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Abstract.   Plant establishment in semiarid ecosystems is affected by the limited spatial and temporal 
availability of resources and adequate microsites provided by nurse plants. There has been little research 
on plant establishment in these ecosystems that consider both the ecological roles of different plant 
types and the abiotic properties of their microsites. Such studies could provide important insights about 
the functioning of semiarid ecosystems. Here, we investigated the links between the patterns of plant 
establishment and the hydrological and microsite properties of shrubs and grasses in a semiarid ecosystem 
northeastern Spain. For ecological experiments, we measured the spatial patterns of the establishment of 
shrubs and grasses in eight 6 × 6 m2 quadrats over 2 years; we also sowed seeds of Salsola vermiculata (a 
dominant shrub) and Lygeum spartum (the dominant perennial grass) under adult shrubs (S. vermiculata) 
and grasses (L. spartum) and in bare soil and then examined seedling germination, survival, and growth 
over 4 years. For hydrological experiments, we analyzed soil water content under the two codominant 
shrubs (S.  vermiculata and Artemisia herba-alba), the dominant perennial grass (L.  spartum), and in bare 
soil over 18 months; we also measured water infiltration and solar radiation at the same four microsites 
to identify the hydrological processes responsible for the observed ecohydrological patterns. The three 
potential nurse plants greatly improved the hydrological and microsite conditions. They increased 
soil water content after rainfall relative to bare soil. Moreover, S. vermiculata and L. spartum slowed the 
drying process. However, only S. vermiculata acted as a nurse plant. It improved plant density, diversity, 
performance, and survival during the whole study period. L. spartum facilitated plant establishment during 
early stages, but interfered with seedling performance and survival during later stages, probably because 
of the increasing competition for water with seedlings. A. herba-alba did not facilitate plant establishment 
at any stage, most likely because of water scarcity during prolonged dry periods and its allelopathic 
effects. We conclude that the ecological role of a plant cannot be directly inferred from its hydrological 
or microsite properties. Long-term ecohydrological studies are required to understand the role of nurse 
plants on seedling establishment.

Key words:   ecohydrology; facilitation; infiltration; interference; plant establishment; shrub–grass interactions; soil 
water content.

Received 7 July 2016; accepted 29 July 2016. Corresponding Editor: Jose M. Paruelo. 
Copyright: © 2016 Pueyo et al. This is an open access article under the terms of the Creative Commons Attribution 
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
† E-mail:  ypueyo@ipe.csic.es

http://dx.doi.org/10.1002/ecs2.1514
http://creativecommons.org/licenses/by/3.0/


October 2016 v Volume 7(10) v Article e015142 v www.esajournals.org

﻿� Pueyo et al.

Introduction

Plant establishment (i.e., seedling emergence 
and survival) is a critical stage for the mainte-
nance of plant diversity and productivity in arid 
and semiarid ecosystems, and it is mostly con-
ditioned by water availability (Noy-Meir 1973). 
Most recruitment occurs during exceptionally 
wet years, and most seedling mortality occurs 
during drought periods (Beatley 1974). Water 
availability in these ecosystems has significant 
spatial variability, because of the redistribution 
of rainfall through surface runoff and subsur-
face water flows, and because infiltration varies 
at different locations (Ludwig et  al. 2005). The 
significant spatial and temporal heterogeneity of 
water availability in these semiarid ecosystems 
has led to their classification as “source-sink” 
systems (Cerdà 1997, Imeson and Prinsen 2004). 
These ecosystems typically have patches of veg-
etation within a bare soil matrix, with substantial 
water runoff from bare soil and water infiltration 
beneath established plant canopies. Thus, most 
new seedlings are established near plant cano-
pies. The ecological and hydrological dynamics 

of semiarid ecosystems are well known (Ludwig 
et al. 2005, Bautista et al. 2007, Pueyo et al. 2013). 
However, few studies have simultaneously 
examined the spatial dynamics of hydrology 
and patterns of plant establishment within these 
plant communities (Drezner 2007). Such studies 
are clearly necessary because they can provide 
important information for conservation by iden-
tifying environmental factors that determine 
successful plant establishment in semiarid eco-
systems (Gomez-Aparicio et al. 2005).

Soil water content, or soil water storage (sensu 
Reynolds et  al. 2004), is the most important 
hydrological component for plant dynamics. 
It accounts for spatial and temporal variability 
due to water gains (by infiltration after rainfall 
and run-on) and losses (by evaporation, uptake, 
and transpiration by plants, leakage, and runoff; 
Fig.  1). Thus, this hydrological component best 
characterizes the spatiotemporal availability 
of water for plant establishment and dynam-
ics (Reynolds et  al. 2004, Jenerette et  al. 2012). 
However, resources such as nutrients and avail-
ability of light can also affect plant establish-
ment, as can non-resource factors related to the 

Fig.  1. The most relevant factors related to seedling performance in a semiarid “source-sink” ecosystem. 
Dotted arrow: Water losses by drainage are negligible in ecosystems where infiltration is low and evaporation is 
high.
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microsite environment (Fig.  1), such as maxi-
mum temperatures during the warm season and 
minimum temperatures during the cold season 
(Callaway 2007).

Nurse plants can improve the resource and 
non-resource factors that are important for 
plant establishment in semiarid environments 
(Flores and Jurado 2003). While it is clear that 
non-resource microsite environmental con-
ditions for plant establishment are generally 
improved by a wide array of nurse plant types, 
nurse plants can either facilitate or interfere 
with seedlings for resources (i.e., competing for 
water) (Michalet 2007, Maestre et al. 2009b). The 
net outcome of the interaction between a nurse 
plant and a seedling depends on the morpho-
functional traits of both the benefactor and ben-
eficiary species (Gómez-Aparicio 2009, Maestre 
et  al. 2009b). In semiarid plant communities, 
coexisting shrubs and perennial grasses account 
for most of the perennial biomass. In these eco-
systems, shrubs usually act as nurse plants that 
improve plant establishment (Gómez Aparicio 
et  al. 2004, Maestre et  al. 2009a, Poulos et  al. 
2014), because they can ameliorate harsh abi-
otic conditions providing shade and increas-
ing the availability of water and nutrients 
without exerting strong competition for water 
(Callaway 2007). This is because they usually 
have deep roots that do not compete directly 
for water with established plants in the upper 
layers of soil (Soriano and Sala 1983). Previous 
research in experimental plantations indicated 
that perennial grasses facilitate establishment 
by providing more favorable abiotic conditions 
than bare soil. However, in natural ecosystems, 
there is long-term competition of the roots of 
grasses with those of annuals and seedlings of 
woody plants (Aguilera and Lauenroth 1993, 
Jurena and Archer 2003), because, in contrast 
to shrubs, their root systems are mostly in the 
upper layers of soil (Soriano and Sala 1983, 
Armas and Pugnaire 2011). Thus, the deple-
tion of water from the upper layers of soil 
(Aguiar et al. 1996) prevents the establishment 
of shallow-rooted plants (Armas and Pugnaire 
2011), such as seedlings and annuals (Jurena 
and Archer 2003). Still, grass–shrub interactions 
at establishment stage are not yet well under-
stood (Browning et al. 2014), because there may 
be species-specific effects (Alados et  al. 2006), 

and the outcome of the interactions may vary 
among different environmental conditions 
(Maestre et al. 2009b). Moreover, previous stud-
ies have examined interference and facilitative 
interactions among shrubs and grasses from 
an ecological perspective. However, given that 
water is the main limiting resource in semiarid 
environments, simultaneous examination of 
the ecological and hydrological properties of 
each plant type (together with other microsite 
properties under plant canopies) could provide 
important insights into the role of each plant 
type in community dynamics (Archer et  al. 
2012) and in the maintenance of plant diversity 
and productivity.

The general objective of this research was to 
examine the role of hydrological and microsite 
properties of different plants on the pattern of 
plant establishment in multispecies “source-
sink” semiarid ecosystems. The specific aim of 
this study was to assess the different roles of 
dominant plants (shrubs and grasses) on the 
dynamics of a semiarid plant community in 
northeastern Spain, by investigating the effects 
of these dominant plants on soil moisture, micro-
site environment (solar radiation and soil nutri-
ent content), and plant establishment at different 
life-cycle stages.

We hypothesized that (1) shrubs function as 
nurse plants in the establishment of plants in 
the studied ecosystem because of their phys-
iognomy and water uptake patterns. Further, 
we hypothesize that perennial grasses do not 
functions as nurse plants because, even though 
they improve some microsite conditions related 
to plant establishment, they compete with seed-
lings for access to water. (2) We also expected that 
the different ecological roles of these two plant 
types would predominantly derive from their 
differing effects on the spatial–temporal patterns 
of soil moisture (with higher water availability 
in the upper layers under shrubs than under 
perennial grasses; Appendix S1: Fig. S1) and 
not from differences in nutrient availability or 
other microsite properties. Finally, we measured 
cumulative water infiltration, and we related this 
hydrological property and the microsite environ-
mental properties (solar radiation) to observed 
soil moisture dynamics, as (3) they are expected 
to be  important driving forces for the observed 
ecohydrological processes.



October 2016 v Volume 7(10) v Article e015144 v www.esajournals.org

﻿� Pueyo et al.

Methods

Study area
The study area is located in “El Planerón,” a 

nature reserve in the Middle Ebro Valley (NE 
Spain, 41°22′  N 0°37′  W) that has a semiarid 
Mediterranean climate. The average annual tem-
perature is 15.3°C, and the average annual pre-
cipitation is 308.6 mm (Cuadrat et al. 2007), most 
of which occurs in spring and autumn. The soils 
are predominantly silty clay and have low water 
infiltration in the bare areas because of high com-
paction (Pueyo et al. 2009, Moret et al. 2011). The 
landscape is predominantly flat (elevation 240 m 
a.s.l) and is composed of a mosaic of dry cereal 
croplands and uncultivated lands that consist of 
an open plant community of small shrubs (Salsola 
vermiculata L. and Artemisia herba-alba Asso), 
perennial grasses (Lygeum spartum L., Stipa parvi-
flora Desf., and Dactylis glomerata L.), and numer-
ous forbs and ephemeral plants. The vegetation 
occurs in patches, and the non-vegetated areas 
are mostly bare with compacted clay soil and 
some scattered biological soil crusts (i.e., lichen 
species Diploschistes diacapsis, Squamarina lentig-
era, and Fulgensia sp.). Traditional land use in the 
area was based on a traditional agropastoral sys-
tem involving extensive sheep (Rasa aragonesa) 
production. Despite the fact that grazing in the 
study site is restricted since 1990, past land use is 
still patent on plant communities that are more 
open and less dominated by perennial grasses 
than original plant communities (Pueyo 2005).

Patterns of plant establishment
We investigated the spatial pattern of perennial 

plants establishment (all the dominant shrubs 
and perennial grasses), by the study of eight 
6 × 6 m2 quadrats that were established in spring 
2011 in a well-preserved plant community that 
was dominated by two shrubs (S. vermiculata and 
A. herba-alba) and three perennial grasses (L. spar-
tum, S.  parviflora, and D.  glomerata). A quadrat 
size representative of the plant community was 
selected taking into account that the average size 
of adult plants was 0.36  ±  0.02  m2 (n  =  246; 
Wiegand and Moloney 2014). In each quadrat, 
we located the central point of the canopy, 
and  the identity, phenology (seedling, juvenile, 
or adult), and status (alive or dead) of all 
shrubs and perennial grasses. We recorded plant 

survival and new seedling establishment in 
autumn 2011, spring and autumn 2012, and 
spring 2013.

Additionally, we assessed the role of shrubs 
and grasses on overall plant establishment of 
perennials and annuals in spring 2011. To do so, 
we identified the number of individuals or each 
species that occurred under the canopy of adult 
individuals of S.  vermiculata, A.  herba-alba, and 
L.  spartum in each quadrat. For these measure-
ments, we randomly selected 15 individuals of 
S. vermiculata and A. herba-alba per quadrat; we 
selected all individuals of adult L. spartum in the 
quadrats (5 individuals in total), because adults 
of this species were very scarce in the plots. We 
measured the canopy cover of the adult plants 
to compute the density and the species richness 
per surface unit, by measuring the largest radius 
of the canopy (r1), and the perpendicular radius 
(r2), and estimating the area of canopy cover as: 
A = π × r1 × r2.

In 2007, we began a sowing experiment in 
the same plant community to quantify the 
emergence and survival of seeds of the domi-
nant shrub (S. vermiculata) and perennial grass 
(L.  spartum) at three different interspersed 
microsites: bare soil (BS), under the canopy of 
S.  vermiculata (SA), and under the canopy of 
L.  spartum (LY). For each microsite and plant 
species, 200 seeds were soaked in water for 24 h 
and planted (200 seeds per microsite × 3 micro-
sites  ×  2 seed species  =  1200 seeds in total) in 
February 2007. In the BS microsite, seeds were 
planted in a regular grid, with 20  cm between 
adjacent seeds. In the SA and LY microsites, 
seeds were planted around the border of the 
canopy of randomly selected adults of S. vermic-
ulata and L.  spartum (~25 individuals per spe-
cies), with 10 cm between adjacent seeds. In all 
microsites, preexisting seedlings were removed 
from the vicinity of the planted seeds to prevent 
interactions. The location of each planted seed 
was marked with a nail to ensure that germi-
nated seedlings were not confused with nat-
urally occurring seedlings. Germination rates 
were determined in April 2007. Seedling sur-
vival and growth were recorded in May and 
September 2007, March 2008, June 2010, and 
June 2011. Growth was estimated by seedling 
height (S.  vermiculata and L.  spartum) and the 
number of leaves (S. vermiculata).
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Hydrological and environmental properties of 
microsites

Concurrent to the plant establishment mea-
surements, we investigated the spatiotemporal 
patterns of soil water availability for seedlings. 
We installed 16 soil moisture probes (EC-5 
Decagon Soil Moisture Probe; Decagon Devices, 
Inc., Pullman, Washington, USA; accuracy ±3% 
for most soil types) in January 2012; these probes 
were buried obliquely, 10 cm in the soil, to reg-
ister soil moisture at depths of 5–10  cm. We 
avoided the top 5 cm of the soil, because the vol-
ume of influence (0.3 L) would include air vol-
ume. There were four probes per microsite, in 
the base soil (at least 50 cm away from all peren-
nial plants), and under the canopies of A.  her-
ba-alba, S.  vermiculata, and L.  spartum adults. 
Plants were randomly selected in the same area 
as the vegetation experimental plots. Volumetric 
water content (VWC) was recorded every hour 
from 19 January 2012 to 5 July 2013. Probability 
density functions (PDFs) were built with the 
hourly VWC records from the four microsites to 
assess soil water content during the study 
period. Later, to evaluate the mechanism under-
lying the VWC patterns on the PDFs, wetting 
and drying processes after rainfall events were 
studied separately. The comparison of wetting 
processes among the four microsites allowed 
the evaluation of the soil water recharge as a net 
balance between canopy interception of rainfall, 
water redistribution processes between bare 
soil and plants, and the infiltration capacity at 
each microsite. Analysis of the drying process 
after rainfall allowed the estimation of the width 
of the window of high water availability at each 
microsite. The differences in the drying process 
beneath plants relative to bare soil allowed the 
assessment of the relevance of water uptake (via 
transpiration and that required for growth) and 
evaporation to total soil water loss. To investi-
gate the wetting and drying processes at the 
four microsites, after each rainfall event larger 
than 1 L/m2, we computed the maximum VWC, 
the time required to reach that maximum, the 
minimum VWC, and the time required to reach 
that minimum. Data from the first 2  months 
were excluded to assure stable measurements 
by the probes (Chamizo et  al. 2013). Rainfall 
was obtained from a meteorological station that 
was about 1500 m from the experimental area. 

We defined a rainfall event as the sum of rainfall 
pulses with interpulses no longer than 12  h; 
after 12 h without rainfall, the next rainfall event 
was considered separate. Based on these crite-
ria, we registered 56 rainfall events (and thus, 
wetting periods) during the study period. In the 
study of drying processes, we only considered 
periods of 10 consecutive days in which there 
was no rainfall as a drying period. There were 
18 drying periods during the study period.

To better understand the potential drivers of 
changes in soil water content, we experimen-
tally measured infiltration rates and solar radi-
ation at the four microsites. With the infiltration 
measurements, we compared the water cumu-
lative infiltration, I (mm), at different times at 
each microsite without considering the magni-
tude of the input water. Thus, this measurement 
excluded factors such as canopy interception 
and lateral water redistribution. Infiltration 
was experimentally measured in the field with 
a tension infiltrometer. A total of 11, 9, 7, and 
8 infiltration measurements were performed 
at random sites on bare soil and adult individ-
uals of S. vermiculata, A. herba-alba, and L. spar-
tum, respectively. The cumulative infiltration 
curves on S. vermiculata, A. herba-alba, and bare 
soil were measured with a hat infiltrometer (HI) 
(Moret Fernandez et al. 2015), a modification of 
the tension infiltrometer that allows measure-
ment of the transient infiltration curve on the 
soil surface with undisturbed plants. The high 
porosity between the surface stems of L. spartum 
prevented the formation of the vacuum in the 
HI hat, making these measurements impossible; 
thus, on this microsite, a conventional disk infil-
trometer (Perroux and White 1988) with a base 
radius of 50 mm was employed. Measurements 
with these different tension infiltrometers are 
similar (Moret Fernandez et al. 2015). To set up 
the disk infiltrometer, the L. spartum stalks were 
cut at ground level and a circular thin layer of 
commercial sand (80–160  μm diameter), with 
the same radius as the disk base, was layered on 
the soil surface. Only infiltration measurements 
at soil saturation conditions (which last up to 
15  min) were conducted. Flow readings were 
automatically recorded every 5  s based on the 
decline of water level in the water supply reser-
voir. Water infiltration values were measured at 
0.5, 1, 5, and 10 min.
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Solar radiation was assumed to be directly cor-
related to potential water evaporation (Ritchie 
1972, Franco and Nobel 1989, Valiente-Banuet 
and Ezcurra 1991), and thus, in order to estimate 
the relevance of potential water evaporation at 
the four microsites, solar radiation was measured 
on the bare soil, and under the canopies of adults 
of A.  herba-alba, S.  vermiculata, and L.  spartum. 
Photosynthetic photon flux (PPF, solar radia-
tion from 400 to 700 nm) was measured 10 times 
in bare areas and under the canopies of adults 
of A.  herba-alba, S.  vermiculata, and L.  spartum 
adult plants, on a cloudy day (25 April 2012) 
and a sunny day (25 May 2012) using a portable 
Apogee MQ-200 quantum meter.

Soil temperature was monitored at the four 
microsites as a complementary measurement 
to better understand the potential drivers of 
changes in soil water content (see Appendix S1 
for details on complementary analyses).

Finally, soil chemical analyses were performed 
to control for the effects of differences in soil 
nutrient content among the microsites. We col-
lected 16 soil samples from the upper 15 cm of 
soil from the four microsites in October 2013 
(four samples per microsite; samples collected 
in the north aspect of the canopy). Soil samples 
were dried in the laboratory and passed through 
a 2-mm sieve. The soil pH in water following a 
dilution of 1:2.5, electrical conductivity of the 
saturated soil paste extract, organic matter con-
tent (Heanes 1984), and total carbon and nitrogen 
(Vario MAX CN elemental analyzer) were mea-
sured for all samples.

Statistical analysis
The spatial patterns of adults, juveniles, and 

seedlings of S.  vermiculata, A.  herba-alba, and 
perennial grasses were investigated with univar-
iate and bivariate pair-correlation functions 
(Stoyan and Stoyan 1994, Wiegand and Moloney 
2014). The different species of perennial grasses 
(L.  spartum, S. parviflora, and D. glomerata) were 
analyzed together because the small number of 
individuals did not allow analysis of individual 
species. The pair-correlation function is a second-
order analysis similar to Ripley’s K, but is a non-
cumulative statistic; in other words, the 
pair-correlation function does not integrate 
smaller-scale effects into larger scales (Wiegand 
and Moloney 2004). We followed the procedure 

of Wiegand and Moloney (2004) for computation 
of pair-correlation functions correcting for edge 
effects. A significant departure of an observed 
pattern from the null random model was tested 
by comparison with the 5th largest and smallest 
simulation envelopes using 99 Monte Carlo sim-
ulations. The significance of the aggregation or 
segregation in a univariate patterns (i.e., univari-
ate spatial patterns of adults, juveniles, and seed-
lings of each plant type) was assessed with a 
heterogeneous Poisson null model with a kernel 
width of 20  cm (Wiegand and Moloney 2004). 
The spatial association between adults, juveniles, 
and seedlings (i.e., bivariate patterns between 
adults of each plant type and juveniles and seed-
lings of each plant type: nine adult vs. juvenile 
patterns and nine adult vs. seedling patterns) 
was tested for independence with a toroidal shift 
null model (Wiegand and Moloney 2004). To 
facilitate interpretation and increase test power, 
the pair-correlation functions of the eight quad-
rats were combined into average functions as 
described by Wiegand and Moloney (2014).

Differences in the density of species and indi-
viduals underneath the three nurse species 
(A. herba-alba, S. vermiculata, and L. spartum) were 
analyzed with the Kruskal–Wallis test (ANOVA 
was not used due to the large difference in sam-
ple size between microsites). The Wilcoxon test 
with Holm correction was used for pairwise post 
hoc comparisons between the three microsites.

For the sowing experiment, differences in seed-
ling emergence at the microsites were tested in 
April 2007 with a chi-square test. Differences in 
seedling survival between microsites were tested 
after 1 month (May 2007), 5 months (September 
2007), 11 months (March 2008), 38 months (June 
2010), and 50 months (June 2011) with chi-square 
tests. Fisher’s exact test was used when there 
were fewer than five seedlings at a microsite. The 
Marascuilo procedure (Marascuilo 1966) was 
employed to simultaneously compare seedling 
emergence and survival at all pairs of microsites 
(SA vs. LY, SA vs. BS, and LY vs. BS microsites) 
on each census date. To investigate seedling 
growth at the three microsites, we performed a 
generalized linear mixed model (GLMM) for lon-
gitudinal data with repeated measures: height 
and number of leaves of S. vermiculata seedlings 
(Height_Salsola and Leaves_Salsola) and height 
of L.  spartum seedlings (Height_Lygeum) were 
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the response variables. The explanatory variables 
in the three models were the sowing microsite 
and the number of months after seedling emer-
gence. The identity of each individual seedling 
measured over time was included in the model 
as a random factor. The best final model for each 
response variable was selected by comparing 
Akaike’s information criterion (AIC) values with 
ANOVA, following the procedure described by 
Zuur et al. (2009).

Soil wetting and drying processes after rainfall 
events were analyzed with GLMMs. Responses 
variables in the wetting-process analysis were 
(1) the difference between the VWC before a rain-
fall event and the maximum VWC after rainfall 
(Increment_VWC) and (2) the rate of the wetting 
process (Wetting_slope). This was calculated by 
dividing Increment_VWC by the time required 
to reach maximum VWC. The main explanatory 
variable in the wetting-process analysis was the 
microsite (nurse species vs. bare soil, four levels). 
The covariables were the total amount of rain-
fall in the event (Amount_rainfall) and the soil 
water content before the rainfall event (VWC_
before). We also included the effect of the inter-
action between the microsite and the covariables. 
The response variable in the drying process 
was the VWC value after 10  d without rainfall 
(VWC_10days). The main explanatory variable 
in the drying-process analysis was the microsite 
(four levels). We also included the mean tem-
perature during the 10 d of drying (Mean_temp, 
obtained from the meteorological station) and 
the initial VWC after rainfall (Initial_VWC) as 
covariables, and the interactions between micro-
sites and covariables. We included a random fac-
tor in all of the models: each set of four probes 
(one per microsite) connected to the same data 
logger (Box) that was closer between them than 
with the rest of the probes. Temporal autocor-
relation was controlled by incorporating initial 
soil water content and temperature as covariables 
(Berdugo et al. 2014). To obtain the most suitable 
and parsimonious models for the wetting and 
the drying processes, we followed the procedure 
described by Zuur et al. (2009).

To detect differences among microsites in water 
infiltration at different times, photosynthetic 
photon flux, and soil chemical properties, a one-
way ANOVA was employed, with a logarithmic 
or arcsine transform when necessary to assure 

normality. Holm post hoc tests were employed 
to detect differences between pairs of microsites.

Point pattern analysis was performed with 
Programita software (Wiegand and Moloney 
2004, 2014). All other statistical analysis was per-
formed with R (R Core Team 2014); for GLMM, 
we employed the nlme R-package (Pinheiro et al. 
2014).

A summary of the research questions and the 
different methodological approaches employed 
is provided as Appendix S1: Table S1.

Results

Patterns of plant establishment
Univariate point pattern analysis showed that 

Artemisia herba-alba adults and juveniles had seg-
regated patterns, and seedlings of this species 
had small-scale aggregation. Salsola vermiculata 
adults had a segregated pattern at a small scale 
(<5  m), but juveniles and seedlings were aggre-
gated at a small scale (Table 1; Appendix S1: Fig. 
S2). Perennial grass adults and juveniles were 
segregated, but the pattern for seedlings appeared 
random (Table  1; Appendix S1: Fig. S2). Thus, 
there was a tendency for aggregation in early life 
stages and for segregation at adult stages for all 
studied plants, although A. herba-alba and peren-
nial grasses had segregation already at the juve-
nile stages. Bivariate point pattern analysis 
showed that S. vermiculata juveniles and seedlings 
and A.  herba-alba juveniles were spatially segre-
gated from A. herba-alba adults, but that perennial 
grass adults, juveniles, and seedlings (margin-
ally) were spatially associated with A. herba-alba 
adults. Perennial grass adults, juveniles, and 
seedlings, and S. vermiculata juveniles were spa-
tially associated with S. vermiculata adults. Only 
A. herba-alba juveniles were negatively associated 
with S. vermiculata adults (Table 1; Appendix S1: 
Fig. S2). S. vermiculata adults, A. herba-alba adults, 
and perennial grass juveniles were spatially asso-
ciated with perennial grass adults, but S. vermicu-
lata juveniles were spatially segregated from them 
(Table 1; Appendix S1: Fig. S2). Consideration of 
all juveniles and seedlings together indicated 
negative associations with A.  herba-alba adults 
and positive associations with S.  vermiculata 
adults (Table 1, columns Juveniles ALL, Seedlings 
ALL, and Juveniles and Seedlings ALL; Appendix 
S1: Fig. S2).
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The nurse plants had significant differences in 
the density of plant species beneath their cano-
pies (Kruskal–Wallis χ2  =  143.36, P  <  0.001). A 
post hoc test showed that S. vermiculata had sig-
nificantly more species per m2 than A. herba-alba 
and L.  spartum. A.  herba-alba also had signifi-
cantly more species per m2 than L. spartum. The 
density of individual plants was significantly 
dependent upon the nurse plant (Kruskal–Wallis 
χ2 = 127.948, P < 0.001). A post hoc test showed 
that S. vermiculata had significantly more plants 
per m2 than A. herba-alba and L. spartum.

The results of the sowing experiment indi-
cated no significant differences between micro-
sites in S.  vermiculata seedling emergence in 
April 2007 (χ2 = 4.73, P = 0.094; Fig. 2a), but sig-
nificant differences in L. spartum seedling emer-
gence (χ2  =  20.95, P  <  0.001). The Marascuilo 

procedure showed that L.  spartum seedling 
emergence was significantly greater at the BS 
microsite than at the SA and LY microsites 
(Fig.  2b). Analysis of seedling survival indi-
cated no significant differences in S. vermiculata 
in May 2007 (χ2  =  1.91, P  =  0.369), September 
2007 (χ2 = 4.54, P = 0.103), March 2008 (χ2 = 0.15, 
P = 0.925), and June 2010 (χ2 = 1.78, P = 0.411), 
although there were significant differences in 
June 2011 (Fisher’s exact test, P  =  0.004), pre-
sumably due to new germination at SA micro-
site (Fig. 2a). There were marginally significant 
differences in L.  spartum seedling survival in 
May 2007 (χ2  =  5.70, P  =  0.058) and significant 
differences in September 2007 (χ2  =  23.761, 
P  <  0.001), March 2008 (χ2  =  16.2, P  <  0.001), 
June 2010 (χ2 = 63.402, P < 0.001), and June 2011 
(χ2 = 40.495, P < 0.001; Fig. 2b). The Marascuilo 

Table 1. Univariate and bivariate spatial patterns between adults, juveniles, and seedlings of Artemisia herba-alba 
(A), Salsola vermiculata (S), and perennial grasses (PG) based on the pair-correlation function.

Adults A Adults S Adults PG Juv. A Juv. S Juv. PG Juv. All

Adults A − 0 + − − + −
Adults S − + − + + +
Adults PG − 0(+) − + 0
Juv. A −
Juv. S +
Juv. PG −
Seedl. A
Seedl. S
Seedl. PG
Juv. and Seedl. A
Juv. and Seedl. S
Juv. and Seedl. PG

  Seedl. A Seedl. S
Seedl. 

PG
Seedl. 

All
Juv. and 
Seedl. A

Juv. and 
Seedl. S

Juv. and 
Seedl. PG

Juv. and 
Seedl. All

Adults A − 0 0 (+) 0(−) − − + −
Adults S 0 0 + + 0(−) + + +
Adults PG 0(+) 0 0(−) 0 + 0(−) 0(−) 0
Juv. A
Juv. S
Juv. PG
Seedl. A +
Seedl. S +
Seedl. PG 0
Juv. and Seedl. A 0
Juv. and Seedl. S +
Juv. and Seedl. PG 0

Notes: −, Significant small-scale segregation (<1 m); +, significant small-scale aggregation; 0, random small-scale pattern; 0(−) 
and 0(+), marginally significant small-scale segregation and aggregation. The univariate patterns were compared with a het-
erogeneous Poisson null model (intensity function estimated with a kernel width of 20 cm). The bivariate patterns were tested 
for independence with a toroidal shift null model. Appendix S1: Fig. S2 shows the plots for each analysis. Empty cells indicate 
associations that were not evaluated. Average number of points per quadrat was 625 ± 90 (n = 8).
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procedure showed that in September 2007, 
L.  spartum seedling survival was higher at the 
SA and LY microsites than at the BS microsite. 
In March 2008, L. spartum seedling survival was 
higher at the SA microsite than at the BS micro-
site; after that time, survival at the SA microsite 
was significantly higher than at the LY and BS 
microsites (Fig. 2b).

Our investigation of the role of the different 
microsites on seedling growth only considered 

data until March 2008, because seedling sur-
vival at some microsites was very low after 
this date. In this period, the height of S.  ver-
miculata seedlings was greater at the SA and LY 
microsites than at the BS microsite (Table  2a). 
Although the LY microsite accounted for the 
greatest seedling growth until September 2007, 
the average height of S.  vermiculata seedlings 
at this microsite drastically decreased to the 
levels at the BS microsite in March 2008; at the 

Fig. 2. Percentage germination (April 2007) and survival (May 2007 to June 2011) of (a) Salsola vermiculata and 
(b) Lygeum spartum on bare soil (circles), under the canopies of S. vermiculata (triangles), and under the canopies 
of L. spartum (squares). Different letters indicate significant differences in a post hoc test between microsites on a 
measurement date.
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SA microsite, the average growth was greatest 
at the end of the analyzed period (Appendix 
S1: Fig. S3a). Salsola vermiculata seedlings had 
significantly more leaves at the SA microsite 
(Table  2b). There was an interaction between 
SA microsite and time explained by the simi-
lar number of leaves between microsites until 
September 2007. At the end of the analyzed 
period (March 2008), the difference between 
the SA microsite and the other microsites 
became more apparent (Appendix S1: Fig. S3b). 
With respect to L. spartum seedlings, they were 
taller at the SA and LY microsites than at the 
BS microsite (Table 2c). There was also an inter-
action between the SA and LY microsites and 
time: Only at the SA microsite, taller plants 
were present at the end of the studied period 
(March 2008; Appendix S1: Fig. S3c).

Hydrological and environmental properties of 
microsites

The probability density functions (PDFs) 
showed similar trends for VWC at the four micro-
sites, because they all had the same rainfall pat-
terns (Fig.  3). However, the bare soil and 
A. herba-alba microsites had peak PDFs at lower 
VWC values than the S. vermiculata and L. spar-
tum microsites (Fig. 3).

The increment in soil VWC (increment_VWC) 
after rainfall was substantially larger under the 
canopy of the three plant species than in bare 
soil (Table  3a). A Holm post hoc test indicated 
no differences between A. herba-alba, S. vermicu-
lata, and L. spartum in the increment_VWC after 
rainfall (P > 0.005 for all pairwise comparisons). 
The amount of rainfall was positively related to 
the increment_VWC, but the antecedent VWC 

Table  2. Generalized linear mixed model for repeated measures of (a) height, and (b) number of leaves of 
Salsola vermiculata seedlings, and (c) height of Lygeum spartum seedlings measured in May 2007, September 
2007, and March 2008 relative to bare soil (reference).

(a) Response variable: Height_Salsola AIC BIC logLik
Random effects: ~Microsite|Individual 1809.568 1852.764 −893.784

Variable Value SE df t-value P-value

Intercept 2.564 0.201 228 12.773 <0.001
SA_microsite 2.836 0.351 228 8.079 <0.001
LY_microsite 4.382 0.491 228 8.930 <0.001
Time 0.217 0.044 147 4.879 <0.001

(b) Response variable: Leaves_Salsola AIC BIC logLik
Random effects: ~Time|Individual 1496.012 1535.228 −738.006

Variable Value SE df t-value P-value

Intercept 4.972 0.218 228 22.806 <0.001
SA_microsite 1.105 0.314 228 3.524 <0.001
LY_microsite 0.174 0.312 228 0.557 0.578
Time 0.196 0.069 145 2.824 0.005
SA_microsite:Time −0.200 0.096 145 −2.084 0.039
LY_microsite:Time 0.045 0.095 145 0.478 0.634

(c) Response variable: Height_Lygeum AIC BIC logLik
Random effects: ~Microsite|Individual 2432.505 2488.791 −1203.252

Variable Value SE df t-value P-value

Intercept 4.949 0.221 305 22.396 <0.001
SA_microsite 0.892 0.335 305 2.662 0.008
LY_microsite 1.491 0.376 305 3.964 <0.001
Time −0.052 0.036 256 −1.464 0.1444
SA_microsite:Time 0.130 0.046 256 2.817 0.0052
LY_microsite:Time −0.150 0.061 256 −2.466 0.0143

Notes: SA_microsite, S.  vermiculata microsite; LY_microsite, L.  spartum microsite. Random effects were chosen between 
~1|Individual, ~Microsite|Individual, and ~Time|Individual based on the Akaike’s information criterion.
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(ant_VWC) was negatively related to increment_
VWC. This indicates that more water infiltrated 
into dry soils than soils that were already wet. 
The interaction between ant_VWC and the three 
plant microsites was significant and negative: 
The negative relationship between ant_VWC 
and increment_VWC was less pronounced under 
plants than in bare soil (Appendix S1: Fig. S4a).

The slope of the wetting process (Wetting_
slope) was greater under the plant canopies 
(Table  3b), indicating that the water infiltration 
was faster under plant canopies than in bare soil. 
However, there were no significant differences 
between the three plant species in the slope of the 
wetting process. There was a negative relation-
ship between the ant_VWC and the slope of the 
wetting process, indicating that water infiltrated 
into drier soils more quickly than into wet soils. 
Moreover, the amount of water in a rainfall event 
had a positive effect on the slope of the wetting 
process (Table 3b).

The amount of soil water after 10 days with-
out rainfall (VWC_10days) was negatively 
associated with mean temperature during the 
drying period and positively associated with 
initial VWC after rainfall (Table 3c). In addition, 
VWC_10days was greater under S.  vermicu-
lata and L. spartum than in bare soil (Table 3c). 

VWC_10days under A.  herba-alba was not sig-
nificantly different from the bare soil value, 
which implies faster drying under A. herba-alba 
than under the other two species. This explains 
the VWC pattern found for A. herba-alba at the 
PDF (Fig.  3). The interaction between initial 
VWC and microsite was significant. In par-
ticular, under the canopy of the three species, 
the relationship between initial VWC and 
VWC_10days had a shallower slope than on the 
bare soil (Table 3c; Appendix S1: Fig. S4b). This 
means that when sufficient water is available in 
the soil, water uptake by the three plant species 
is a relevant phenomenon.

The microsites had significant differences 
in cumulative water infiltration as measured 
with the tension infiltrometer at different times 
(F3,31 = 5.213, P  = 0.005 at 0.5 min; F3,31 = 9.648, 
P < 0.001 at 1 min; F3,31 = 42.953, P < 0.001 at 4 min; 
F3,31 = 20.628, P < 0.001 at 10 min). The Holm post 
hoc test showed that cumulative water infil-
tration for short periods of time (<1  min) was 
significantly greater under L. spartum and S. ver-
miculata than in the bare soil, with infiltration 
under A. herba-alba being intermediate (Fig. 4a). 
For longer infiltration times (>5  min), cumula-
tive water infiltration was much greater under 
L. spartum. A. herba-alba and S. vermiculata were 
not significantly different, but had significantly 
greater infiltration than the bare soil. For even 
longer infiltration times (>10  min), cumulative 
water infiltration under L.  spartum was so high 
that it obscured the differences in cumulative 
water infiltration between the shrubs and the 
bare soil (Fig.  4), which were only significant 
when removing L.  spartum from the analysis 
(data not shown).

There were significant differences in the pho-
tosynthetic photon flux (PPF) between microsites 
both on the cloudy day (F3,36 = 181.57, P < 0.001) 
and on the sunny day (F3,36 = 381.86, P < 0.001). 
The Holm post hoc test showed that PPF was 
significantly greater in bare open areas than 
under the canopy of A. herba-alba, under the can-
opy of S.  vermiculata, and under the canopy of 
L. spartum, on the cloudy day and the sunny day 
(Fig. 4b).

Maximum daily summer temperatures were 
substantially lower under the canopies of the 
three species than in the bare soil (L.  spar-
tum: 6.7°C lower; S.  vermiculata: 3.2°C lower; 

Fig.  3. Probability density function (PDF) of soil 
volumetric water content (VWC) measured hourly 
from January 2012 to July 2013 under the canopies of 
Artemisia herba-alba (AR), Salsola vermiculata (SA), and 
Lygeum spartum (LY), and on bare soil (BS).
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A.  herba-alba: 2.5°C lower; Appendix S1: Table 
S2a, Fig. S5a). The Holm post hoc test showed that 
the reduction in maximum daily temperatures 
under L.  spartum was significantly greater than 
that under A. herba-alba (P < 0.001) and S. vermic-
ulata (P < 0.001). A. herba-alba and S. vermiculata 
had no significant differences in maximum daily 
temperatures in summer (P  =  0.69). Minimum 
daily winter temperatures were higher under 

the canopies of the three species than in the bare 
soil (L. spartum: 2.2°C higher; S. vermiculata: 1.5°C 
higher; A.  herba-alba: 1.0°C higher; Appendix 
S1: Table S2b, Fig. S5b). The Holm post hoc test 
showed that the minimum daily temperatures 
were significantly higher under L.  spartum than 
under A. herba-alba (P < 0.001). The minimum tem-
peratures in winter were not different for S. ver-
miculata and L. spartum (P = 0.18) or A. herba-alba 

Table  3. Generalized linear mixed model of (a) increment in volumetric water content (Increment_VWC), 
(b) slope of wetting process after rainfall (Wetting_slope), and (c) VWC 10 days after rainfall (VWC_10days) 
for 56 wetting events (a and b) and 18 drying events (c) from 19 January 2012 to 5 July 2013 relative to bare soil 
(reference).

(a) Response variable: 
Increment_VWC AIC BIC logLik

Random effects: ~Microsite|box −2373.7 −2281.9 1206.83
Explanatory variable Value SE df t-value P-value

Intercept 0.027 0.011 723 2.411 0.016
VWC_before −0.201 0.072 723 −2.805 0.005
Amount_rainfall 0.003 1.78 × 10−4 723 19.421 <0.001
AR_microsite 0.053 0.014 723 3.893 <0.001
SA_microsite 0.066 0.018 723 3.608 <0.001
LY_microsite 0.061 0.018 723 3.447 0.001
VWC_before:AR_microsite −0.357 0.105 723 −3.391 0.001
VWC_before:SA_microsite −0.262 0.094 723 −2.801 0.005
VWC_before:LY_microsite −0.315 0.105 723 −2.999 0.003

(b) Response variable: Wetting_slope AIC BIC logLik
Random effects: ~Microsite|box −5095.5 −5017.4 2564.74

Explanatory variable Value SE df t-value P-value

Intercept 0.005 0.001 726 5.733 <0.001
VWC_before −0.035 0.005 726 −6.497 <0.001
Amount_rainfall 6.9 × 10−5 0.000 726 2.475 0.014
AR_microsite 0.003 0.001 726 2.981 0.003
SA_microsite 0.005 0.002 726 3.050 0.002
LY_microsite 0.004 0.001 726 4.788 <0.001

(c) Response variable: VWC_10days AIC BIC logLik
Random effects: ~Microsite|box −1065.107 −995.8304 552.553

Variable Value SE df t-value P-value

Intercept 0.081 0.011 233 7.224 <0.001
Mean_temp −0.004 2.5 × 10−4 233 −14.518 <0.001
Initial_VWC 0.513 0.060 233 8.621 <0.001
AR_microsite 0.016 0.012 233 1.330 0.185
SA_microsite 0.035 0.014 233 2.526 0.012
LY_microsite 0.041 0.014 233 2.833 0.005
Initial_VWC:AR_microsite −0.178 0.076 233 −2.352 0.020
Initial_VWC:SA_microsite −0.175 0.070 233 −2.505 0.013
Initial_VWC:LY_microsite −0.211 0.074 233 −2.837 0.005

Note: AR_microsite, Artemisia herba-alba microsite; SA_microsite, Salsola vermiculata microsite; LY_microsite, Lygeum spartum 
microsite.
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(P  =  0.24). The daily temperature ranges were 
smaller under the canopies of the three spe-
cies than in bare soil (L.  spartum: 5.9°C smaller; 
S. vermiculata: 3.6°C smaller; A. herba-alba: 2.7°C 
smaller; Appendix S1: Table S2c, Fig. S5c). The 
range of daily temperatures was significantly 
different for all the microsites (P < 0.001 for all).

Organic matter, C, and N soil contents were 
significantly greater under the canopies of 
A. herba-alba and S. vermiculata than in bare soil 
(Table 4); L. spartum had intermediate values and 
was not significantly different from other micro-
sites. The C/N ratio was significantly greater in 
S.  vermiculata than in the bare soil, and A.  her-
ba-alba and L. spartum had intermediate values.

Discussion

We investigated the link between the ecologi-
cal and the hydrological roles of shrubs and 
grasses in a semiarid ecosystem by quantifying 
their effects on plant establishment and the spa-
tiotemporal dynamics of soil water availability 
beneath their canopies. Thus, this work simulta-
neously studied the ecological role of potential 
nurse plants and their hydrological and micro-
site characteristics and highlighted the impor-
tance of an integrative ecohydrological approach 
to fully understanding the functioning of semi-
arid ecosystems.

Overall, adult plants greatly improved the abi-
otic conditions for plant establishment (although 
there were interspecies differences) compared to 
the bare soil (Appendix S1: Fig. S1). This finding 
confirms the high spatial heterogeneity of envi-
ronmental suitability for plant establishment in a 
semiarid ecosystem (Callaway 2007, Ward 2009). 
However, even though abiotic conditions beneath 

the species investigated were quite similar, there 
were large differences in their performance as 
nurse plants. S.  vermiculata had a preeminent 
role as a nurse plant, and it facilitated intra- and 
interspecific survival and growth of seedlings. 
S. vermiculata is a tall shrub, with deep roots and 
a large and moderately dense canopy, traits that 
are characteristic of benefactor species (Gómez-
Aparicio 2009). Our analysis of soil water con-
tent indicated that S. vermiculata infiltrated water 
efficiently after rainfall events compared to the 
bare soil and that soil beneath this species took 
longer to dry than bare soil. Moreover, the soil 
beneath S. vermiculata had an enriched chemical 
composition compared to the bare soil and the 
soil beneath perennial grasses. All these factors 
together made S. vermiculata a good nurse plant 
species for plant establishment.

A. herba-alba might seem to have a similar role 
as S. vermiculata, given its similar physiognomy 
(both species are shrubs) and similar hydrologi-
cal and chemical properties. However, our obser-
vational data showed that seedlings and juveniles 
seldom appeared under A.  herba-alba canopies, 
and this led to low plant diversity and density 
beneath this species compared to S. vermiculata. 
Water scarcity during prolonged dry periods is a 
possible reason for the poor nurse plant function 
of A. herba-alba adults. Beneath A. herba-alba, wet-
ting events were as efficient at refilling soil water 
content as under S.  vermiculata and L.  spartum. 
However, the dynamics of the drying process 
beneath A. herba-alba were not statistically differ-
ent from those on bare soil. The deeper roots of 
S. vermiculata relative to A. herba-alba (Guerrero-
Campo 1998) could lead to a lower water uptake 
in the upper soil layers under S.  vermiculata. It 
could also promote a “hydraulic lift” (Callaway 

Table 4. Soil chemical analysis in bare soil, and under the canopies of Artemisia herba-alba, Salsola vermiculata, 
and Lygeum spartum (four samples per microsite).

Variable Bare soil A. herba-alba S. vermiculata L. spartum F3,12 P-value

pH 7.89 ± 0.01 7.75 ± 0.07 7.76 ± 0.07 7.70 ± 0.03 2.554 0.104
EC (mS/cm) 1.756 ± 0.034 1.757 ± 0.040 1.849 ± 0.050 1.855 ± 0.034 1.909 0.181
OM (%) 0.523 ± 0.047a 1.762 ± 0.474b 2.386 ± 0.581b 1.378 ± 0.135ab 6.708 0.007
C (%) 1.262 ± 0.038a 2.399 ± 0.314b 2.848 ± 0.327b 2.072 ± 0.198ab 9.371 0.002
N (%) 0.047 ± 0.002a 0.130 ± 0.031b 0.158 ± 0.028b 0.105 ± 0.012ab 7.183 0.005
C/N 6.39 ± 0.33a 7.72 ± 0.23ab 8.46 ± 0.69b 7.654 ± 0.158ab 4.867 0.019

Notes: Different letters indicate significant differences between microsites in a post hoc test. EC, electrical conductivity; OM, 
organic matter percentage; C/N, C/N ratio.
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1995, Caldwell et al. 1998) in which water is taken 
from deep soil layers and released passively into 
shallow soil layers, thus increasing the window of 
water availability under its canopy. Alternatively, 
it could be argued that the faster drying process 
beneath A. herba-alba could be due to its sparser 
canopy, which would lead to greater solar radia-
tion (as indicated by the PPF measurements), and 
greater evaporation rates after rainfall. However, 
our soil temperature measurements indicated no 
differences for A. herba-alba and S. vermiculata, so 
this explanation should be rejected. Moreover, 
A. herba-alba, as many other species of the genus 
Artemisia, has allelopathic properties (Friedman 
et al. 1977, Escudero et al. 2000). Previous studies 
have identified several sesquiterpenes lactones, 
flavonoids, and essential oils in the roots and 
aerial parts of this species with inhibitory activity 
of seedling germination, growth, and survival in 
greenhouse experiments (Salido et al. 2004, Abou 
et al. 2010). Here, we showed that under natural 
conditions, A. herba-alba interferes with seedlings, 
both intra- and interspecifically. This allelopathic 
activity, together with water scarcity during pro-
longed dry periods, may explain its poor func-
tion as a nurse plant. Given that allelopathy is a 
common phenomenon in stressful environments, 
such as arid, semiarid, and Mediterranean eco-
systems (Schenk et  al. 1999, Vila and Sardans 
1999), our results underline that a simple study of 
the hydrological or the microsite characteristics 
of a plant is insufficient to determine its true role 
as a nurse plant. In addition, other soil factors not 
considered in this study such as the microbiota 
or limiting nutrients like phosphorous may also 
be relevant in determining the plant species role 
in the plant community.

The perennial grasses had only some charac-
teristics that made them suitable as nurse plants. 
Our experimental study confirmed that seedling 
survival and growth in the first stages of devel-
opment were enhanced by the presence of the 
perennial grass L.  spartum. However, seedlings 
and juveniles were not found close to perennial 
grasses, and species richness and density beneath 
the canopy of L. spartum were smaller than under 
the two codominant shrubs. Moreover, long-
term survival and growth of S.  vermiculata and 
L. spartum seedlings were hindered in the L. spar-
tum microsite in our sowing experiments. Taking 

Fig. 4. (a) Means and standard errors of cumulative 
water infiltration (mm) from 0.5 to 10 min, in bare soil 
(n  =  11, filled circles), and under the canopies of 
Artemisia herba-alba (n  =  7, filled triangles), Salsola 
vermiculata (n = 9, filled squares), and Lygeum spartum 
(n = 8, open circles). Different letters indicate significant 
differences in a post hoc test between microsites on a 
measurement date. (b) Means and standard errors of 
photosynthetic photon flux (PPF, μmol·m−2·s−1) in bare 
soil and under the canopies of A.  herba-alba, Salsola 
vermiculata, and L. spartum on a cloudy day (25 April 
2011) and a sunny day (25 May 2011). Values are from 
10 measurements per microsite. Different letters 
indicate significant differences in a post hoc test 
between microsites on a measurement date. Data from 
sunny and cloudy days were analyzed separately, but 
the results were the same for a combined analysis.
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together, these findings suggest that perennial 
grass adults facilitated plant establishment and 
performance during the first year after germina-
tion, but then interfered with these same plants 
after the first year (Soliveres et al. 2010). Contrary 
to our initial hypothesis, our study of the hydro-
logical and microsite characteristics of L. spartum 
indicated no apparent reason for this shift from 
positive to negative interactions with seedlings. 
Together with S.  vermiculata, L.  spartum created 
the largest window of water availability for seed-
lings after rainfall, the maximum and minimum 
temperatures beneath its canopy were greatly 
modulated, and the nutrient content was higher 
than in bare soil (although not as favorable as 
beneath S.  vermiculata). It could be argued that 
the reduction in solar radiation beneath L. spar-
tum could be too extreme for optimal seedling 
performance (Holmgren et  al. 2012), but then, 
there would be an initial interference with seed-
ling survival and performance, and not a shift 
from facilitation to interference. Strong compe-
tition for water with seedlings in the upper soil 
layers of perennial grasses has been reported 
(Köchy and Wilson 2000), but we found no signs 
that soil water depletion by grasses was faster 
than that by shrubs. We measured water content 
in the upper 15 cm of the soil, which may have 
caused evaporative processes to occur too fast to 
allow observation of depletion of soil water by 
grasses (Cavanaugh et al. 2011). Kambatuku et al. 
(2013) found strong competition by grasses in the 
upper 15 cm of soil, but reported that evaporation 
was not an important factor because they grew 
plants in containers under controlled conditions 
with regular watering. We argue that at shallow 
depths under field conditions, evaporation is 
more important than water uptake by neighbors 
(Potts et al. 2010, Cavanaugh et al. 2011). Water 
uptake by grasses would be relevant for seedling 
establishment only when seedling roots reach 
deeper into the soil. Moreover, non-resource 
microsite environmental properties could be 
more important for the early stages (germina-
tion and emergence) of plant establishment and 
resource-related interactions (mainly for water 
availability) for the later stages of establishment 
(Jankju 2013). At these later stages of develop-
ment, the root systems of established plants 
would interfere with nurse plants. This expla-
nation clarifies the shift of function we observed 

in perennial grasses, which facilitated establish-
ment of early-stage seedlings, but interfered with 
later-stage seedlings. This shift may also explain 
why some studies of perennial grasses in semi-
arid regions reported positive effects, whereas 
others reported negative effects of perennial 
grasses on seedlings (Maestre et  al. 2001, 2003, 
Armas and Pugnaire 2011), depending on when 
measurements were made (Soliveres et al. 2010). 
Thus, our combined ecological–hydrological 
results warn against making generalizations 
about the ecological role of plants based on con-
sideration of the spatial pattern of seedlings at 
a single development stage, and oversimplifica-
tions about the ecological role of plants based on 
water infiltration patterns.

On the other hand, we found that belowground 
interference by perennial grasses was also con-
specific, a phenomenon described in previous 
studies (Aguilera and Lauenroth 1995). This 
restricts recruitment of seeds near a conspecific 
adult (Armas and Pugnaire 2011) and confers to 
shrubs the role of nurses of the perennial grasses 
in semiarid steppes. Salsola vermiculata facilitated 
L.  spartum and other perennial grass seedlings, 
but not the inverse. Thus, perennial grasses may 
be replacing their own nurse plants during plant 
succession, as previously reported in other semi-
arid regions (Armas and Pugnaire 2005). This has 
important implications for restoration plans of 
these ecosystems (Pueyo et al. 2009).

We found that seed germination was inde-
pendent of microsite (S.  vermiculata seedlings) 
or even larger in bare soil than beneath adult 
plants (L.  spartum seedlings), implying a fast 
response of seedlings to the rainy 2007 spring 
(Appendix S1: Fig. S6a) that was independent 
of other microsite conditions. However, sum-
mer 2007 was drier than average (Appendix S1: 
Fig. S6b), and subsequent survival and growth 
were associated with the presence of nurse 
plants. Later in the plant development, there 
was a shift from an aggregated pattern at the 
seedling stage to a segregated pattern when 
adults that was most probably caused by a self-
thinning process involving density-dependent 
interactions (Fonteyn and Mahall 1981, Phillips 
and MacMahon 1987, Wiegand et  al. 2005). 
This ontogenetic shift is a common pattern in 
perennial plants in deserts (Miriti 2006, Armas 
and Pugnaire 2009). This is attributed to an 
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increased interference between plants with 
well-developed root systems that overlap and 
colonize bare soil in the interpatches. This 
depletes soil water and increases the mortal-
ity of neighbors that are less efficient in water 
uptake (Armas and Pugnaire 2009).

Our field measurements allowed some assess-
ment of the hydrological processes behind the 
spatial–temporal dynamics of soil water content. 
Thus, the extremely high infiltration capacity of 
L. spartum, which was much greater than that of 
the shrubs S. vermiculata and A. herba-alba, con-
trasted with the dynamics of soil water content 
after rainfall, which was more modest and had 
a similar magnitude than for the shrubs. As pre-
viously reported, and in agreement with our 
measurements, L.  spartum has an extraordinary 
infiltration potential (Cerdà 1997) due to soil 
modification (with macropores and channels 
in its root zone), but this is somehow counter-
balanced by high rainfall interception from the 
canopy (Berdugo et al. 2014), resulting in a more 
restricted actual infiltration.

On the other hand, although we do not have 
direct measurements of evapotranspiration, we 
can evaluate the contribution of evaporation to 
loss of soil water based on measurements of soil 
water content at the different microsites. Thus, 
a higher soil water content during an interpulse 
period under the canopy of woody plants than 
in the bare soil indicates that evaporation (not 
plant use, including transpiration) is the pre-
dominant source of water loss (Breshears et  al. 
1997). Moreover, both the presence of greater 
soil water under the canopies of woody plants 
than in bare soil after a rainfall event and the 
greater infiltration into already wet soils imply 
that the redistribution of water from bare areas 
to vegetated patches is a relevant phenomenon 
(Greene 1992, Pueyo et  al. 2013, Berdugo et  al. 
2014), more important in fact than rainfall inter-
ception by plant canopies (Breshears et al. 1997). 
Accumulation of water in the soil beneath plants 
is due to surface and subsurface soil properties 
that affect infiltration rate and runoff, such as sed-
iment accumulation, microtopography, the abun-
dance of macropores, less crust development, 
and soil compaction (Greene 1992, Galle et  al. 
1999, Gomez-Aparicio et  al. 2005, Michaelides 
et  al. 2009). In bare soil, low infiltration due to 
soil surface sealing and the absence of barriers 

cause runoff (Dunkerley and Brown 1995, Arnau 
Rosalén et al. 2008, Mayor et al. 2009). Notably, 
drainage in this particular ecosystem is negligi-
ble because of the low infiltration of clay soils 
(Moret et al. 2011), but this should be considered 
in other semiarid ecosystems with more perme-
able soils.

Conclusions

Our integrated ecological–hydrological study 
of a semiarid ecosystem showed that shrubs and 
grasses improved the abiotic conditions under 
their canopies compared to the bare soil, because 
they increased the availability of soil moisture 
and reduced solar radiation. However, our study 
of the three most dominant species in this plant 
community indicated that only the shrub S. ver-
miculata had a long-term role as a nurse plant that 
favored seedling establishment. The perennial 
grass L. spartum facilitated early plant establish-
ment, and the shrub A. herba-alba did not facili-
tate establishment at any stage. Our experiments 
and observations suggest that competition for 
water and allelopathy may explain why these 
other two species do not serve as nurse plants, 
even though they improved the microsite envi-
ronment. We conclude that the identification of a 
species as a nurse plant cannot simply be inferred 
by measurement of nearby abiotic conditions, 
but that long-term ecohydrological studies are 
required to fully understand the underlying 
mechanisms.
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