its root [136,144,145]. It appears more likely that the position of Sauroleishmania external to
all L. (Leishmania) is a consequence of a faster rate of evolution in this subgenus, as suggested
by a molecular phylogenetic analysis performed on the RNA and DNA polymerase genes
[150]. Therefore, the systematic position of many Leishmania infecting reptiles remains unre-
solved. This difficulty in assigning a phylogenetic position is likely due to (i) the paucity of
information about the life cycle of Sauroleishmania; (ii) the fact that all of the flagellates found
in reptiles have been studied mainly at the light-optical level (except some submitted sequences
in Genbank), without additional study methods being applied (serological, biochemical, and
others), whereas some flagellates from reptiles belong to Trypanosoma and are also transmitted
by sand flies; and (iii) the existence of a priori notions that every flagellate detected in a reptile’s
body should be attributed to Leishmania promastigotes without further study of their true
identity. Therefore, to avoid any doubt in the classification of Leishmania as well as Sauroleish-
mania, emphasis on the exploration of new isolates via molecular biology and phylogenetic
(DNA analysis) methods is suggested. Finally, to clarify the position of Leishmania species in
this classification, it is proposed that assignment to major groups across the entire genus Leish-
mania should be based on gene sequences, which are remarkably congruent and uncontrover-
sial. For classification within the major groups, more highly discriminatory markers, such as
MLST markers, microsatellites, or genome-wide single nucleotide polymorphisms, are consid-
ered to be better suited.

Knowledge about the origin and dispersal of Leishmania will help us to more precisely
understand the factors that have and will continue to influence the circulation of leishmaniasis,
in relation to its etiological parasitic agents, the vectors that transmit them, and their reservoirs.
The dissemination of Leishmania has followed the migration of its vectors and hosts together
[168]. Concerning the origin of Leishmania species, several hypotheses have been proposed,
which were described above. These hypotheses profit from significant fossil, molecular, eco-
logical, and biochemical data supporting them. Nevertheless, the debate is still open. To gather
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more information to support hypotheses of the origin and evolution of Leishmania, more evi-
dence must be considered. Such evidence will include the following:

• Molecular phylogenies: based on several independent genes that display different evolution-
ary constraints, e.g., the elongation factor (EF-1α), heat shock protein gene (hsp70), and
glyceraldehyde dehydrogenase (GAPDH), SSU (small subunit of ribosomal DNAs), DNA
Polymerase α (POLA), cytochrome b (cytb), cysteine proteases, RNA polymerase II large
subunit, gp63, mini-exon, and internal transcribed spacer of rDNA (ITS) (at lower taxonom-
ical level) and spliced leader (SL) genes. Some of these genes are single-copy, protein-coding
genes and are therefore suitable candidates for studying the molecular systematics and phy-
logeny of Leishmania [169].

• Biogeographical and ecological evidence: geographical, ecological, and climatic aspects as
well as geological periods of the Earth and the presence of natural environmental pressures
or geographical barriers must be investigated to obtain insight into the origin, evolution, and
dispersion of Leishmania. It is worth considering that the absence or emergence of geograph-
ical barriers, such as mountains, in the past few million years (or even today), has resulted in
a wider or restricted distribution of Leishmania parasites and their sandfly vectors and ani-
mal hosts at a worldwide scale.

• Entomological evidence: considering that leishmaniasis is a vector-borne disease, it is of
course essential to more precisely understand the origin and the evolution of sandfly vectors
along with Leishmania development, considering their coevolution and sympatry in different
periods of time.

• Mammalogical evidence: considering that leishmaniasis is a zoonotic disease, the origin, con-
servation, and dispersion of Leishmania is highly dependent on animal reservoirs.

Three hypotheses have been proposed concerning the origin of Leishmania (Fig 2). Kerr
[144] proposed a Palaearctic origin of Leishmania, based on a study carried out by Lysenko in
1971 [142]. He used fossil evidence of mammalian taxa and sandflies previously reported by
Nowak [143] and Lewis [5], respectively, to support his hypothesis. Nevertheless, this hypothe-
sis has been proposed based on a biogeographical study, which must be tested against other
independent datasets. In 2000 [144], based on biogeographical evidence, fossil records of
mammals and sandflies, and ecological data, Kerr also proposed a revision of the Leishmania/
Sauroleishmania clade, but the lack of an independent phylogenetic analysis undermined the
reliability of this hypothesis. Several factors argue against a Neotropical origin of Leishmania.
Based on this theory, (i) porcupines did not move from the Neotropic to the Nearctic, whereas
the fossil record demonstrates that such migration occurred after the formation of the Panama-
nian land bridge during the Pliocene [143]; (ii) porcupines did not travel across the Bering land
bridge; (iii) the use of nonmolecular evidence, such as data based on biogeography, epidemiol-
ogy, ecology, and historical events, is controversial; and (iv) there is an inconsistency between
the current classifications of phlebotomine sandflies and the proposed Neotropical origin of
Leishmania as well as a discrepancy between a Palaearctic origin of the murid rodents and a
Neotropical origin of the parasite [7,139,144]. The third hypothesis considers Leishmania to
exhibit a Neotropical/African origin. Despite reported evidence, this theory does not consider
human dispersion into the Neotropics [139]. Finally, based on this hypothesis, a serious ques-
tion remains regarding the Sauroleishmania phylogeny at the crown of the phylogenic tree and
the dispersal of Leishmania from Africa to the Neotropics before the separation of Pangaea
when considering the lack of evidence concerning the presence of Sauroleishmania in the
Neotropics.
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The question about Leishmania evolution has classically been centred on two opposing theo-
ries related to the original host for Leishmania as a digenetic parasite; i.e., was the first host a
vertebrate or an invertebrate? Such information will certainly help us to better understand the
origin and factors that play an important role in Leishmania dispersion and therefore in the epi-
demiology of leishmaniasis. The Phlebotominae ancestor emerged in the Triassic period, before
the appearance of Leishmania (Jurassic) and placental mammals (Palaeocene). This hypothesis
is further supported by an SSU rRNA data analysis indicating that Leishmania diverged from a
trypanosomatid line of monogenetic insect parasites [140]. The oldest fossil ancestors of the
modern sandflies date from the Cretaceous period (120 MYA, Lebanon), followed by Burmese
fossil amber (Cretaceous, 100 MYA). A gap of approximately 80 MYA is present from this Bur-
mese fossil amber specimen until the next fossil found in Baltic amber (20 MYA), meaning that
there is a serious gap in knowledge. According to the Burmese fossil amber specimen, ingested
and free-living flagellates of P. proterus were found in habitats containing P. burmitis sandflies.
In the Jurassic period, the reptiles were the predominant vertebrate fauna for many years.
Despite their presence, there is no strong evidence, such as fossils, linking the sandfly lineage
with ancient cold-blooded vertebrates. This absence or rarity of Leishmania in older reptiles
suggests that sandflies with haematophagous habits were likely to be the first host of Leish-
mania. In addition, the greater range restriction of the sandfly vectors than the animal hosts of
Leishmania parasites supports the much closer coevolutionary relationship of Leishmania and
sandflies. Considering the above observations, it appears that monogenetic parasites of sandflies
adapted to mammals some 90 MYA, giving rise to Leishmania. This adaptation likely took place
during a period when mammals were diversifying into different orders during the separation of
Africa and South America. Kerr [144] proposed a Palaearctic origin of Leishmania, suggesting
that reptiles were the first vertebrate hosts of Leishmania, whereas Noyes [149] considered
rodents to be the first vertebrate host. With the exception of the Sauroleishmania group, no
human pathogenic Leishmania have been reported from reptiles. One the other hand, regarding
some characteristics of sandflies, such as their restricted flight distance, short life cycle, slow lar-
val development, and greater blood feeding preference for warm-blooded animals compared
with cold-blooded species, it is assumed that these insects were the first host of Leishmania, but
they have not played a major role in the Leishmania dispersion, particularly in regions that are
unsuitable for sandfly survival. Hence, it is assumed that Leishmania were transferred by
infected sandflies to local vertebrates, in which the parasite can survive for long period, after
which the vertebrates, particularly the murid rodents, were the responsible for disease dispersion
in the Old and NewWorld. Muroids are a large superfamily of rodents. They have diversified
into a large superfamily comprising over 1,500 species, including hamsters, gerbils, true mice,
and rats as well as many other relatives. They nowmake up nearly one-third of all mammalian
species, and they occupy a vast variety of habitats on every continent except for Antarctica.
Comparison of the origin and distribution pattern of rodents proposed by Schenk et al. [170]
(Steppan [171]) with the hypotheses of Leishmania appearance and dispersion suggests a close
similarity in the distribution patterns of these groups, supporting the theory that they might be
responsible for Leishmania dispersion in both the Old and NewWorld.

Concluding Remarks
The evolutionary relationship between sandflies and Leishmania has implications for leishmania-
sis interventions and control. It is therefore necessary to obtain information on the origin of
Leishmania and the Phlebotominae sandflies and their chronological history of coevolution.
Understanding these evolutionary relationships between different Leishmania and sandfly species
is of epidemiological importance for the future prediction of Leishmania transmission patterns.
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