S. Bhatt, The effect of malaria control on Plasmodium falciparum in Africa between, Nature, vol.526, pp.207-211, 2000.

J. T. Griffin, Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies, PLoS Med, vol.7, p.1000324, 2010.

H. M. Ferguson, Ecology: a prerequisite for malaria elimination and eradication, PLoS Med, vol.7, p.1000303, 2010.

, World Health Organization. Review of Current Evidence on Combining Indoor Residual Spraying and Long-lasting Insecticidal Nets, 2014.

, World Health Organization. WHO Guidance for Countries on Combining Indoor Residual Spraying and Long-lasting Insecticidal Nets (World Health Organization, 2014.

V. Corbel, Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial, Lancet Infect. Dis, vol.12, pp.617-626, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00835684

N. Protopopoff, Combination of insecticide treated nets and indoor residual spraying in Northern Tanzania provides additional reduction in vector population density and malaria transmission rates compared to insecticide treated nets alone: a randomised control trial, PLoS ONE, vol.10, p.142671, 2015.

N. Protopopoff, Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two fact, Lancet, vol.391, pp.1577-1588, 2018.

, WHO. World Malaria Report, 2017.

J. Hemingway, The role of vector control in stopping the transmission of malaria: threats and opportunities, Philos. Trans. R. Soc. B Biol. Sci, vol.369, p.20130431, 2014.

J. Hemingway, The way forward for vector control, Science, vol.358, pp.998-999, 2017.

H. Ranson, Current and future prospects for preventing malaria transmission via the use of insecticides, Cold Spring Harb. Perspect. Med, vol.7, p.26823, 2017.

I. Kleinschmidt, Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation, Malar. J, vol.14, p.282, 2015.

I. Kleinschmidt, Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study, Lancet Infect. Dis, vol.3099, pp.1-10, 2018.

H. Ranson and N. Lissenden, Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control, Trends Parasitol, vol.32, pp.187-196, 2016.

, World Health Organization. Conditions for Deployment of Mosquito Nets Treated With a Pyrethroid and Piperonyl Butoxide, 2017.

C. Ngufor, A Pyrrole Insecticide) applied alone or as a mixture with alpha-cypermethrin for indoor residual spraying against pyrethroid resistant Anopheles gambiae sl: an experimental hut study in Cove, PLoS One, vol.11, p.162210, 2016.

R. N'guessan, A. Odjo, C. Ngufor, D. Malone, and M. Rowland, A Chlorfenapyr Mixture Net Interceptor® G2 shows high efficacy and wash durability against resistant mosquitoes in West Africa, PLoS ONE, vol.11, p.165925, 2016.

F. Darriet, Impact de la résistance aux pyréthrinoïdes sur l'efficacité des moustiquaires imprégnées dans la prévention du paludisme: résultats des essais en cases expérimentales avec la deltaméthrine SC, Bull. Soc. Pathol. Exot, vol.93, pp.131-134, 2000.

T. S. Churcher, N. Lissenden, J. T. Griffin, E. Worrall, and H. Ranson, The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa, vol.5, p.16090, 2016.

H. Van-den-berg, Global trends in the use of insecticides to control vector-borne diseases, Environ. Health Perspect, vol.120, pp.577-582, 2012.

J. Wagman, An observational analysis of the impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in Ségou Region, Malar. J, vol.17, p.19, 2018.

B. Pluess, F. C. Tanser, C. Lengeler, and B. L. Sharp, Indoor residual spraying for preventing malaria, Cochrane Database Syst. Rev, 2010.

, World Health Organization. Global Plan for Insecticide Resistance Management in Malaria Vectors (World Health Organization, 2012.

M. Rowland, A new long-lasting indoor residual formulation of the organophosphate insecticide pirimiphos methyl for prolonged control of pyrethroid-resistant mosquitoes: an experimental hut trial in Benin, PLoS ONE, vol.8, p.69516, 2013.

R. M. Oxborough, Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS), Malar. J, vol.13, p.37, 2014.

, World Health Organization. The Evaluation Process for Vector Control Products (World Health Organization, 2018.

R. M. Oxborough, Trends in US President's Malaria Initiative-funded indoor residual spray coverage and insecticide choice in sub-Saharan Africa (2008-2015): urgent need for affordable, long-lasting insecticides, Malar. J, vol.15, p.146, 2016.

, World Health Organization. The Evaluation Process for Vector Control Products, 2017.

, World Health Organization. Malaria Vector Control Policy Recommendations and Their Applicability to Product Evaluation, 2017.

, World Health Organisation. Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets Control of Neglected Tropical Diseases. WHO Pesticide Evaluation Scheme, 2006.

B. Huho, Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa, Int. J. Epidemiol, vol.42, pp.235-247, 2013.

O. J. Briët, T. A. Smith, and N. Chitnis, Measurement of overall insecticidal effects in experimental hut trials, Parasit. Vectors, vol.5, p.256, 2012.

O. J. Briët, Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study, Malar. J, vol.12, p.77, 2013.

F. O. Okumu, S. S. Kiware, S. J. Moore, and G. F. Killeen, Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes, Parasit. Vectors, vol.6, p.17, 2013.

G. F. Killeen, N. Chitnis, S. J. Moore, and F. O. Okumu, Target product profile choices for intra-domiciliary malaria vector control pesticide products: repel or kill?, Malar. J, vol.10, p.207, 2011.

J. Bagi, When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors, Malar. J, vol.14, p.210, 2015.

P. A. West, Indoor residual spraying in combination with insecticidetreated nets compared to insecticide-treated nets alone for protection against malaria: a cluster randomised trial in Tanzania, PLoS Med, vol.11, p.1001630, 2014.

A. Djènontin, Indoor use of plastic sheeting impregnated with carbamate combined with long-lasting insecticidal mosquito nets for the control of pyrethroid-resistant malaria vectors, Am. J. Trop. Med. Hyg, vol.83, pp.266-270, 2010.

P. Winskill, P. G. Walker, J. T. Griffin, and A. C. Ghani, Modelling the costeffectiveness of introducing the RTS,S malaria vaccine relative to scaling up other malaria interventions in sub-Saharan Africa, BMJ Glob. Health, vol.2, p.90, 2017.

I. Kleinschmidt, Combining indoor residual spraying and insecticidetreated net interventions, Am. J. Trop. Med. Hyg, vol.81, pp.519-524, 2009.

N. Protopopoff, Spatial targeted vector control is able to reduce malaria prevalence in the highlands of Burundi, Am. J. Trop. Med. Hyg, vol.79, pp.12-18, 2008.

J. Duncan, Post-treatment effects of sublethal doses of dieldrin on the mosquito Aedes aegypti L, Ann. Appl. Biol, vol.52, pp.1-6, 1963.

J. Kennedy, The excitant and repellent effects on mosquitos of sub-lethal contacts with DDT, Bull. Entomol. Res, vol.37, pp.593-607, 1947.

M. Viana, A. Hughes, J. Matthiopoulos, H. Ranson, and H. M. Ferguson, Delayed mortality effects cut the malaria transmission potential of insecticideresistant mosquitoes, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.8975-8980, 2016.

G. F. Killeen, Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania, BMC Infect. Dis, vol.6, p.161, 2006.

A. Shcherbacheva, H. Haario, and G. F. Killeen, Modeling host-seeking behavior of African malaria vector mosquitoes in the presence of long-lasting insecticidal nets, Math. Biosci, vol.295, pp.36-47, 2017.

M. R. Reddy, Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea, Malar. J, vol.10, p.184, 2011.

N. Braimah, Tests of bednet traps (Mbita traps) for monitoring mosquito populations and time of biting in Tanzania and possible impact of prolonged insecticide treated net use, Int. J. Trop. Insect Sci, vol.25, pp.208-213, 2005.

N. Moiroux, Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin, J. Infect. Dis, vol.206, pp.1622-1629, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742218

I. Tirados, C. Costantini, G. Gibson, and S. J. Torr, Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control, Med. Vet. Entomol, vol.20, pp.425-437, 2006.

K. T. Ibrahim, K. O. Popoola, and K. O. Akure, Laboratory evaluation of residual efficacy of Actellic 300 CS (Pirimiphos-Methyl) and K-Othrine WG 250 (Deltamethrin) on different indoor surfaces, Int. J. Insect Sci, vol.9, p.117954331773298, 2017.

B. M. Ondeto, Current status of insecticide resistance among malaria vectors in Kenya, Parasit. Vectors, vol.10, p.429, 2017.

D. J. Massue, Comparative performance of three experimental hut designs for measuring malaria vector responses to insecticides in Tanzania, Malar. J, vol.15, p.165, 2016.

W. A. Oumbouke, A. Fongnikin, K. B. Soukou, S. J. Moore, and R. N'guessan, Relative performance of indoor vector control interventions in the Ifakara and the West African experimental huts, Parasit. Vectors, vol.10, p.432, 2017.

, World Health Organization. Meeting Report of the WHO Evidence Review Group on Assessing Comparative Effectiveness of New Vector Control Tools, 2017.

M. R. Kaufman, D. Rweyemamu, H. Koenker, and J. Macha, My children and I will no longer suffer from malaria": a qualitative study of the acceptance and rejection of indoor residual spraying to prevent malaria in Tanzania, Malar. J, vol.11, p.220, 2012.

G. F. Killeen, Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets, PLoS Med, vol.4, p.229, 2007.

M. Smithson, M. Davies, and A. M. Aimola-davies, Exploiting test structure: case series, case-control comparison, and dissociation, Cogn. Neuropsychol, vol.28, pp.44-64, 2011.

O. Papaspiliopoulos, G. O. Roberts, and M. Sköld, A general framework for the parameterization of hierarchical models, Stat. Sci, vol.22, pp.59-73, 2007.

M. Betancourt, M. Girolami, and S. K. Upadhyay, Current Trends in Bayesian Methodology with Applications, pp.79-102, 2015.

S. D. Team, Stan modeling language. User's Guide Reference Manual, pp.1-488, 2015.

F. R. Agossa, Efficacy of various insecticides recommended for indoor residual spraying: pirimiphos methyl, potential alternative to bendiocarb for pyrethroid resistance management in Benin, West Africa, Trans. R. Soc. Trop. Med. Hyg, vol.108, pp.84-91, 2014.

F. R. Agossa, V. Gnanguenon, R. Anagonou, and R. Azondekon, Impact of insecticide resistance on the effectiveness of pyrethroid-based malaria vectors control tools in Benin: decreased toxicity and repellent effect, PLoS ONE, vol.10, pp.1-13, 2015.

E. S. Tchicaya, Micro-encapsulated pirimiphos-methyl shows high insecticidal efficacy and long residual activity against pyrethroid-resistant malaria vectors in central Côte d'Ivoire, Malar. J, vol.13, p.332, 2014.

M. C. Akogbéto, G. G. Padonou, D. Gbénou, S. Irish, A. Yadouleton et al., Malar. J, vol.9, p.204, 2010.

C. Ngufor, A. Fongnikin, M. Rowland, and R. N'guessan, Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin, PLoS ONE, vol.12, p.189575, 2017.

F. R. Agossa, Efficacy of a novel mode of action of an indoor residual spraying product, SumiShield® 50WG against susceptible and resistant populations of Anopheles gambiae (s.l, Parasit. Vectors, vol.11, p.293, 2018.

M. Tomizawa and J. E. Casida, Neonicotinoid insecticide toxicology: mechanisms of selective action, Annu. Rev. Pharmacol. Toxicol, vol.45, pp.247-268, 2005.

M. T. White, Modelling the impact of vector control interventions on Anopheles gambiae population dynamics, Parasit. Vectors, vol.4, p.153, 2011.

J. T. Griffin, N. M. Ferguson, and A. C. Ghani, Estimates of the changing ageburden of Plasmodium falciparum malaria disease in sub-Saharan Africa, Nat. Commun, vol.5, pp.1-10, 2014.

J. T. Griffin, Gradual acquisition of immunity to severe malaria with increasing exposure, Proc. R. Soc. B Biol. Sci, vol.282, p.20142657, 2015.

P. A. Hancock, Associated patterns of insecticide resistance in field populations of malaria vectors across Africa, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.5938-5943, 2018.

, Available at, National Weather Service. Climate Prediction Center, 2016.

F. O. Okumu and S. J. Moore, Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future, Malar. J, vol.10, p.208, 2011.

N. Protopopoff, High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania, Malar. J, vol.12, p.149, 2013.