. Trpm4-/-mice, B) Representative Goldner's trichrome staining in heart sections. (C) Quantitative RT-PCR for the expression of Collagen1 (Coll1) and Collagen3 (Coll3) genes in the left ventricle (LV), presented relative to the expression of Gapdh in arbitrary units (a.u.). ns: no significant difference

. Fig, Connexin mRNA and protein levels in atrial and ventricular tissue of Trpm4-/-and Trpm4 +/+ mice. (A) Quantitative RT-PCR expression of Connexin, Connexin 43 (Cx43), vol.40, 2014.

P. Launay, A. Fleig, A. L. Perraud, A. M. Scharenberg, and R. Penner, TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization, Cell, vol.109, pp.397-407, 2002.

B. Nilius, J. Prenen, G. Droogmans, T. Voets, and R. Vennekens, Voltage dependence of the Ca2+-activated cation channel TRPM4, J Biol Chem, vol.278, pp.30813-30820, 2003.

G. Barbet, M. Demion, I. C. Moura, N. Serafini, and T. Lé-ger, The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells, Nat Immunol, vol.9, pp.1148-1156, 2008.

S. Earley, B. J. Waldron, and J. E. Brayden, Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries, Circ Res, vol.95, pp.922-929, 2004.

R. Vennekens, J. Olausson, M. Meissner, W. Bloch, and I. Mathar, Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4, Nat Immunol, vol.8, pp.312-320, 2007.

M. Demion, P. Bois, P. Launay, and R. Guinamard, TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells, Cardiovasc Res, vol.73, pp.531-538, 2007.

R. Guinamard, A. Chatelier, M. Demion, D. Potreau, and S. Patri, Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes, J Physiol, vol.558, pp.75-83, 2004.

M. Kruse, E. Schulze-bahr, V. Corfield, A. Beckmann, and B. Stallmeyer, Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I, J Clin Invest, vol.119, pp.2737-2744, 2009.

D. Colquhoun, E. Neher, H. Reuter, and C. F. Stevens, Inward current channels activated by intracellular Ca in cultured cardiac cells, Nature, vol.294, pp.752-754, 1981.

R. Guinamard, M. Rahmati, J. Lenfant, and P. Bois, Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes, J Membr Biol, vol.188, pp.127-135, 2002.

R. Guinamard, M. Demion, C. Magaud, D. Potreau, and P. Bois, Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats, Hypertension, vol.48, pp.587-594, 2006.

I. Mathar, R. Vennekens, M. Meissner, F. Kees, and G. Van-der-mieren, Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice, J Clin Invest, vol.120, pp.3267-3279, 2010.

I. Mathar, M. Kecskes, G. Van-der-mieren, G. Jacobs, C. Londoñ-o et al., Increased badrenergic inotropy in ventricular myocardium from Trpm4-/-mice, Circ Res, vol.114, pp.283-294, 2014.

C. Simard, T. Hof, Z. Keddache, P. Launay, and R. Guinamard, The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential, J Mol Cell Cardiol, vol.59, pp.11-19, 2013.

T. Hof, C. Simard, R. Rouet, L. Sallé, and R. Guinamard, Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm, Heart Rhythm Off J Heart Rhythm Soc, vol.10, pp.1683-1689, 2013.

, TRPM4 Channel in Hypertrophy and Cardiac Conduction PLOS ONE, 2014.

C. Simard, L. Sallé, R. Rouet, and R. Guinamard, Transient receptor potential melastatin 4 inhibitor 9phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle, 2012.

, Br J Pharmacol, vol.165, pp.2354-2364

J. Wang, K. Takahashi, H. Piao, P. Qu, and K. Naruse, 9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury, PloS One, vol.8, p.70587, 2013.

H. Liu, S. Chatel, C. Simard, N. Syam, and L. Salle, Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel, PloS One, vol.8, p.54131, 2013.

M. Royuela, D. Chazalette, F. Rivier, G. Hugon, and R. Paniagua, Dystrophin and dystrophinassociated protein in muscles and nerves from monkey, Eur J Histochem EJH, vol.47, pp.29-38, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00358733

C. M. Trivedi, M. M. Lu, Q. Wang, and J. A. Epstein, Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy, J Biol Chem, vol.283, pp.26484-26489, 2008.

J. Thireau, B. L. Zhang, D. Poisson, and D. Babuty, Heart rate variability in mice: a theoretical and practical guide, Exp Physiol, vol.93, pp.83-94, 2008.

J. Fauconnier, J. Pasquié, P. Bideaux, A. Lacampagne, and S. Richard, Cardiomyocytes hypertrophic status after myocardial infarction determines distinct types of arrhythmia: role of the ryanodine receptor, Prog Biophys Mol Biol, vol.103, pp.71-80, 2010.

J. Thireau, F. Aimond, D. Poisson, B. Zhang, and P. Bruneval, New insights into sexual dimorphism during progression of heart failure and rhythm disorders, Endocrinology, vol.151, pp.1837-1845, 2010.

M. H. Soonpaa, K. K. Kim, L. Pajak, M. Franklin, and L. J. Field, Cardiomyocyte DNA synthesis and binucleation during murine development, Am J Physiol, vol.271, pp.2183-2189, 1996.

S. Walsh, A. Ponté-n, B. K. Fleischmann, and S. Jovinge, Cardiomyocyte cell cycle control and growth estimation in vivo-an analysis based on cardiomyocyte nuclei, Cardiovasc Res, vol.86, pp.365-373, 2010.

M. M. Kreuzberg, K. Willecke, and F. F. Bukauskas, Connexin-mediated cardiac impulse propagation: connexin 30.2 slows atrioventricular conduction in mouse heart, Trends Cardiovasc Med, vol.16, pp.266-272, 2006.

S. Bagwe, O. Berenfeld, D. Vaidya, G. E. Morley, and J. Jalife, Altered right atrial excitation and propagation in connexin40 knockout mice, Circulation, vol.112, pp.2245-2253, 2005.

B. A. Vanderbrink, C. Sellitto, S. Saba, M. S. Link, and W. Zhu, Connexin40-deficient mice exhibit atrioventricular nodal and infra-Hisian conduction abnormalities, J Cardiovasc Electrophysiol, vol.11, pp.1270-1276, 2000.

M. E. Silverman, C. B. Upshaw, and H. W. Lange, Woldemar Mobitz and His 1924 classification of second-degree atrioventricular block, Circulation, vol.110, pp.1162-1167, 2004.

A. Just, J. Faulhaber, and H. Ehmke, Autonomic cardiovascular control in conscious mice, Am J Physiol Regul Integr Comp Physiol, vol.279, pp.2214-2221, 2000.

P. Mansier, J. Clairambault, C. N. Mé-digue, C. Vermeiren, and C. , Linear and non-linear analyses of heart rate variability: a minireview, Cardiovasc Res, vol.31, pp.371-379, 1996.

K. Wickman, J. Nemec, S. J. Gendler, and D. E. Clapham, Abnormal heart rate regulation in GIRK4 knockout mice, Neuron, vol.20, pp.103-114, 1998.

S. Richard, E. Perrier, J. Fauconnier, R. Perrier, and L. Pereira, Ca(2+)-induced Ca(2+) entry'' or how the L-type Ca(2+) channel remodels its own signalling pathway in cardiac cells, Prog Biophys Mol Biol, vol.90, pp.118-135, 2006.

S. Brunet, F. Aimond, H. Li, W. Guo, and J. Eldstrom, Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles, J Physiol, vol.559, pp.103-120, 2004.

E. M. Lutas, R. B. Devereux, G. Reis, M. H. Alderman, and T. G. Pickering, Increased cardiac performance in mild essential hypertension. Left ventricular mechanics, Hypertension, vol.7, pp.979-988, 1985.

D. Simone, G. , D. Lorenzo, L. Moccia, D. Costantino et al., Hemodynamic hypertrophied left ventricular patterns in systemic hypertension, Am J Cardiol, vol.60, pp.1317-1321, 1987.

Y. Du, E. Plante, J. S. Janicki, and G. L. Brower, Temporal evaluation of cardiac myocyte hypertrophy and hyperplasia in male rats secondary to chronic volume overload, Am J Pathol, vol.177, pp.1155-1163, 2010.

R. Sah, P. Mesirca, X. Mason, W. Gibson, and C. Bates-withers, Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization, Circulation, vol.128, pp.101-114, 2013.

L. W. Runnels, L. Yue, and D. E. Clapham, TRP-PLIK, a bifunctional protein with kinase and ion channel activities, Science, vol.291, pp.1043-1047, 2001.

R. Burt, B. M. Graves, M. Gao, C. Li, and D. L. Williams, Phenanthrol and flufenamic acid inhibit calcium oscillations in HL-1 mouse cardiomyocytes, Cell Calcium, vol.54, pp.193-201, 2013.

N. Naqvi, M. Li, J. W. Calvert, T. Tejada, and J. P. Lambert, A proliferative burst during preadolescence establishes the final cardiomyocyte number, Cell, vol.157, pp.795-807, 2014.

F. Li, X. Wang, J. M. Capasso, and A. M. Gerdes, Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development, J Mol Cell Cardiol, vol.28, pp.1737-1746, 1996.

V. J. Ferrans and E. R. Rodríguez, Evidence of myocyte hyperplasia in hypertrophic cardiomyopathy and other disorders with myocardial hypertrophy?, Z Fü r Kardiologie, vol.76, pp.20-25, 1987.

K. Chang, G. P. Taylor, W. S. Meschino, P. F. Kantor, and E. Cutz, Mitogenic cardiomyopathy: a lethal neonatal familial dilated cardiomyopathy characterized by myocyte hyperplasia and proliferation, Hum Pathol, vol.41, pp.1002-1008, 2010.

G. Olivetti, F. Quaini, C. Lagrasta, R. Ricci, and G. Tiberti, Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats, Am J Pathol, vol.141, pp.227-239, 1992.

Y. T. Tseng, R. Kopel, J. P. Stabila, B. G. Mcgonnigal, and T. T. Nguyen, Beta-adrenergic receptors (betaAR) regulate cardiomyocyte proliferation during early postnatal life, FASEB J Off Publ Fed Am Soc Exp Biol, vol.15, pp.1921-1926, 2001.

O. E. Brodde and M. C. Michel, Adrenergic and muscarinic receptors in the human heart, Pharmacol Rev, vol.51, pp.651-690, 1999.

S. Y. Ng, C. K. Wong, and S. Y. Tsang, Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies, 2010.

, Am J Physiol Cell Physiol, vol.299

H. Liu, L. El-zein, M. Kruse, R. Guinamard, and A. Beckmann, Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease, Circ Cardiovasc Genet, vol.3, pp.374-385, 2010.

B. Swynghedauw, Molecular mechanisms of myocardial remodeling, Physiol Rev, vol.79, pp.215-262, 1999.

R. Guinamard and P. Bois, Involvement of transient receptor potential proteins in cardiac hypertrophy, Biochim Biophys Acta, vol.1772, pp.885-894, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00562770

R. Dhingra, B. Ho-nam, E. J. Benjamin, T. J. Wang, and M. G. Larson, Cross-sectional relations of electrocardiographic QRS duration to left ventricular dimensions: the Framingham Heart Study, J Am Coll Cardiol, vol.45, pp.685-689, 2005.

L. Hein, M. E. Stevens, G. S. Barsh, R. E. Pratt, and B. K. Kobilka, Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block, Proc Natl Acad Sci U S A, vol.94, pp.6391-6396, 1997.

S. Van-den-borne, V. Van-de-schans, A. E. Strzelecka, H. Vervoort-peters, and P. M. Lijnen, Mouse strain determines the outcome of wound healing after myocardial infarction, Cardiovasc Res, vol.84, pp.273-282, 2009.

L. B. Stull, N. Hiranandani, M. A. Kelley, M. K. Leppo, and . Marbá-n-e, Murine strain differences in contractile function are temperature-and frequency-dependent. Pflü g Arch Eur, J Physiol, vol.452, pp.140-145, 2006.

S. B. Waters, D. M. Diak, M. Zuckermann, P. H. Goldspink, and L. Leoni, Genetic background influences adaptation to cardiac hypertrophy and Ca(2+) handling gene expression, Front Physiol, vol.4, p.11, 2013.

H. Abriel, N. Syam, V. Sottas, M. Y. Amarouch, and J. Rougier, TRPM4 channels in the cardiovascular system: physiology, pathophysiology, and pharmacology, vol.84, pp.873-881, 2012.

J. Gemel, A. E. Levy, A. R. Simon, K. B. Bennett, and X. Ai, Connexin40 abnormalities and atrial fibrillation in the human heart, J Mol Cell Cardiol, vol.76, pp.159-168, 2014.

S. L. Mironov and E. Y. Skorova, Stimulation of bursting in pre-Bö tzinger neurons by Epac through calcium release and modulation of TRPM4 and K-ATP channels, J Neurochem, vol.117, pp.295-308, 2011.