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Abstract

Forecasts of ecological dynamics in changing environments are increasingly important, and are
available for a plethora of variables, such as species abundance and distribution, community
structure and ecosystem processes. There is, however, a general absence of knowledge about how
far into the future, or other dimensions (space, temperature, phylogenetic distance), useful ecologi-
cal forecasts can be made, and about how features of ecological systems relate to these distances.
The ecological forecast horizon is the dimensional distance for which useful forecasts can be
made. Five case studies illustrate the influence of various sources of uncertainty (e.g. parameter
uncertainty, environmental variation, demographic stochasticity and evolution), level of ecological
organisation (e.g. population or community), and organismal properties (e.g. body size or number
of trophic links) on temporal, spatial and phylogenetic forecast horizons. Insights from these case
studies demonstrate that the ecological forecast horizon is a flexible and powerful tool for
researching and communicating ecological predictability. It also has potential for motivating and
guiding agenda setting for ecological forecasting research and development.
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INTRODUCTION

Forecasts are statements about what the future may hold in
store (Coreau et al. 2009), and are useful for all kinds of deci-
sion-making, including in economic, political and personal
spheres. Ecological examples include forecasts of species dis-
tributions (e.g. Guisan & Thuiller 2005), functional diversity
(e.g. Kooistra et al. 2008; Schimel et al. 2013), phenology (e.g.
Cannell & Smith 1983; Diez et al. 2012), population size (e.g.
Ward et al. 2014), species invasions (e.g. Levine & Antonio
2003), agricultural yield (e.g. Cane et al. 1994), pollinator per-
formance (e.g. Corbet et al. 1995), extinction risk (e.g. Gotelli
& Ellison 2006a), fishery dynamics (e.g. Hare et al. 2010; Tra-
vis et al. 2014), water quality (e.g. Komatsu et al. 2007), for-
est carbon dynamics (e.g. Gao et al. 2011), ecosystem services
(e.g. Homolov�a et al. 2013), disease dynamics (e.g. Olleren-
shaw & Smith 1969) and interspecific interactions (e.g. Pearse
& Altermatt 2013).

Although forecasting has been part of ecology for decades,
current and expected environmental change is motivating ever
increasing interest in ecological forecasting. There is a pressing
need to deliver information about the probable future state of
populations, communities and ecosystems to better inform con-
servation, management and adaptation strategies (Clark et al.
2001; Sutherland et al. 2006; Tallis & Kareiva 2006; Evans 2012;
Mouquet et al. 2012; Purves et al. 2013). Furthermore, accurate
forecasting (i.e. correct prediction) is sometimes regarded as the
hallmark of successful science (Evans et al. 2012), and as such
can be a powerful driver of advances in knowledge about how
ecological systems work (Coreau et al. 2009).
The following ideas and perspectives rest on the premises

that accurate ecological forecasts are valuable, that our
knowledge about ecological forecasting is relatively sparse,
contradictory and disconnected, and that research into ecolog-
ical predictability is worthwhile (contrary to, e.g. Schindler &
Hilborn 2015). Ecologists need to know what properties and
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components of ecological systems are forecastable, and need
to quantify the uncertainties associated with these forecasts
(Clark et al. 2001; Godfray & May 2014). A systematic under-
standing of forecast performance in relation to modelling
practices, sources of uncertainty, organismal characteristics
and community structure can guide ecology to become an
even more predictive science.
First, we review opinion and evidence about the predictabil-

ity of ecological systems, concluding that important, large and
exciting advances remain. We propose that these advances are
constrained by lack of generally applicable and intuitive tools
for assessing ecological predictability. We then introduce such
a tool: the ecological forecast horizon, and related terms (see
Box 1), and suggest it as a hub for research about ecological
predictability, as well as a tool for intuitively communicating
the same. We provide case studies of how various sources of
uncertainty and organismal characteristics influence forecast
horizons. We then provide a road map for advancing ecologi-
cal predictability research via ecological forecast horizons,
and more generally.

Existing knowledge about ecological predictability

Recent reviews and commentaries are optimistic about the
possibility of making useful ecological forecasts (Sutherland
2006; Purves & Pacala 2008; Evans et al. 2013; Purves et al.
2013). Advances in data collection and handling, coupled with
advanced quantitative methods, will enable models that pro-
vide useful predictions. Forecasts of influenza dynamics sup-
port this standpoint: despite the nonlinearity and intrinsically
chaotic nature of infectious disease dynamics, the timing of a
disease outbreak peak was predicted up to 7 weeks in advance
(Shaman & Karspeck 2012). Models of population (e.g. Brook
et al. 2000), community (e.g. Wollrab et al. 2012; Hudson &
Reuman 2013) and ecosystem (e.g. Harfoot et al. 2014; Seferi-
an et al. 2014) dynamics also demonstrate the predictive
potential of process-based models, including individual-based
models (Stillman et al. 2015). Timely assessment of ecosystem
states (Asner 2009; Loarie et al. 2009) and advances in hind-,
now- and forecasting methods (Dobrowski & Thorne 2011;
Stigall 2012) have even allowed process-based models of land–
atmosphere interactions.
Less optimistic viewpoints exist. Beckage et al. (2011) argue

that ecological systems have low intrinsic predictability because
a species’ niche is difficult to specify, because ecological systems
are complex, and because novel system states can be created
(e.g. by ecological engineering). Coreau et al. (2009) give a
somewhat similar list of difficulties. These features make ecolog-
ical systems ‘computationally irreducible’, such that there is no
substitute for observing the real thing. Furthermore, evolution
may be an intrinsically chaotic process, thus limiting the long-
term predictability of ecological systems (Doebeli & Ispolatov
2014). If so, ecological responses to anthropogenic climate
change are likely to be intrinsically unpredictable.
The theoretical discovery of chaos led to pessimism about

forecasting. Even completely deterministic systems could have
very limited forecast horizons due to the pathological sensitiv-
ity of dynamics to initial conditions. The population dynamics
of a laboratory-based aquatic community were predictable

only to 15–30 days due to chaotic dynamics, implying ‘that
the long-term prediction of species abundances can be funda-
mentally impossible’ (Beninc�a et al. 2008). Chaos also magni-
fies non-modelled processes (e.g. stochasticity) (Ellner &
Turchin 1995), and is more common in higher dimensional
systems, such as ecological systems (Turchin 2003).
Other evidence about predictability comes from theoretical

and empirical studies about interspecific effects. For instance,
Yodzis (1988) studied whether the effects of press perturbations
were directionally determined. He defined a prediction (e.g. algal
biomass increases due to the addition of fish) as being direction-
ally determined when its sign was consistent in at least 95% of
cases. Yodzis found that the effects of press perturbations were
frequently directionally undetermined, due to uncertainty in the
parameter values. Yodzis’ findings paint a depressing picture of
predicting ecological dynamics. Uncertainty in parameter values
(e.g. interaction strengths) interacts with complexity (which cre-
ates indirect effects), making ‘implementing conservation and
management strategies difficult because the effects of a species
loss or an environmental perturbation become difficult to pre-
dict a priori’ (quote from Wootton 2002).
Recent extensions and explanations of Yodzis’ findings pro-

vide reasons for optimism and pessimism (Novak et al. 2011).
First, some effects of press perturbations are determined
(Dambacher et al. 2002; Aufderheide et al. 2013), though
these reduce in number with increases in ecological complexity
(species richness and connectance of a food web) (Dambacher
et al. 2003; Novak et al. 2011). Some empirical studies suggest
complexity begets predictability (McGrady-Steed & Harris
1997; Berlow et al. 2009) whereas others do not (France &
Duffy 2006). Second, it seems that interaction strengths can
be estimated with sufficient accuracy to provide determinacy,
although the demands on accuracy increase as the complexity
of the ecological system increases (Novak et al. 2011; Carrara
et al. 2015). Third, the results of some experimental studies
have been well predicted (Vandermeer 1969; Wootton 2002,
2004). Fourth, little is known about the predictability of eco-
logical dynamics in changing environments, such that great
advances remain to be made. Fifth, predictions at the commu-
nity and ecosystem level may still be possible, even if predic-
tions at population level are not.
Whether these results and views are contradictory is unclear.

Reductions in uncertainty will increase predictability, but little
is known about how computationally irreducible real ecological
communities are, whether different state variables (e.g. popula-
tion size vs. ecosystem processes) have different predictability,
or about the predictability of effects of different types of envi-
ronmental change (though see Fussmann et al. 2014; Gilbert
et al. 2014). Ecologists must systematically and thoroughly
address these challenges (Clark et al. 2001), though they might
lack the tools needed to do so. We believe that a standard, flexi-
ble, quantitative, intuitive and policy-relevant method for
assessing ecological predictability, such as the ecological fore-
cast horizon, will greatly aid research and communication.

The ecological forecast horizon

The prediction/forecast horizon as a concept goes back at
least to Lorenz (1965), who wrote about how the ability to
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predict the weather is related to ‘the amount of time in
advance for which the prediction is made’. Thus a forecast
horizon is how far into the future (or other dimensions, e.g.
space, phylogeny, environment) sufficiently good predictions
can be made. A common reflection of the forecast horizon
concept is that weather forecasts are usually only made up to
a specific time period into the future. After that, predictions
are not good enough to be useful. However, the notion of a
dynamically changing forecast horizon is important: over the
past decades, the forecast horizon of ‘weather’ has increased
via external effects (e.g. increase in computational power) as
well as by internally optimising the forecast system (e.g.
ensemble forecasting, data assimilation, Kalman filtering).
Quantifying a forecast horizon requires a measure of how

good a forecast is (we term this the forecast proficiency) and a
forecast proficiency threshold above which predictions are
good enough, and below which forecasts are not good enough
(below we deal with how the threshold can be set). The fore-
cast horizon is the time at which average forecast proficiency
drops below this threshold (Fig. 1). A far forecast horizon
indicates greater ability to predict (high realised predictabil-
ity), a close one a weaker ability to predict (low realised pre-
dictability).
It is important to stress that there will usually be multiple

possible forecasts (e.g. given uncertainty in parameter esti-
mates or if the model contains some stochastic processes),
each with a particular forecast proficiency. This will result in
a distribution of forecast proficiencies and horizons (Fig. 1).
Integrating information about these distributions into analyses
and communications is important and, at least in the follow-
ing case studies, is relatively straightforward.

CASE STUDIES

We provide five case studies. Two involve analyses of models,
three of empirical data. Three studies involve temporal fore-

cast horizons (how far into the future can useful forecasts be
made), one spatial forecast horizon (how far away in space
can useful forecasts be made) and one phylogenetic forecast
horizon (how far across a phylogeny can useful forecasts be
made). The temporal case studies include analyses of a simple
model, a more complex model and a complex empirical food
web, and illustrate how various sources of uncertainty can
impact forecast horizons. The five studies include process-
based and statistical predictive models.

Chaos and demographic stochasticity

Using a model, we can produce a time series that we can
assume is the truth. We can also produce a time series that we
can assume is a forecast. If the model used to make the fore-
cast is different from the one used to make the truth (e.g. in
initial conditions, structure or parameter values), the true time
series and the forecast time series can differ. This difference
between time series is the forecast proficiency of the predictive
model, and could be any of many quantitative measures of
difference (see later). Here, we use the correlation coefficient
for a window of the time series. Moving this window provides
measures of forecast proficiency as a function of how far into
the future the forecast is made. Note that a fully deterministic
model with no uncertainty in parameter values or initial con-
ditions will result in no difference between the truth and the
prediction (i.e. an infinite forecast horizon).
We illustrate this approach with the Ricker model in the

chaotic dynamic regime, as this is a simple model that can
produce non-trivial behaviour. We examined the effects on
forecast horizons of uncertainty in the following values: the
intrinsic growth rate (r), the initial population size (N0) and
the rate of change in carrying capacity (K_step). We also
examined the effects of the presence or absence of demo-
graphic stochasticity in the model used to make the true time
series. For each level of uncertainty in r, N0 and K_step, we
drew a random value of r, N0, K_step, simulated dynamics,
and calculated the forecast proficiency and forecast horizon of
population dynamics. We then calculated average forecast
proficiency and the average of the forecast horizon across sim-
ulations. The simulation code is available at: https://git-
hub.com/opetchey/ecopredtools.
The forecast proficiency started high (the correlation

between true and predicted population size was close to 1),
and dropped to near zero by at most 30 generations (Fig. 2).
This is consistent with the chaotic nature of the model (see
Box 2). Higher uncertainty in the growth rate r, initial popu-
lation N0 or rate of environmental change K_step resulted in
an earlier drop in forecast proficiency, compared to when
there was low uncertainty. The presence of demographic sto-
chasticity caused early and precipitous drops in forecast profi-
ciency.
Effects of uncertainty in r and N0 interact (Fig. 3). For

example, high uncertainty in r results in close forecast hori-
zons regardless of uncertainty in N0, whereas lower uncer-
tainty in r allows lower uncertainty in N0 to give farther
forecast horizons. Demographic stochasticity in the true
dynamics gave a very close forecast horizon, regardless of
other uncertainties.
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Figure 1 The forecast horizon is the time at which average forecast

proficiency (black curved line) falls below the forecast proficiency

threshold. Because forecast proficiency at any particular time will be a

distribution (e.g. grey area) there will be a distribution of forecast

horizons that can be used as an estimate of uncertainty in forecast

horizon (e.g. give a lower and upper estimate of the forecast horizon).
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Level of organisation, evolution and environmental uncertainty

We applied the same general approach to a model of a com-
petitive community which included evolutionary change, simi-
lar to that in Ripa et al. (2009). Briefly, each competing
species had a trait value that determined its resource use
requirements. Ecological dynamics resulted from resource
depletion and therefore competition among the species,
whereas evolutionary dynamics resulted from changes in trait
values of a species (e.g. body size and resource uptake charac-
teristics). The model also included environmental variability,
implemented as random variation in the resource distribution.
We evaluated the forecast proficiency of two variables, the
abundance of one of the species and the total biomass of all
species. We manipulated whether evolution operated in the
model used to produce the true data, and also the amount of
uncertainty about the nature of the environmental variability
(which resulted both from intrinsic stochasticity in environ-
mental conditions and imperfect knowledge of these condi-
tions). Evolution was never included in the model used to
forecast.
In the absence of evolution, forecast horizons for species

abundance and total community biomass were very similar
(Fig. 4). In the presence of evolution, forecast horizons were
consistently farther for total community biomass. This may

result from density compensation among the competing spe-
cies, enhanced by supply of diversity by evolution, creating
more predictable dynamics of total community biomass (e.g.
Yachi & Loreau 1999). Unsurprisingly, forecast horizons are
closer when there is greater uncertainty about future environ-
mental conditions. Subsequent studies could examine the rela-
tive importance of different sources of uncertainty about
environmental variability.

Dynamics of an aquatic food web

A phytoplankton community isolated from the Baltic Sea was
kept in a laboratory mesocosm for about 8 years. Nutrients
and the abundance of organisms in ten functional groups were
sampled 690 times (Beninc�a et al. 2008). This long ecological
time series exhibited characteristics consistent with chaos. A
neural network model (correlative [statistical] rather than pro-
cess-based) of the community displayed high predictability
(0.70 to 0.90; measured as r-squared between observed and
predicted data) in the short-term only.
We extended the published study by examining variation in

ecological forecast horizons among the 10 functional groups
and two nutrients. Forecast horizons were calculated by fitting
a curve to the forecast proficiency (measured by r-squared) –
forecast time relationships in Fig. 2 of Beninc�a et al. (2008),

(a)

(b)

Figure 2 (a) Forecast proficiency as a function of how far into the future forecasts are made, for different levels of uncertainty in the growth rate parameter

[CV(r)] of the predictive model, and uncertainty in the initial population size [CV(N0)] of the predictive model. Also shown is the effect of the presence or

absence of demographic stochasticity in the true dynamics. The y-axis shows average forecast proficiencies across replicates. The horizontal purple dashed

line is the forecast proficiency threshold (arbitrarily 0.5), the time at which forecast proficiency crosses this threshold is the forecast horizon. (b) The effect

of uncertainty in the rate of environmental change [CV(K_step)] relative to uncertainty in initial conditions, in the absence of demographic stochasticity.
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Box 1 Glossary

ACCURACY

The difference between an observed and a predicted value. High accuracy implies good prediction and low accuracy poor pre-
diction. Accuracy is an important component of forecast proficiency (see below).

PRECISION

The amount of uncertainty in predictions. Precise predictions will have low uncertainty (i.e. be closely grouped around the mean
prediction). Imprecise predictions will have high uncertainty. Unlike accuracy, very high precision may indicate a poor predic-
tive model that might result, for example from failing to include a stochastic process. Low precision is also a sign of a poor pre-
dictive model. Hence, it is best if a predictive model produces a prediction that has the same uncertainty as the real system
being modelled.

UNCERTAINTY

Regan et al. (2002) give two classes of uncertainty: epistemic and linguistic. Epistemic uncertainty is lack of knowledge in the
state of a system, for example in parameter values, processes operating, representation of processes, system components and
inherent randomness (also see Clark et al. 2001). See Gregr & Chan (2014) for a discussion of the relationship between model-
ling assumptions and uncertainties.

INTRINSIC AND REALISED PREDICTABILITY

Beckage et al. (2011) recognise two types of predictability: the intrinsic predictability of a system, and the realised predictability
achieved by a particular model of the system. The intrinsic predictability of a system is the predictability of the best possible
model of that system: the greatest achievable predictability. Low realised predictability and high intrinsic predictability implies
problems with the predictive model, such as uncertainty in parameter values. High predictability requires an intrinsically pre-
dictable system, and low uncertainty about the processes governing the system. A fully deterministic system has perfect intrinsic
predictability, as perfect knowledge of parameters and initial conditions results in perfect predictions. A fully deterministic sys-
tem may, however, be computationally irreducible.

FORECAST PROFICIENCY

A measure of how useful a forecast is, usually some function of accuracy and or precision. We first thought to use instead the
term forecast skill, which comes from meteorology and there usually refers to a specific measure of accuracy, mean square error,
and has already been used in environmental science to assess forecasts of marine net primary production (Seferian et al. 2014).
Forecast skill is, however, often used to mean one measure, mean square error, and we do not wish to be so specific. We pro-
pose that in ecology, the term forecast proficiency be general, such that any measure of accuracy or match in precision can be a
measure of forecast proficiency. Thus, a model with high accuracy and appropriate precision will have high forecast proficiency.
Very high precision or very low precision may both be inappropriate and contribute to lower forecast proficiency.

FORECAST HORIZON

The distance in time, space or environmental parameters at which forecast proficiency falls below the forecast proficiency
threshold. Forecast horizon is closely related to concepts such as mean and maximal forecast time (e.g. Salvino et al. 1995).

FORECAST PROFICIENCY THRESHOLD

The value of forecast proficiency above which forecasts are useful, and below which forecasts are not useful.

RETRODICTION/POST-DICTION/HINDCASTING

Each relates to the practice of testing the predictions of models/theories against observations already in existence at the time
when the predictions were made. While care is required to understand how the existing observation might have influenced the
predictions, prediction horizons can be calculated, and provide an indication about prediction into the future.
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and estimating the time at which forecast proficiency dropped
below an arbitrarily determined forecast proficiency threshold
of 0.6. Body size ranges represented by organisms in each

taxonomic group were gathered from literature and online
sources, and in personal communication from R. Heerkloss.
Forecast horizons exhibited a triangular relationship with

organism size, with only low forecast horizons for smaller
organisms and a wide range of forecast horizons for larger
organisms (Fig. 5a). The forecast horizon was somewhat
shorter for taxa with a greater number of trophic links to
other organisms (Fig. 5b). The lowest P-value we were able to
generate was 0.055 for the relationship between forecast hori-
zon and number of trophic links (this value was 0.09 using
size estimates provided by R. Heerkloss.) The analysis code is
available at https://github.com/opetchey/ecopredtools.
Generally, longer generation times of larger organisms may

partially explain this (albeit non-significant) result, though
their generally smaller population sizes should increase the
importance of demographic stochasticity, making for nearer
forecast horizons. Hence, we do not feel confident, based on
verbal arguments, about making a hypothesis regarding the
expected relationship between body size and forecast horizon.
The trend towards nearer forecast horizons for organisms
with a greater number of trophic links may reflect the nega-
tive effects of complexity on predictability (Dambacher et al.
2003; Novak et al. 2011), perhaps related to processes linking
complexity and stability (e.g. McCann 2000; May 2001).

Spatial forecast horizons

Forecast horizons can be made in space (maximum distance
predicted to acceptable proficiency) and when the predictive
model is statistical rather than process-based. A well known
macroecological pattern, the decay of compositional similarity
with distance curve (Nekola & White 1999; Nekola & McGill
2014), provides an example. A decay of similarity curve shows
some measure of community similarity between pairs of com-
munities on the y-axis plotted against the geographical dis-
tance between the communities (Fig. 6a). Sørensen similarity
provides a measure of the percentage of correctly predicted
species occurrences. Thus, the curve provides the expected or
average similarity (which can also be treated as a measure of
forecasting efficiency giving the % of species correctly pre-
dicted in a community) as a function of distance. The spatial
forecast horizon is the geographical distance beyond which
prediction proficiency falls below a threshold (Fig. 6a), and in
this specific example, the forecast horizon is 600 km (with a
threshold forecast proficiency of 0.7 correlation). Spatial fore-
cast horizons could readily be applied to species distribution
models (e.g. Pottier et al. 2014).

Phylogenetic forecast horizons

Phylogenetic forecast horizons concern how far across phylog-
eny useful forecasts can be made. To illustrate phylogenetic
forecast horizons, we analysed a previously published study of
native Lepidoptera–plant interactions in Central Europe (Pe-
arse & Altermatt 2013). We constructed a host-use model (a
binomial generalised linear model), in which the inclusion of a
host plant in the diet of a herbivore was a function of the her-
bivore’s host breadth and the phylogenetic distance of that
plant from another known host. We then used this model to

Box 2 Lyapunov Exponents and the ecological forecast horizon

Dynamical systems theory concerns, in part, the predictabil-
ity of dynamics (e.g. Boffetta et al. 2002). In particular, the
Lyapunov exponent (LE) is closely related to intrinsic pre-
dictability of a deterministic system. The LE is a measure of
the rate of separation of close trajectories (Fig. 8a). For
example, consider the logistic map xtþ1 ¼ rxtð1� xtÞ, where
xt is population size at time t and r is the growth rate. Let ini-
tial size of one replicate population be xo, and x00 ¼ x0 þ d0
be the starting size of another population. The difference in
size of the two populations initially is d0, and the difference
at time t is dt (Fig. 8b). How dt changes through time is char-
acterised by the LE (k), according to the equation dt ¼ d0ekt.
Thus, when k > 0 the initial difference grows exponentially,
whereas if k < 0 the difference shrinks exponentially.
To translate the LE into a forecast horizon, we must

know two things: (1) the amount of uncertainty in initial
conditions (d0); (2) the required precision of the prediction
D (i.e. the forecast proficiency threshold). The forecast
horizon is given by the heuristic equation:

Tp � 1

k
ln

D
d0

� �
ð1Þ

The forecast horizon Tp (otherwise known as the predict-
ability time) is the time at which a small error in the initial
condition becomes large enough to preclude a useful fore-
cast. Tp is determined by the inverse of the LE, whereas it
has weak dependence on d0 and D (Fig. 8c). Negative LE
result in an infinite forecast horizon. In case the system is
multidimensional (e.g. a multispecies community) there is a
LE for every dimension and predictability is determined by
the largest LE of the system.
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predict the inclusion of plants introduced into Central Europe
in the diet breadth of native herbivores. We divided predic-
tions into 12 phylogenetic distance slices (12 slices were
enough to construct the forecast proficiency vs. phylogenetic
distance curve, but not so many to have too little data in each
slice). We then calculated the area under the ROC curve
(AUC, the measure of forecast proficiency) within each phylo-
genetic distance slice.
AUC related linearly and positively to phylogenetic dis-

tance, with higher forecast proficiency at farther phylogenetic
distances (i.e. between plant families), and lower forecast pro-
ficiencies at smaller phylogenetic distances (Fig. 6b). Reducing

the amount of data used to parameterise the forecasting
model indicates that increased information allows better pre-
dictions of host use over plant phylogeny.
This phylogenetic forecast increases in predictability with

increasing distance, whereas forecasts over time typically
decrease in predictability with increasing time. Because many
herbivorous insects consume a set of plants delimited at
roughly the family level, the forecast horizon for the predic-
tion of a novel plant–herbivore interaction might be set at the
family level, where predictions at a lower and higher taxo-
nomic level are less inaccurate (e.g. Pearse & Altermatt 2013).
Conversely, when considering the over-dispersion of plant
communities, co-occurrence was unlikely among very close
relatives (congeners), but this trend did not hold at higher tax-
onomic levels (Cavender-Bares et al. 2006), suggesting that
the forecast horizon for co-occurrence might be at the genus-
level, where predictions at higher levels of taxonomy will be
inaccurate. Cleary more research is required to better docu-
ment and understand phylogenetic forecast horizons.

DISCUSSION

Although the primary purpose of the case studies is to illus-
trate ecological forecast horizons across a range of applica-
tions, they also provide some insights into the concept.
The first case study shows that uncertainty about parame-

ters and initial conditions can interact (i.e. there are depen-
dencies), such that focusing on decreasing uncertainty in
single parameters may not improve forecast horizons. Knowl-
edge about such dependencies will help plan effective strate-
gies for increasing the distance of forecast horizons by
decreasing uncertainties.
The second case study has two important findings. First,

variables at different levels of ecological organisation may be
more or less predictable and second, evolution, under some
conditions, increases predictability. Although recent findings
(e.g. Ward et al. 2014) may provide depressing reading about
the predictability of population dynamics, one should not
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mistake these as saying anything about predictability at other
levels of ecological organisation.
The third case study points towards benefits from research

about organismal characteristics associated with predictability.
Generalisations about the predictability of population dynam-
ics will need to recognise the possible scaling relationships
between predictability, organismal size and other organismal
characteristics.
The fourth and fifth case studies illustrate forecast horizons

in dimensions other than time. Forecast horizons could also
be used to estimate and convey predictability in environmen-
tal conditions (e.g. that species abundances can be usefully
forecast for up to 5 °C of warming, but not farther), ecologi-
cal complexity (e.g. single species data can be employed to
usefully forecast in communities with up to six species, but
not beyond) and changes in community structure (Gotelli &
Ellison 2006b). Similarly, when the traits that define an organ-
ism’s ecological niche are known, a forecast horizon may be
defined along the axis of trait distance (Gravel et al. 2013).
We have concerned ourselves so far with forecasting in single
dimensions. Nevertheless, forecasts simultaneously across
time, environmental conditions, ecological complexity, space,
phylogeny or other dimensions are likely to be quite useful.
Cutting across the case studies is variability in the nature of

the predictive model; in particular whether it is process-based
(the Ricker and resource–consumer models) or statistical (a
neural network, a regression and a binomial generalised linear
model). The forecast horizon provides a standard metric for
comparing such differences in the predictive model, and sys-
tematic, thorough and impartial assessments of the different
models could aid our understanding of how to improve
ecological predictability.

We believe these insights show only a fraction of the poten-
tial of forecast horizons in ecological research, and that they
can be a general tool for assessing how well-ecological vari-
ables and/or systems can be predicted. They are general in the
sense that they can be applied in any situation where the
value of a variable is predicted, and there is knowledge about
the known or assumed true value of that variable. That is,
they convert the output of any predictive model and any mea-
sure of forecast proficiency into a common currency: distance
(be this distance in time, space, or environmental conditions).
As such, ecological forecast horizons could be a powerful and
flexible tool for answering questions about what is predictable
in ecology, which methods offer the greatest predictive power,
and how forecasting is changing through time (Simmons &
Hollingsworth 2002). In the remainder of this article, we sug-
gest some avenues for furthering ecological predictability
research.

A road map for ecological predictability research

Achieving better and more useful ecological predictions will
likely benefit from a road map of activities (Fig. 7). Our road
map has one destination, but has no single starting point, has
no single path to the destination, and contains feedbacks.
Such a road map does not prescribe a single and generally
applicable methodological process for improving forecast
horizons. Instead we provide some suggestions about individ-
ual activities and practices in this road map, and about some
feedbacks. The order in which we present the activities below
is approximately associated with specificity, from those
focused on forecast horizons to more general ones. A comple-
mentary road map for improving predictability, focused on
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Figure 6 Spatial and phylogenetic forecast horizons. (a) Distance-decay of similarity in community composition. With a forecast proficiency threshold of

0.7 correlation, there is a forecast horizon of just over 600 km. This example uses Pearson correlation of square-root transformed abundances as a measure

of similarity of relative abundance between pairs of routes from the North American Breeding Bird Survey. (b) Fitted relationships between forecast

proficiency (AUC) and phylogenetic distance (MYA) when all data were used to parameterise the forecasting model (solid line, green shading), when 2/3 of

the data were used (dashed line, blue shading) and when 1/3 of the data were used (dotted line, yellow shading). The horizontal line is the median AUC for

predictions from the full model. The prediction threshold for models built using reduced data sets occurred at a coarser phylogenetic distance, indicating

that increased information allows finer predictions of host use over plant phylogeny. Fits are linear regressions and shaded areas the standard error of the

regression.
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the terrestrial carbon cycles but with broad implications,
already exists (Lou et al. 2014).

Defining what a useful forecast is
Generally speaking, a useful forecast will be about an impor-
tant variable and be sufficiently accurate and precise. This has
at least three requirements: (1) a decision about the important
variables to be predicted; (2) a measure of how closely a fore-
cast is required to match the truth, that is a specific measure
of forecast proficiency and (3) a threshold forecast proficiency
that defines ‘good enough’. We consider each in turn.
Which variables are important to predict is difficult to

answer generally. Species abundances and distributions would
be the answer according to one textbook definition of ecology
(Begon et al. 1990). The sub-disciplines of ecology would have
logical preferences for, for example, connectance in food web
ecology (Petchey et al. 2010), species richness in community
ecology (Algar et al. 2009), timing of infectious disease out-
breaks in disease ecology (Shaman & Karspeck 2012) or bio-
mass or carbon in ecosystem science (Harfoot et al. 2014).

It is then necessary to decide how to measure forecast profi-
ciency. When the forecast variable is continuous, a number of
calculations on the residuals ei (predicted minus actual or
(ŷl � yi) are useful, such as mean error (bias), mean square
error (MSE), root mean square error (RMSE), mean absolute
error, variance explained (R2) and correlation between pre-
dicted and observed. MSE has the useful property of combin-
ing accuracy and precision. Choices for binary variables (e.g.
presence or absence, extinction or not) include the point-bise-
rial correlation, statistics of the confusion matrix and area
under a receiver operating characteristic (ROC) curve. These
vary in meaning, advantages and disadvantages, and need to
be carefully matched to purpose. For example RMSE gives
absolute error in units of the original variable, whereas R2

gives relative error on a scale of 0–1 and in proportion to the
total variability in the value being predicted; AUC can be mis-
leading because the range from predicting at random to pre-
dicting perfectly is 0.5–1 (rather than the 0–1 of R2), which
can lead people to interpret AUC scores as better than they
are, and there is little intuition of what counts as a good
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AUC score (Bahn & McGill 2013). In situations when predict-
ing patterns (e.g. whether dynamics are cyclic or not) is more
important than exact values (Levins 1966), ‘pattern-oriented
modelling/prediction’ and associated methods for comparing
predictions with data could be used (Grimm & Railsback
2012). Finally, in many predictive situations, a key issue is to
ensure that the data testing the predictions are independent of
the data used to calibrate the model (Bahn & McGill 2007).
Next comes a decision about the threshold forecast profi-

ciency. For less applied research, such as that in the case stud-
ies, an arbitrary forecast proficiency threshold is sufficient, or
one could use a threshold based on the average performance
of a simple statistical model. Taking a more stakeholder-ori-
entated approach, ecological forecasts and their horizons
would be a service/product provided, and important variables
and proficiency thresholds should be specified by stakeholders
during dialogue before predictive models are employed. Such
dialogues could use frameworks, including structured deci-
sion-making, to identify appropriate variables, appropriate
measures of proficiency and appropriate thresholds, given the
management structure and goals of a specific problem (e.g.
Guisan et al. 2013). Feedback between researchers and stake-
holders could lead to re-evaluation of the important variables,
with increased reliance on those with greater predictability.

Complex forecast horizons
More complex situations than those in our case studies may
arise. Interest in simultaneously forecasting multiple variables
will require multivariate measures of forecast proficiency, per-
haps aiming for one forecast horizon for all variables. Alter-
natively, one could calculate a forecast horizon for each
variable, perhaps using variable specific measures of forecast
proficiency and forecast proficiency thresholds. The resulting
set of forecast horizons could be presented individually, or
combined into a single forecast horizon, depending on specific
use cases.
Forecast horizons could be combined with recently devel-

oped methods for anticipating regime shifts (Scheffer et al.
2009). Imminent changes at the population or community
level are often preceded by internal processes such as ‘critical
slowing down’ in the case of population extinctions. These
processes can be inferred in advance from early warning signs
– in the form of generic statistical signatures – occurring after
the onset of environmental perturbation and before critical
system transition. The forecast horizons of such signals
remain relatively unexplored.
Non-monotonic changes in forecast proficiency with fore-

cast distance deserve further attention. They could create time
windows within which useful forecasts are possible or win-
dows in which useful forecasts are not possible (i.e. forecast
blind-spots). An example of a non-monotonic relationship
comes from a study of probability of quasi-extinction, in
which the certainty in this probability describes a U-shape
with time into the future (Ellner et al. 2008). This creates a
prediction blind-spot, surrounded by near and far time inter-
vals for which predictions have high certainty.
Finally, there may be situations in which it is insufficient to

characterise changes in forecast proficiency with a single num-
ber (a forecast horizon). Subtleties in the relationship between

forecast proficiency and time, such as when forecast profi-
ciency is high but falls away fast vs. when lower initial predic-
tion proficiency decays slowly, are not captured by a forecast
horizon (though may be in the uncertainty estimate surround-
ing a forecast horizon).

Standardised tools
Providing a standardised toolbox of methods for estimating
and analysing ecological predictability (including via forecast
horizons) that are applicable across the diversity of ecological
study and data types (e.g. experimental, observational, repli-
cated, unreplicated) would probably be quite useful, and we
are working towards developing one. Those interested in con-
tributing should write to the corresponding author or visit our
github repository (github.com/opetchey/ecopredtools).
Making connections with the numerous dynamical system

theory tools that address predictability (Boffetta et al. 2002) is
important. Box 2 shows how the forecast horizon is related to
the Lyapunov exponent of a time series. Investigating the
functional importance of other methods from dynamic sys-
tems theory (e.g. Salvino et al. 1995; Bailey 1996; Aurell et al.
1997; Ziehmann et al. 2000; Garland et al. 2014) should be a
research priority and will require close communication
between disciplines.

Stakeholder engagement
Harwood & Stokes (2003) proposed that ecologists face a
dilemma: present persuasive simplified forecasts that pay little
attention to uncertainty, or emphasise uncertainties. They go
on to suggest that ecologists improve how they communicate
uncertainty: ‘ecologists must develop rigorous methods for
evaluating these uncertainties’ (also see, e.g. Spiegelhalter
et al. 2011; Raftery 2014).
Ecological forecast horizons could be an excellent tool for

communicating predictability, as they are intuitive and the
concept is already in common usage. One could argue they
are more intuitive than other measures of predictability/uncer-
tainty only because they hide details, such as the forecast pro-
ficiency measure. This seems to be only part of the reason,
however, as one could hide details in an obscure and non-
intuitive quantity. Perhaps, another reason is that the quantity
being communicated is a time (or distance in space, phylogeny
or environmental conditions). Furthermore, people are
already familiar with the concept, for example from weather
forecasting. The ease of communicating the results of quite
complex research about predictability is illustrated by Shaman
& Karspeck (2012) and Seferian et al. (2014). We emphasise,
however, the need to estimate and communicate uncertainty
in forecast horizons (Fig. 1 and vertical error bars in Figs 3,
4, and 5).
Close collaboration with stakeholders is now desirable, to

discover which types of stakeholders can benefit from know-
ing what kinds of forecast horizons. Scientific stakeholders,
for example scientists that use a prediction as an input to a
further model, may wish to know the forecast horizon and its
consequences for predictability of their model. Scientific or-
ganisations such as IPBES (Intergovernmental Platform on
Biodiversity & Ecosystem Services) may prefer to deal with
forecast horizons. Other stakeholders may require other
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products; understanding stakeholder diversity is key to com-
municating uncertainty and predictability (Raftery 2014).

Cataloguing ecological predictability
Ecologists could aim for a catalogue of important ecological
variables and their ecological forecast horizons (perhaps simi-
lar to the proposal for essential biodiversity variables, Pereira
et al. 2013). Producing this will require thorough and system-
atic investigations about the limits of ecological predictability.
What is forecastable far into the future, what is forecastable
only in the short term? Which parameters and initial condi-
tions are more important than others in their effects on pre-
dictability? A systematic analysis of ecological forecast
horizons in existing studies with appropriate data would be a
worthwhile starting point to provide a baseline against which
to assess improvements in ecological forecasting capabilities,
as well as being useful in providing information about corre-
lates of ecological forecast horizons (see Fig. 5).
Contributing to such a catalogue would require a strong

commitment to model validation: ‘the process of determining
the degree to which a model and its associated data provide
an accurate representation of the real world from the perspec-
tive of the intended uses of the model’ (quoted from Corley
et al. 2014; also see Chivers et al. 2014). In some research
fields, model verification (did we build the model correctly?)
and validation (did we build the correct model?) are extremely
important, and necessary for formal accreditation and use of
models (for further information see Corley et al. 2014). Model
verification and validation is relatively rare for ecological
models [less than half of the disease models reported in Corley
et al. (2014) experienced any model validation, a review of
marine ecosystem models revealed that assumptions are
mostly left implicit, and uncertainties often not considered
(Gregr & Chan 2014)]. Researchers and stakeholders should
develop clear guidelines for verification and validation of eco-
logical/environmental forecasting models, and decide whether
accreditation is desirable.

Improving knowledge of the governing equations
The core equations governing weather forecasting are well
understood (e.g. Shuman 1978). The governing equations for
ecological systems include equations linking demographic
rates with environmental constraints, organismal traits and
dispersal abilities and feeding rates to resource abundances, to
name only a few. The governing equations of open ecosystems
(i.e. meta-ecosystems) involve movement of organisms and
materials (Loreau et al. 2003), so that, for example population
dynamics forecast horizons are likely improved by including
immigration and emigration. Optimism about the forecasting
potential of process-based models rests on continued efforts
to better document these and other equations governing eco-
logical dynamics: fundamental research is necessary for
improved forecasting (Courchamp et al. 2015). Such research
should, however, be explicitly combined with research about
the impacts of additional knowledge on predictive ability.
One area ripe for research is how evolution might affect

ecological forecast horizons. On the one hand, incorporating
the potential for evolution into simple predator–prey models
might substantially increase our ability to explain ecological

dynamics through time (Yoshida et al. 2003; Hairston et al.
2005; Becks et al. 2010; Ellner et al. 2011; Matthews et al.
2011; Fischer et al. 2014) and might help explore how evolu-
tion could affect transitions between different dynamic states
(Ellner & Turchin 1995; Fussmann et al. 2000). On the other
hand, evolutionary trajectories strongly influenced by ecologi-
cal dynamics causing frequency-dependent selection might
lead to more unpredictable evolutionary dynamics in the long
term (Doebeli & Ispolatov 2014). Little is known about how
such eco-evolutionary dynamics might affect the predictability
of population, community and ecosystem level responses to
environmental change (but see Vincenzi 2014).
Improved knowledge about the effects of human behaviour

on predictability, and how social systems can be coupled with
ecological ones in predictive models is needed. Ecological sys-
tems include humans, such that forecasting models will need
to include their actions (Palmer & Smith 2014). Scenarios cou-
pled with quantitative models have been, and may remain,
particularly important here (e.g. Cork et al. 2006). Further-
more, models could be used to understand the feedbacks
between prediction and human intervention, whereby a pre-
diction elicits an intervention that changes the prediction,
potentially resulting in undesirable management outcomes
(e.g. Peterson et al. 2003).
Research about the governing equations will aid our under-

standing of the causes of observed patterns of predictability.
Are ecological systems computationally irreducible (i.e. intrin-
sically unpredictable) such that even the best possible parame-
ter estimates and knowledge of initial conditions cannot
provide useful forecasts? Or are ecological systems intrinsically
predictable, such that feeding more and more data into mod-
els will yield continual increases in predictability?

Statistical forecasting and autocorrelation
In the absence of sufficiently good knowledge about the gov-
erning equations, or if this knowledge is not useful for predic-
tion (e.g. when population dynamics are chaotic), statistical
models may make useful predictions. These models are repre-
sentations of the autocorrelations that exist for many ecologi-
cal variables in many dimensions. Autocorrelation in time and
space can thus be a source of predictability, with stronger
autocorrelation giving greater predictability (i.e. a farther
forecast horizon). Strong autocorrelation can result in statisti-
cal models being relatively good predictors, even compared to
models that contain covariates such as climate and other spe-
cies (Bahn & McGill 2007). Furthermore, simple state-space
reconstructions based on relatively little observed data outper-
form more complex mechanistic models (though see Hartig &
Dormann 2013; Perretti et al. 2013a,b) and still can distin-
guish causality from correlation (Sugihara et al. 2012). Simi-
larly, the most accurate model of some wild animal
population dynamics was the one that used the most recent
observation as the forecast (Ward et al. 2014), and statistical
models of species distributions have outperformed more mech-
anistic ones (Bahn & McGill 2007).
Everything else being equal, process-based models would

likely be preferable, based on their suggested advantage of
being able to better predict into novel conditions (Purves &
Pacala 2008; Evans 2012; Schindler & Hilborn 2015). If
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process-based models perform less well, however, then this
preference may change. Statistical models at least provide a
baseline of minimum forecasting proficiency, against which
process-based models could be judged. Equation-free mechan-
istic forecasting is an emerging tool with considerable promise
(Ye et al. 2015).

Reducing uncertainty
Reductions in uncertainty will improve predictability along-
side advances in knowledge of the governing equations. Aim-
ing for better predictive models can even be a meeting place
for these two activities, thus providing a channel by which
data can inform theory and theory can inform data collection.
Careful consideration is required about whether to organise

research by sources of uncertainty (e.g. parameter uncertainty,
model structure uncertainties, inherent stochasticity and
uncertainty in initial condition) or by effects of ecological and
evolutionary processes and variables (e.g. this paper). Particu-
larly profitable may be a combination of both, for example
understanding the effects of processes via their effects on
uncertainties. Model validation, including sensitivity analyses,
can contribute to reduce uncertainty in the parameters most
important for prediction. The high predictive utility of indi-
vidual-based models has resulted, in part, from a focus on
their validation (Stillman et al. 2015). Finally, parameterisa-
tion methods that use all sources of data (e.g. experiments
and observations) will likely reduce uncertainties, producing
more distant forecast horizons.

Scale of predictions
Given our acknowledged poor ability to forecast environmen-
tal conditions (e.g. temperature and rainfall) even next year,
ecological systems strongly controlled by environmental con-
ditions will almost certainly show very near prediction hori-
zons. This challenge could be overcome by predicting a
moving average of system dynamics, allowing one to evaluate
longer-term trends despite shorter-term uncertainty. This
would be akin to predicting climate rather than weather.
Research about the how predictability is related to the tempo-
ral and spatial scale of predicted variables could reveal scales
of greatest (or acceptable) predictability. Such research about
temporal and spatial scales would be akin to that about rela-
tionships between predictability and scale of ecological organi-
sation.
Ecological forecast horizons will likely also improve if we

continue to model larger spatial extents (making the systems
modelled more closed), with finer grain sizes and with more
attention to modelling multiple vertical layers (e.g. below
ground processes). Predictions can reasonably be expected to
improve as we continue to gather data with better spatial cov-
erage and finer resolution, and longer temporal extent data
about the current and past conditions of variables of interest.

Infrastructure improvements
Large-scale integrated investment in infrastructure for predict-
ing ecological and ecosystem states should be considered.
Ecologists, ecosystem scientists and organisations such as IP-
BES should consider aiming to develop forecasting infrastruc-
ture on the scale of, for example the UK Meteorological

Office (1800 people employed at 60 globally distributed loca-
tions, processing over 10 million weather observations a day
using an advanced atmospheric model running on a high per-
formance supercomputer, creating 3000 tailored forecasts and
briefings a day [UK Met Office web site]). Training in skills
including modelling, time series analysis, working with large
data sets, and communicating across traditional discipline
boundaries would also be required for ecological forecasting
experts.
The forecast horizon in part depends on the quality and

comparability of data used to inform the predictive model.
Compared to, for example meteorology, data acquisition in
the field of ecology is often less standardised across different
research groups and geographical/temporal dimensions. Mete-
orology has used standardised tools to measure model-rele-
vant variables, such as temperature or humidity, since the
mid-19th century, such that standard weather stations based
on the Stevenson screen (Stevenson 1864) have been contrib-
uting comparable data across the globe for more than a cen-
tury. In ecology, even basic data (e.g. following population
abundances across different types of organisms) are acquired
very differently across time and research groups, or are based
on initiatives of individual researchers and then often lack
spatial replication. Many ‘good’ examples of time series of
ecological data were actually collected without any ecological
basis (e.g. records of the number of Canada lynx and snow-
shoe hare pelts traded by Hudson’s Bay, fisheries data, etc.
which were collected mostly with an economic perspective in
mind). Priority setting for which variables and parameters to
measure, how to do so in a standardised way, and following
explicit information standards (e.g. Darwin Core,
www.tdwg.org) and ontologies may thus be of high urgency
in ecology. Efforts to make such data readily accessible (Kat-
tge et al. 2011; Hudson et al. 2014; Salguero-G�omez et al.
2015) in a consistent and freely available form should be
redoubled (meteorological data are not only collected in a
standardised way, but also made available by National Mete-
orological Offices) (Costello et al. 2013).

Prediction competitions
Following the example of other fields with a strong interest in
accurate predictions, competitions could advance methods
and foster interest from non-ecologists with forecasting skills.
They could provide platforms where predictions are con-
fronted with observations on a regular basis. Being based on
common data sets, they also allow direct comparisons of dif-
ferent methods in terms of forecasting proficiency. For
instance tests of ensembles of models (including process-based
and statistical ones) compared to predictions of single meth-
ods would be possible. Such competitions are currently used
in economics and are also common for improving machine
learning algorithms and approaches (e.g. www.kaggle.com).

CONCLUSIONS

The ecological forecast horizons is a general and intuitive tool
with potential to guide future research agendas to improve
predictability not only by stimulating scientists to make quan-
titative predictions, but also by providing a mechanism to
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actively confront these predictions with observed dynamics.
Forecast horizons provide baselines about how well we can
predict specific dynamics of interest, and provide a tool for
researching when and why accurate predictions succeed or
fail. Given these properties, we believe that the forecast hori-
zon can be an important tool in making the science of ecology
even more predictive. Nevertheless, research should also aim
for complementary, and perhaps even better, tools for advanc-
ing and organising predictability research in ecology.
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