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Abstract

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to
have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur
unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition
is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of
so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However,
while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use
differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching
critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and
apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a
methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early
warning signals of critical transitions in time series data.
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Introduction

The Earth’s past has been characterized by rapid and often

unexpected punctuated shifts in temperature and climatic

conditions [1], lakes and coral reefs have shifted among alternative

states [2], neural cells move regularly between different dynamical

regimes [3], and financial markets are notorious for abrupt shifts.

The gradual change in some underlying condition (or driver), such

as the accumulation of phosphorus in a lake or the increasing flux

of freshwater from melting ice sheets into the ocean, can bring a

system closer to a catastrophic bifurcation point (a ‘tipping point’)

causing a loss of resilience in the sense that even small

perturbations can invoke a shift to an alternative state [2,4]. In

most cases, however, information about the drivers or the values at

which systemic responses are so easily triggered (critical thresholds) is

difficult to acquire (but see [5]). Nonetheless, these sudden

transition incur large costs as restoration to the previous conditions

is difficult or sometimes even impossible [2].

To overcome these challenges, numerous studies have suggested

the use of generic early warning signals (or leading indicators) that

can detect the proximity of a system to a tipping point [6]. Such

indicators are based on common mathematical properties of

phenomena that appear in a broad range of systems as they

approach a catastrophic bifurcation [6]. An important application

of these leading indicators is their potential real-time use as

warnings of increased risk for upcoming transitions. However, they

also may be used to rank instances of a system (e.g. different

patients, individual coral reefs, different markets etc.) according to

their proximity to a critical threshold.

Several empirical studies have now demonstrated that leading

indicators can be found in a variety of systems. Increases in

autocorrelation has been documented prior to past climatic

transitions [7,8], increased variability has been shown before

extinction in zooplankton lab experiments [9], and before an

experimentally induced regime shift in a lake food web [10],
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whereas decreases in recovery rates have been demonstrated in

chemical reactions [11], lasers [12], or in the plankton [13].

However, the statistical detection of leading indicators in both past

events and in real time remains challenging for at least two

reasons. First, there is a lack of appropriate data. High frequency

sampling and designed experimentation have been proposed as

potential solutions that can improve the detection of leading

indicators [6,10]. In many important cases, however, high

frequency sampling or experiments are impossible. Furthermore,

in many systems, sampling schemes are designed explicitly to avoid

temporal autocorrelation, which is, in fact, needed for the accurate

application and assessment of leading indicators (see worked

examples below).

Second, there is no clear framework for the application and

detection of leading indicators. Different approaches have

emerged in different fields [14] and have been applied to different

types of transitions [15]. For instance, most leading indicators are

based on detecting changes in the stability properties of a system

around its equilibrium under a weak stochastic regime [6],

whereas alternative approaches have been developed for systems

experiencing highly noisy regimes [16]. As the literature is rapidly

expanding, there is an urgent need for a coherent methodological

framework and a comparison between approaches.

Here we present a methodological guide for using leading

indicators for detecting critical transitions in time series. For this,

we apply available leading indicators to two example datasets

generated from a simple ecological model that is known to

undergo a critical transition to an alternative state. While most of

these methods have been applied to real-world data in papers that

we cite, such applications inevitably depend on specific details (e.g.

missing values, data transformation, coping with too-long

sampling intervals or too-short time series) that make it difficult

to compare the methods themselves. The exact location and

nature of the critical transition is also ambiguous for real-world

data. Therefore we gather issues of data preprocessing in a

separate section (see ‘‘Step 1. Preprocessing’’ below), and illustrate

the methods using simulated data with known, clearly defined

critical transitions. The structure of the paper is as follows. First,

we describe two categories of leading indicators: metric-based and

model-based indicators. Second, we present the ecological model we

use to generate the time series we use to detect critical transitions.

Third, we show how each indicator is applied to the two simulated

time series. We provide computer code alongside the worked-out

examples. Last, we review the sensitivity and limitations of each

indicator and discuss their interpretation. We trust that the

framework and the tools we provide will encourage testing the

ability of these indicators to detect upcoming transitions in real

systems.

Methods

We group leading indicators of critical transitions into two

broad categories: metric-based and model-based indicators (Table 1).

Both types of indicators reflect changes in the properties of the

observed time series of a system that is generated by a general

process:

dx~f (x,h)dtzg(x,h)dW ð1Þ

where x is the state of the system, f(x,h) describes the deterministic

part of the system, and g(x,h)dW determines how stochasticity

interacts with the state variable; dW is a white noise process. A

slow change in the underlying conditions (drivers), h, moves the

system close to a threshold where a transition may occur. Metric-

based indicators quantify changes in the statistical properties of the

time series generated by equation 1 without attempting to fit the

data with a specific model structure. Model-based methods quantify

changes in the time series by attempting to fit the data to a model

Table 1. Early warning signals for critical transitions.

Phenomenon

Method/Indicator Rising memory Rising variability Flickering Ref.

metrics Autocorrelation at-lag-1 x [23]

Autoregressive coefficient of AR(1) model x [19]

Return rate (inverse of AR(1) coefficient) x [23]

Detrended fluctuation analysis indicator x [7]

Spectral density x [20]

Spectral ratio (of low to high frequencies) x [25]

Spectral exponent x [this paper]

Standard deviation x x [28]

Coefficient of variation x x [28]

Skewness x x [29]

Kurtosis x x [25]

Conditional heteroskedasticity x x [32]

BDS test x x [10]

models Time-varying AR(p) models x x [38]

Nonparametric drift-diffusion-jump models x x x [16]

Threshold AR(p) models x [38]

Potential analysis (potential wells estimator) x [43]

Leading indicator or method, the primary underlying dynamical phenomenon associated with it, and the original reference in which it was developed.
doi:10.1371/journal.pone.0041010.t001

Early Warning Detection Methods
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that is based on the general structure of equation 1. The ultimate

goal of both types of indicators is to capture changes in the

‘memory’ (i.e. correlation structure) and variability of a time series

and to determine if they follow patterns as predicted by models of

critical transitions, while the system is approaching a transition

into an alternative dynamic regime (Table 1).

Metric-based Indicators
Autocorrelation and spectral properties. The rate of

return to equilibrium following a (small) perturbation slows down

as systems approach critical transitions [17]. This slow return rate

has been termed ‘‘critical slowing down’’ [18] and can be detected

by changes in the correlation structure of a time series. In

particular, critical slowing down causes an increase in the ‘short-

term memory’ ( = correlation at low lags) of a system prior to a

transition [19,20].

Autocorrelation is the simplest way to measure slowing down:

an increase in autocorrelation at-lag-1 indicates that the state of the

system has become increasingly similar between consecutive

observations [19]. There are at least three alternative ways to

measure autocorrelation at-lag-1. The most straightforward is to

estimate the first value of the autocorrelation function,

r1~
E½(zt{m)(ztz1{m)�

s2
z

, where m is the mean and s the

variance of variable zt [21]. Alternatively one can use a

conditional least-squares method to fit an autoregressive model

of order 1 (linear AR(1)-process) of the form; zt+1 = a1zt + et,

where et is a Gaussian white noise process, and a1 is the

autoregressive coefficient [21]. r1 and a1 are mathematically

equivalent [21]. Slowing down can also be expressed as return

rate: the inverse of the first-order term of a fitted autoregressive

AR(1) model [1/a1] [22,23]. The return rate has also been

expressed as [1-a1], which reflects the proportion of the distance

from equilibrium that decays away at each time step [10].

Whereas autocorrelation at-lag-1 ignores changes in correlation

structure at higher lags, power spectrum analysis can reveal changes in

the complete spectral properties of a time series prior to a

transition. Power spectrum analysis partitions the amount of

variation in a time series into different frequencies [21]. A system

close to a transition tends to show spectral reddening: higher

variation at low frequencies [20]. Changes in the power spectra of

a time series also can be expressed in different ways: by estimating

Figure 1. Two simulated paths towards a critical transition to overexploitation that resulted in the critical slowing down and
flickering datasets used in the study. (A) Bifurcation diagram of an ecological model of a logistically growing resource under harvesting. As
grazing rate c increases (x axis), resource biomass gradually declines up to a critical grazing threshold that the resource undergoes a critical transition
through a fold bifurcation (F1). At this bifurcation the resource collapses to the alternative overexploited state. If grazing rate c is restored, resource
biomass returns to the previous underexploited state at another threshold (F2). [solid lines represent equilibria, dashed line marks the boundary
between the two basins of attraction between the underexploited (cyan) and overexploited (yellow) states] (B) Critical slowing down simulated
dataset of resource biomass (blue line) for gradually increasing grazing rate (green line). (C) Flickering simulated dataset of resource biomass (blue
line) for gradually increasing grazing rate (green line).
doi:10.1371/journal.pone.0041010.g001
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the entire power spectrum and observing a shift in the power of

spectral densities to lower frequencies [20]; by estimating the spectral

exponent of the spectral density based on the slope of a linear fitted

model on a double-log scale of spectral density versus frequency

[24]; or by estimating the spectral ratio of the spectral density at low

frequency (e.g. 0.05) to the spectral density at high frequency (e.g.

0.5) [25].

Detrended fluctuation analysis. Detrended fluctuation

analysis (DFA) can be used to measure increases in short- and

mid-term ‘memory’ in a time series of a system close to transition.

Instead of estimating correlations at a given lag (like autocorre-

lation at-lag-1), DFA estimates a range of correlations by

extracting the fluctuation function of a time series of size s. If

the time series is long-term power-law correlated, the fluctuation

function F(s) increases as a power law; F (s)!sa, where a is the

DFA fluctuation exponent [26]. The DFA fluctuation exponent is

then rescaled to give a DFA indicator, which is usually estimated

in time ranges between 10 and 100 time units, and which reaches

value 1 (rescaled from 1.5) at a critical transition [7]. Although, the

DFA captures similar information as autocorrelation at-lag-1, it is

more data demanding (it requires .100 points for robust

estimation) [27].

Variance. Slow return rates back to a stable state close to a

transition also can make the system state drift widely around the

stable state. Moreover, strong disturbances potentially can push

the system across boundaries of alternative states – a phenomenon

termed flickering. Both slowing down and flickering will cause

variance to increase prior to a complete transition [6]. Variance is

the second moment around the mean m of a distribution and serves

as early warning measured either as standard deviation:

SD~ 1
n{1

Pn
t~1

(zt{m)2 or alternatively as the coefficient of variation

CV~ SD
m [28].

Skewness and Kurtosis. In some cases disturbances push

the state of the system towards values that are close to the

boundary between the two alternative states. Because the

Figure 2. Metric-based rolling window indicators estimated on the critical slowing down and flickering datasets. (A, B) Time series of
the state variable. (C) Residual time series after applying Gaussian filtering. (D) Standardized time series after log-transforming the flickering dataset.
(E–I) Autocorrelation at-lag-1 (AR1), standard deviation, and skewness estimated within rolling windows of half the size of either the original, filtered
or transformed time series. The Kendall t indicate the strength of the trend in the indicators along the time series. [red line is the Gaussian filtering;
black lines correspond to the metrics estimated on the original data, blue lines correspond to the metrics estimated on the residual or transformed
data].
doi:10.1371/journal.pone.0041010.g002
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dynamics at the boundary become slow [6], we may observe a rise

in the skewness of a time series- the distribution of the values in the

time series will become asymmetric [29]. Just like variance,

skewness can also increase because of flickering [6]. Skewness is

the standardized third moment around the mean of a distribution

and it is given by �c~

1
n

Pn

t~1

(zt-m)3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

t~1

(zt-m)2

r : Note that skewness may

increase, or decrease, depending on whether the transition is

towards an alternative state that is larger or smaller than the

present state.

Flickering or strong perturbations also make it more likely that

the state of a system may reach more extreme values close to a

transition. Such effects can lead to a rise in the kurtosis of a time

series prior to the transition [25]; the distribution may become

‘leptokurtic’: the tails of the time series distribution become fatter

due to the increased presence of rare values in the time series.

Kurtosis is the standardized fourth moment around the mean of a

distribution estimated as: k~

1
n

Pn

t~1

(zt-m)4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn

t~1

(zt-m)2

r� �2 :

Conditional heteroskedasticity. Another measure of

change in the pattern of variability in a time series is conditional

heteroskedasticity. Conditional heteroskedasticity means that variance

at one time step has a positive relationship with variance at one or

more previous time steps. This implies that periods of high

variability will tend to follow periods of high variability and

periods of low variability will tend to follow periods of low

variability [30,31]. As variability tends to increase prior to a

transition, conditional heteroskedasticity can serve as a leading

indicator because the portion of a time series near an impending

shift will appear as a cluster of high variability while the portion of

the time series away from the shift will appear as a cluster of low

variability [32]. Conditional heteroskedasticity is based on a

Langrange multiplier test [30,31], which is calculated by first

extracting the residuals of a fitted model to the time series. Usually

an autoregressive model of selected order is selected according to a

measure of relative goodness of fit (e.g. the Akaike Information

Criterion); then the residuals are squared, and finally the residuals

are regressed on themselves lagged by one time step. A positive

slope of the linear regression of the lagged residuals suggests

conditional heteroskedasticity. The coefficient of determination of

the regression r2 is compared with a x2 distribution of one degree

of freedom to assign the significance for the r2. The x2 value can be

divided by the sample size to make it directly comparable to the r2

value.

BDS test. The BDS test (after the initials of W. A. Brock, W.

Dechert and J. Scheinkman) detects nonlinear serial dependence

in time series [33].The BDS test was not developed as a leading

Figure 3. Detrended fluctuation analysis exponents (DFA) estimated on the critical slowing down and flickering datasets. (A, C) Time
series of the state variable. (B, D). DFA estimated within rolling windows of half the size of the original time series applied after linear detrending. (E, F)
Distributions of Kendall t rank correlations indicate a positive trend in the indicators along the time series for different sizes of rolling windows.
doi:10.1371/journal.pone.0041010.g003
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indicator, but it can help to avoid false detections of critical

transitions due to model misspecification. After detrending (or

first-differencing) to remove linear structure from the time series

by fitting any linear model (e.g. ARMA(p,q), ARCH(q) or

GARCH(p,q) models), the BDS tests the null hypothesis that the

remaining residuals are independent and identically distributed

(i.i.d.) [10]. Rejection of the i.i.d. hypothesis implies that there is

remaining structure in the time series, which could include a

hidden nonlinearity, hidden nonstationarity or other type of

structure missed by detrending or model fitting. As critical

transitions are considered to be triggered by strong nonlinear

responses, the BDS test is expected to reject the i.i.d. hypothesis in

the residual time series from a system that is approaching a critical

transition. The BDS test can be helpful as an ad-hoc diagnostic test

to detect nonlinearities in time series prior to transitions: if the

BDS test rejects the i.i.d. hypothesis and there is another strong

leading indicator, then the detected early warning is less likely to

be a false positive.

Model-based Indicators
Nonparametric drift-diffusion-jump models (DDJ

models). Often we do not know the underlying processes that

generate the time series that we are analyzing for early warnings.

Nonparametric drift-diffusion-jump models address this problem

by fitting a general model that can approximate a wide range of

nonlinear processes without the need to specify an explicit

equation. Drift measures the local rate of change. Diffusion

measures relatively small shocks that occur at each time step.

Jumps are large intermittent shocks. Total variance combines the

contributions of diffusion and jumps.

Figure 4. Conditional heteroskedasticity estimated on the critical slowing down and flickering datasets. (A, B) Time series of the state
variable. (C, D) CH estimated within rolling windows of 10% the size of the original time series. CH was applied to the residuals of the best fit AR(p) on
the original datasets. Values of CH above the dashed red line are significant (P = 0.1).
doi:10.1371/journal.pone.0041010.g004
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The approach is to estimate terms of a drift-diffusion-jump

model as a surrogate for the unknown data generating process

[16]:

dxt~f (xt,ht)dtzg(xt,ht)dwzdJt ð2Þ

Here x is the state variable, f(?) and g(?) are nonlinear functions,

dW is white noise, and J is a jump process. Jumps are large, one-

step, positive or negative shocks that are uncorrelated in time.

Equation 2 is assumed to be subject to a critical transition at a

critical parameter valuehC , just as in equation 1. We assume that xt

can be observed at discrete intervals of time Dt that can be short,

i.e. very high-frequency observations are possible.

The data-generating process (eq 2) is unknown in the sense that

the expressions for f(?) and g(?) are not known, ht is neither known

nor measured, the critical value hc where x undergoes a

catastrophic change is not known, and the parameters of the

jump process are not known. From the time series, however, we

can estimate drift, diffusion and jump statistics that may serve as

leading indicators of the transition. We do this by assuming that

high-frequency observations of the system in equation 2 can be

approximated by fitting the drift-diffusion-jump model

dxt~m(xt{,ht)dtzsD(xt{,ht)dWzd(
XNt

n~1

Zn) ð3Þ

In this fitted model (eq. 3), the drift, diffusion, and jump

functions track the slow and unknown changes in ht. The drift

function m(xt{,ht)measures the instantaneous deterministic

change in the time series. The diffusion function sD(xt{,ht)
measures the standard deviation of relatively small shocks that

occur at each time step. Jumps, the last term of equation 3, are

relatively large shocks that occur intermittently. Jumps are

characterized by an average magnitude sZ(ht) (where

Fn,N(0,s2
Z(ht))) and the probability of a jump arriving in a

small time increment dt is l(xt, ht)dt. The subscript t- in m(?) and

sD(?) indicates that these functions are evaluated just before the

time step. In practice, the drift, diffusion, and jump functions are

estimated using nonparametric regression [34,35]. The regression

yields estimates of drift m̂m(x,ht), total variance ŝst(x,ht), jump

intensity l̂l(x,ht), and the diffusion variance is given by

ŝs2
D(x,ht)~ŝs2

T (x,ht){l̂l(x,ht)ŝs
2
Z(x,ht), where ŝs2

Z(x,ht) is the

jump-variance function. In addition, we can estimate the

conditional variance of x using standard nonparametric regression

techniques. This conditional variance rises to infinity at a critical

point caused by bifurcation in f(?), g(?) or both. The conditional

variance function, ŜSn(ai;Dn), can be estimated as the difference

between the second conditional moment and the square of the first

conditional moment as ŜSn(ai;Dn):fM̂M2
n (ai;Dn)g{fM̂M1

n (ai;Dn)g2

[16,36]. An interesting feature of the drift-diffusion-jump model is

that conditional variance and diffusion estimates may be useful for

distinguishing bifurcations that occur in the drift from bifurcations

that occur in the diffusion (so-called noise-induced transitions: an

abrupt shift in the shape of the stationary distribution as in [37]). A

bifurcation in the drift only may be indicated in advance by

conditional variance but not diffusion. A bifurcation in the

diffusion may be indicated by increases in both conditional

variance and diffusion.

Time-varying AR(p) models. Time-varying autoregressive

models provide a model-based approach for estimating time-

dependent return rates in time series [38], which as we noted in

the earlier section can act as an early warning of a critical

transition. In time-invariant AR(p) models, the inverse of the

characteristic root, l, of a fitted AR(p) model [39] is similar in

magnitude to the dominant eigenvalue of the Jacobian matrix

computed at a stationary point of a deterministic discrete-time

model [18]. Values of l near zero imply that the state variable

returns rapidly towards the mean; this central tendency diminishes

as values approach one [22].

Time-varying AR(p) models assume that the coefficients of the

AR(p) model can change through time, thereby allowing

estimation of the time-dependent characteristic root as it varies

along a time series up to a transition [38]. The general form of

time-varying AR(p) models is

x(t)~b0(t{1)z
Xp

i~1

bi(t{1)(x(t{i){b0(t{1))ze(t) ð4aÞ

Table 2. BDS statistic estimated on the critical slowing down and flickering datasets with measurement error.

BDS statistic First-difference detrending AR(1) residuals GARCH(0,1) residuals

e (standard deviation)

0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

critical slowing down dataset

embedding
dimension

2 9.434* 9.013* 8.424* 9.499* 8.911* 8.462* 6.748* 6.343* 5.605*

3 8.346* 8.042* 7.497* 8.379* 7.639* 7.307* 6.089* 5.469* 4.802*

flickering dataset

embedding
dimension

2 16.033* 16.33* 16.754* 15.476* 15.866* 16.332* 1.087 0.974 0.820

3 17.599* 17.821* 18.039* 16.999* 17.304* 17.577* 3.472** 3.389** 3.155**

*P,0.001,
**P = 0.001.
In all cases, the BDS test was significantly identifying nonlinearity after 1,000 bootstrapping iterations, except for GARCH residuals from the flickering dataset.
doi:10.1371/journal.pone.0041010.t002
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bi(t)~bi(t{1)zwi(t) ð4bÞ

Equation 4a is a standard AR(p) model with coefficient b0

determining the mean of the time series, autoregressive coefficients

bi determining the dynamics around the mean, and e(t) giving the

environmental variability associated with changes in the state

variable; e(t) is assumed to be a Gaussian random variable with

mean zero and variance s2
e. Equation 4b allows the coefficients bi

to vary as random walks, with rates dictated by the variances s2
i of

wi(t).

We incorporate measurement error using the measurement

equation

x � (t)~x(t)za(t) ð5Þ

in which x*(t) is the observed value of the state variable, x(t) is the

‘‘true’’ modeled value, and a(t) is a Gaussian random variable with

mean zero and variance s2
a. This makes it possible to factor out

measurement error that could potentially obscure underlying

dynamical patterns [38].

Together, equations 4a and 4b are a state-space model that can

be fit using a Kalman filter [40]. Although we present the model

Figure 5. Nonparametric drift-diffusion-jump metrics in the critical slowing down dataset. (A) Time series of the state variable (resource
biomass). (B, F) Conditional variance versus time and resource biomass respectively. (C, G) Total variance versus time and resource biomass
respectively. (D, H) Diffusion versus time and resource biomass respectively. (G, I) Jump intensity versus time and resource biomass respectively.
doi:10.1371/journal.pone.0041010.g005
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assuming that data are sampled at equidistant points through time,

the state-space structure allows for missing points. Fitting with a

Kalman filter gives maximum likelihood parameter estimates, and

likelihood ratio tests (LRT) can be used for statistical inference

about the parameter estimates. Likelihood-based model selection

such as Akaike’s Information Criterion (AIC) can also be used

[38]. Because the variance components of the model, s2
i, are

constrained to be zero, a standard LRT is overly conservative; the

calculated P-values are too large, leading to acceptance of the null

hypothesis that s2
i = 0 even when it is false. To correct for this, the

LRT can be performed using the relationship that the twice the

difference in log likelihoods between models differing by q in the

number of terms s2
i they contain is given asymptotically by a

50:50 mixture distribution of x2
(q-1) and x 2

q. [41,42]. Therefore,

the corrected P-value is the average of P-values calculated from the

two x2 distributions. Since P(x2
(q-1),x) is less than P(x2

q,x), this

always leads to lower P-values than would be obtained from a

standard LRT based on x2
q alone.

Threshold AR(p) models. As described above, flickering

occurs when a time series repeatedly crosses the domains of

attraction of two alternative states. Identifying flickering can serve

as an early warning for a permanent shift to an alternative state

[6]. The difficulty lies in robustly estimating that a time series is

jumping among two (or more) distinct states. Threshold AR(p)

Figure 6. Nonparametric drift-diffusion-jump metrics in the flickering dataset. (A) Time series of the state variable (resource biomass). (B, F)
Conditional variance versus time and biomass respectively. (C, G) Total variance versus time and resource biomass respectively. (D, H) Diffusion versus
time and resource biomass respectively. (G, I) Jump intensity versus time and resource biomass respectively.
doi:10.1371/journal.pone.0041010.g006
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models are designed to identify these occasional transitions [38].

These models assume there are two underlying processes

governing the dynamics in a time series, with the possibility that

the state variable switches between them when it crosses a

threshold. The two processes are described by two AR(p) models

x(t)~b0z
Xp

i~1

bi(x(t{i){b0)ze(t) when x(t{1)ƒc ð6aÞ

Figure 7. Fitting time-varying AR(n) models to the critical slowing down and flickering datasets. (A) Time-varying AR(1) model fit to the
critical slowing down dataset. Differences between the fitted trajectory (blue line) and the simulated data (black dots) are attributed to measurement
error. The green line gives the time-varying estimate of b0(t) from the AR(1). Parameter estimates are: b0 = 1.263, b1 = 0.278, se = 0.154, sa = 0.113, and
s1 = 0.015, and the log likelihood is 150.838. (B) Time-varying AR(3) model fit to the critical slowing down dataset. Parameter estimates are: b0 = 1.284,
b1 = 0.342, b2 = 0.02, b3 = 0.139, se = 0.116, sa = 0.141, s1 = 0.019, s2 = 0.015, and s3,0.001, and the log likelihood is 154.102. (C, D) The inverse of the
characteristic root for the AR(1) and AR(3) time-varying models respectively.
doi:10.1371/journal.pone.0041010.g007

Figure 8. Fitting a threshold AR(3) model to the flickering dataset. Differences between the fitted trajectory (blue line) and the simulated
data (black dots) are attributed to measurement error. The green line gives the estimates of b0(t) and b0’(t), and the yellow line gives the threshold c
which separates the two AR(3) processes. Parameter estimates are: b0 = 20.941, b0’ = 0.797, b1 = 1.192, b1’ = 1.22, b2 = 0.069, b2’ = 20.231, b3 = 20.326,
b3’ = 20.135, c = 0.1, se = 0.125, and se = 0.054, and the log likelihood = 238.954.
doi:10.1371/journal.pone.0041010.g008
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x(t)~b
0
0z

Xp

i~1

b
0
i (x(t{i){b

0
0)ze(t) when x(t{1)wc ð6bÞ

where bi and bi9 (i = 0, …, p) denote separate sets of coefficients. As

with the time-varying AR(p) models (eqs 4), equation 5 is used to

incorporate measurement error, and the Kalman filter is used to

compute likelihoods in eqs 6, which in turn can be used for

parameter estimation and model selection. In addition to the two

sets of autoregression parameters bi and bi9, parameters to be

estimated are the threshold c, and the variance of the process error

s2
e.

Potential analysis. An alternative way of probing the

existence of alternative regimes in a time series is potential

analysis. Just like threshold AR(p) models, this method in essence

identifies flickering and serves as warning of the existence of

alternative states. Potential analysis [43,44] is a technique for

deriving the shape of the underlying potential of a system.

Potential analysis assumes that a time series may be approximated

by a stochastic potential equation

dZ~{
dU

dz
dtzsdW ð7Þ

where dU/dz is a polynomial potential of even order (2nd for one-

well potential, 4th for double-well potential, etc.), dW is white noise

of unit variance and intensity s. The order of the best-fit

polynomial in essence reflects the number of potential system

states identified along the time series [43,44].

Threshold AR(p) models and potential analysis are not, strictly

speaking, early warnings for critical transitions, as flickering

implies that the system already has undergone repeated state

changes. Nonetheless flickering detection methods can robustly

indicate the presence of alternative regimes during the period that

the system has not permanently shifted to the alternative attractor.

Datasets
We applied all methods to simulated time series - in which we

are certain that a critical transition was crossed - rather than on

real-world time series to illustrate the application of the methods

across identical datasets. There are few available real-world time

series that exhibit transitions, and for most of them there is no

clear evidence that the transition is of the critical type we are

treating here. Thus, for the illustrative purposes of our method-

ological paper, simulated datasets allowed us to compare the

methods independently of uncertainties in the presence of a critical

transition, data limitations, or insufficient data resolution that are

common in empirical time series.

The two time series used were generated by a well-studied

ecological model that describes the shift of a harvested resource to

overexploitation [45,46]. In the model, resource biomass x grows

logistically and is harvested according to

dx~(rx(1{
x

K
){c

x2

x2zh2
)dtzsxdW ð8Þ

where r is the growth rate, K is the population’s carrying-capacity,

h is the half-saturation constant, c is the grazing rate and dW is a

white noise process with intensity (sx)2/dt. In the deterministic

Figure 9. Potential analysis for the critical slowing down and flickering datasets. The potential contour plot represents the number of
detected wells (states) of the system potential (x-axis corresponds to the time scale of the series, and y-axis is the size of the rolling window for
detection). A change in the color of the potential plot along all time scales (vertically) denotes a critical transition in the time series.
doi:10.1371/journal.pone.0041010.g009
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Figure 10. Sensitivity analysis for rolling window metrics (autocorrelation (AR1), standard deviation, and skewness) for the critical
slowing down dataset. Contour plots show the effect of the width of the rolling window and Gaussian filtering on the observed trend in the
metrics as measured by the Kendall’s t (A, C, E). Upside triangles indicate the parameter choice used in the analyses presented in the text. The
histograms give the frequency distribution of the trend statistic (B, D, F).
doi:10.1371/journal.pone.0041010.g010
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Figure 11. Significance testing for rolling window metrics (autocorrelation at-lag-1 (AR1), standard deviation, and skewness) for
the critical slowing down dataset. (A, C, E) Contour plots of P values estimated from distributions of Kendall trend statistics derived from
surrogate datasets for different rolling window lengths and sizes of Gaussian filtering. The surrogate datasets were produced from the best-fit ARMA
model on the residual records of the critical slowing down dataset. P values were derived from probability distributions of the estimated trend
statistic for a set of 1,000 surrogate datasets for a combination of a rolling window size and Gaussian filtering. For example, panels B, D, F show the
distribution of Kendall trends estimated on 1,000 surrogates of the original residual dataset for rolling window size and Gaussian filtering as the one
presented in the text. Black vertical lines indicate the P = 0.1 significance level and the upside open triangle is the actual Kendall trend estimated on
the original residual dataset for rolling window size and Gaussian filtering as the one presented in the text (upside solid triangle in A, C, E).
doi:10.1371/journal.pone.0041010.g011

Early Warning Detection Methods

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e41010



case, when c reaches a certain threshold value (c < 2.604), the

ecosystem undergoes a critical transition to overexploitation

through a fold bifurcation (Fig. 1A).

We simulated time series for two cases. In the first case (which

we henceforth call the critical slowing down or CSD dataset), we

increased grazing rate c linearly in 1,000 time steps from 1 to

2.6771 (just after the bifurcation). At approximately time step 970

the system shifted to overexploitation (Fig. 1B). Parameter values

used were r = 1, h = 1, K = 10, s = 0.03. The values were not

parameterized for specific cases, but are similar to ones typically

used in the literature (e.g. [45,47,48]). In the second case (which

we henceforth call the flickering dataset), we again increased

grazing rate c linearly from 1 to 2.6771 but in 10,000 time steps

(Fig. 1C). In the flickering dataset, we additionally assumed a small

time-correlated inflow i of resource biomass that was generated by

a simple equation for red noise scaled to the resource biomass x

[49]: itz1~((1{ 1
T

)itzbgt)xt, where T is a parameter that

represents the time scale over which noise becomes uncorrelated

( = 20), and b the standard deviation ( = 0.07) of the normally

distributed error term gt. Parameter values used were r = 1, h = 1,

Figure 12. Flowchart for detecting early warning signals for critical transitions in time series. Solid arrows represent the procedure
presented in the text. Dotted arrows represent interactions that affect different steps in the detection of early warning and that need to be taken into
account in the interpretation of the signals.
doi:10.1371/journal.pone.0041010.g012

Table 3. Rules of thumb for avoiding bottlenecks in detecting early warning signals in time series.

Method/Indicator Preprocessing
Filtering/
Detrending Sensitivity Significance

interpolation transformations rolling window size filtering

Autocorrelation at-lag-1 necessary1 depends on data + + + null model3

Detrended Fluctuation Analysis necessary1 no + + 25 null model3

Standard deviation no depends on data + + + null model3

Skewness no depends on data + + + null model3

Kurtosis no depends on data + + + null model4

Conditional Heteroskedasticity no depends on data 2 + 2 built-in

BDS test no no + 22 + bootstrapping

Time-varying AR(p) models no log-transform + 2 2 built-in

Nonparametric Drift-Diffusion-Jump models no log-transform 2 2 24 MC error
estimates

Threshold AR(p) models no log-transform 2 2 2 built-in

Potential Analysis no no n/a + 2 null model3

1only when there are too many missing values.
2to be applied only for rolling windows of .500 points.
3choice of null model contingent on system.
4depends on bandwidth of Gaussian kernel smoother.
5only polynomial detrending within rolling window.
[+: sensitive to; 2: insensitive to; n/a: not applicable].
doi:10.1371/journal.pone.0041010.t003
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K = 10, s = 0.15. For both scenarios we also included measure-

ment error in the derived time series xobs,t = xt + sobserr et, where

sobserr is the standard deviation of the normally distributed error

term et. We used sobserr = 0.1 for both the CSD and flickering

datasets.

All simulated time series were produced in MATLAB R2011a

using the software package GRIND (freely available at http://

www.aew.wur.nl/UK/GRIND/). The estimation of the leading

indicators was performed in R v.2.12.0 (http://www.r-project.

org/) using R package earlywarnings (that can be downloaded at

http://earlywarnings.r-forge.r-project.org/), except for the DFA

and potential analysis, which were performed in MATLAB

R2011a using Fortran and C computational kernels with shell

scripts (can be obtained from VNL V.Livina@uea.ac.uk), and the

time-varying AR(p) and threshold AR(p) models that were

performed in MATLAB R2011a (and are available as supporting

information in [38]). Further worked out examples can be also

found at http://www.early-warning-signals.org.

Results

We present results here assuming that the only available

information to a practitioner is a time series derived from a system,

which may be approaching a critical transition. The analysis is

presented as a step-by-step procedure that starts with the

preparation of the simulated time series (step 1, 2), the estimation

of the leading indicators (step 3), and the testing of their sensitivity

(step 4) and significance (step 5).

Step 1 Preprocessing
To sensibly apply leading indicators, we first selected the part of

the time series that preceded the potential transition. For most

methods the estimation of the indicators takes place within rolling

windows of predetermined size up to the end of the time series

prior to the transition. We selected data up to time-step 970 in the

CSD dataset (Fig. 1B). We used the whole time series of the

‘flickering dataset, as it was difficult to clearly identify when the

transition took place. We ensured that there were no missing

values and that all data were equally spaced in time (i.e. a regular

time series). Regular time series are especially important in the

case of leading indicators such as autocorrelation that estimate

memory in time series. Interpolation can solve issues of missing

values and irregular time series, but it can also result in spurious

correlations, and checking interpolated records against the original

time series to ensure that the density of interpolated points is

constant along the time series should be considered [8].

Alternatively, points can also be dropped to obtain a regular time

series. However, all the methods we used in this paper can also be

applied to irregular time series as well as regular ones.

Equally important is the frequency of observations, that is, the

time interval between values in the time series. In many cases data

are recorded at different frequencies from the ones needed for the

methods we illustrate. In principle, one needs data that are

sampled at intervals shorter than the characteristic time scales of

the slowest return rate of the system, especially when measuring

indicators of critical slowing down [19,50]. Averaging within non-

intersecting windows of a given length results in records of longer

time scales that may match the underlying dynamics of interest in

the studied system [19,27]. Choosing the length of the window to

aggregate, however, depends on a fairly deep understanding of the

dynamics of the system. In addition, aggregation also may solve

the issue of missing values, although at the cost of losing data.

Here, we did not need to aggregate our datasets because both were

sampled in time scales that represented the characteristic time

scale of the system we simulated.

We also transformed data where necessary. For example, we

log-transformed (using log(z+1)) and in some cases also standard-

ized [ztrans~
z{ẑz

sz

] the flickering dataset, because of the presence

of values close to zero or extreme values, respectively. We checked

that data transformations did not change fundamentally the

distribution of the original data, as it is exactly the deviations from

constant normal distributions that the early warnings are sensitive

to.

Step 2 Filtering-detrending
Non-stationarities in the mean of the time series can cause

spurious indications of impending transitions, especially for the

metrics that are estimated within rolling windows. Additionally,

time series may be characterized by strong seasonal periodicities,

which, if not removed, impose a strong correlation structure on the

time series. For all metrics that were estimated within rolling

windows, we removed trends or filtered out high frequencies using

Gaussian smoothing (autocorrelation, variance, skewness), simple

linear detrending (DFA), or by fitting linear autoregressive models

(conditional heteroskedasticity). When applying these or any other

type of detrending or filtering (i.e. first-differences, removing

running means, loess smoothing), care should be taken to not over-

fit or filter out the slow dynamics (of interest) from the dataset [8].

Alternatively, one could also detrend within the rolling windows

rather than the entire dataset. Lenton et al [27] have shown that

results from the two approaches do not significantly differ.

Step 3 Probing the Signals: Metric-based Indicators
Autocorrelation, variance and skewness. We estimated

autocorrelation, variance (as standard deviation), and skewness

within rolling windows half the size of the datasets (window

sizeCSD = 485 points, window sizeflickering = 5,000 points) (Fig. 2).

We did that after detrending the CSD dataset using Gaussian

smoothing with bandwidth size 10% of the time series length

(Fig. 2A). We used a sliding (overlapping) moving window based

on the idea that indicators should be estimated as data are

becoming available. Using nonoverlapping moving windows,

however, would give similar results [27]. Autocorrelation at-lag-1

increased almost linearly up to the transition with a strong trend as

estimated by Kendall’s t (rank correlation) both for the original

(t= 0.911) and the residual (after detrending) datasets (t= 0.944)

(Fig. 2E). Standard deviations also increased in both original and

detrended records as expected (Fig. 2G), while skewness generally

decreased (t= 20.436 for the original data, t= 20.475 for the

residuals after detrending), but in a somewhat irregular fashion

(Fig. 2I). All indicators behaved according to our expectations for

systems gradually approaching a critical transition, as may be seen

in detail for all rolling window metrics associated to critical slowing

down in Figures S1, S2 in the Supporting Information.

We estimated the same indicators for the flickering dataset on

raw and log-transformed and standardized data (Fig. 2B, D).

Autocorrelation (Fig. 2F) and skewness (Fig. 2J) increased, whereas

standard deviation increased up to near time-step 8,000, after

which it started to decline (Fig. 2H). In the flickering dataset, as the

system was approaching the transition, excursions to the

alternative attractor became more frequent (after time-step

2,000; Fig. 2B). The time series consisted of segments belonging

to one or the other state (Fig. 1A). Autocorrelation was close to 1

and increased weakly (Fig. 2F). Progressively, segments belonging

to the overexploited state became longer. As a result, standard

deviation increased, but only up to the point where frequent
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transitions across the two attractors persisted (approx. up to time-

step 8,000). After this point, the standard deviation decreased as

only few points belonged to the underexploited state. Standard-

izing the data did not change the declining trend towards the end

of the dataset, but only reduced its magnitude (Fig. 2H). The same

few excursions to the underexploited state in the last part of the

time series were responsible for the rise in skewness.

Autocorrelation at-lag-1 captured in a parsimonious way the

changes in the correlation properties of a time series approaching a

transition with respect to critical slowing down. A more complete

picture of the changes in the spectral properties of the two datasets

was also obtained by estimating the full variance spectrum using

wavelet analysis (Fig. S3, S4 in the Supporting Information).

Detrended fluctuation analysis. The DFA indicator sig-

naled an increase in the short-term memory for both datasets

(Fig. 3B, D). It was estimated in rolling windows of half the size of

the original record after removing a simple linear trend for both

datasets. Despite oscillations, we could quantify its trend using

Kendall’s t. The values of the DFA indicator suggested that the

CSD dataset was approaching the critical value of 1 (transition),

whereas it was just below and above 1 in the flickering dataset (at

the transition) implying that the latter system had exceeded the

critical point and was nonstationary. These values resembled the

approaching 1 (Fig. 2E) and close to 1 (Fig. 2F) values of

autocorrelation at-lag-1.

Conditional heteroskedasticity. Conditional heteroskedas-

ticity (CH) was estimated in rolling windows of 10% the size of the

time series (Fig. 4). Within each rolling window we fit an

autoregressive model selected using AIC from a suite of AR(p)

models applied to the original data (Fig. 4A, B). Although

measurement and process error remained constant in our datasets,

we chose a relatively small rolling window size to minimize the

chance of estimating an artificially large CH caused by increasing

noise along the time series. We found significant CH (at P = 0.1)

along the CSD dataset, which became consistently significant at

the last part of the record (close to the transition) (Fig. 4C). In the

flickering dataset, CH was always significant and its value even

showed an increasing trend towards the end of the record (Fig. 4D).

BDS test. We removed the underlying linear structure by

first-differencing, fitting an AR(1), or fitting a GARCH(0,1)) to the

entire datasets after log-transforming. The remaining detrended

data or the residuals were used to estimate the BDS statistic for

embedding dimensions 2 and 3, and e values 0.5, 0.75, and 1 times

the observed standard deviation of the time series (Table 2). For

each case, the significance of the BDS statistics was calculated

using 1,000 bootstrap iterations. Results for both datasets showed

significant BDS tests based on bootstrapping (Table 2). The only

exception was the case of the residuals from the GARCH(0,1)

model with embedding dimension 2 in the flickering dataset

(Table 2). Thus, in general, the BDS statistic provided strong

evidence for nonlinearity. In principle, we could have also applied

the BDS statistic within rolling windows to flag a potentially

increasing nonlinearity in a time series that is approaching a

transition. However, when we tested this hypothesis, we did not

get consistent results (not shown). The fact that the BDS test

requires a large number of observations for a reliable estimate and

that it is sensitive to data preprocessing and filtering choices are

the main reasons that limit its use as a rolling window metric.

Step 3 Probing the Signals: Model-based Indicators
Nonparametric drift-diffusion-jump models. The non-

parametric DDJ model was not applied on rolling windows, but to

the entire time series after log-transforming the data. We found an

increase in conditional and total variance as well as in jump

intensity in the CSD dataset (Fig. 5B, C, E) and a decrease in the

diffusion term (Fig. 5D). The trends were noisy, but they became

very clear when plotted against biomass values (due to smoothing)

(Fig. 5F–I). For log-transformed values between 1.6 and 1.8, the

indicators started to signal the upcoming transition. In the

flickering dataset the indicators were very noisy and quite

uninformative when plotted against time (Fig. 6B–E). However,

after time-step 2,000, conditional variance, total variance, and

jump intensity peaked and fluctuated between their maximum and

minimum values. When we plotted the indicators versus biomass;

the nonparametric variance related functions (Fig. 6F, G, I)

increased as biomass declined from 2 to 0. These values

corresponded roughly to the limit between the two alternative

states (log biomass of zero and 2) (Fig. 6A). This example shows

that plotting nonparametric indicators versus the monitored

variable may be more informative than plotting indicators over

time.

Time-varying AR(p) models. We fitted time-varying AR(p)

models with p = 1, 2, and 3 to the CSD dataset after log-

transforming and standardizing the data. For all cases, we

computed time-varying AR(p) models for which only the mean,

b0, was allowed to vary through time and compared them to AR(p)

models for which both the mean and the autoregressive

coefficients (bi, i $1) were allowed to vary with time. The log-

likelihood ratio test (LRT) indicated that the models with varying

autoregressive coefficients were significantly better than the mean-

varying-only models (x2
0+ x2

1 = 37.1, P,0.0001 for AR(1); x2
1+

x2
2 = 44.3, P,0.0001, for AR(2); and x2

2+ x2
3 = 46.1, P,0.0001,

for AR(3)). Comparing across models, the best fit was derived with

the time-varying AR(1) model (DAIC = 2.2758 and 0.8059 for

p = 2 and 3, respectively) (Fig. 7A); the difference in the AIC

between the time-varying AR(1) and AR(3) models, however, was

small (Fig. 7B). We therefore computed the inverse of the

characteristic root l of both time-varying AR(1) and AR(3) models

at each point in the time series from the estimates of their

autoregressive coefficients bi(t) (Fig. 7C, D). Values of l approach-

ing 1 imply critical slowing down, while values of l.1 imply loss of

stationarity. We found a clear increasing trend in l (t= 0.736) in

the case of the time-varying AR(1) model (Fig. 7C), as the time

series approached the transition. The trend in l for the time-

varying AR(3) model was weaker (t= 0.164), less smooth, and in

some cases exceeded 1, indicating strong excursions to nonstatio-

narity (Fig. 6D). This suggests that the results of fitting time-

varying AR(p) models might be more clear if simpler models (with

lower p) are used.

Threshold AR(p) models. We fitted the threshold AR(p)

model to only the flickering dataset as the method was developed

to detect transitions in time series that jump between multiple

states (Fig. 1B) [38]. The threshold AR(p) model was applied on

log-transformed and standardized data. To simplify the analysis,

we only used a subset of the original dataset, specifically

observations between time step 7,200 and 7,700 (n = 500 points)

(Fig. 8). We assumed that the time series was produced by two

AR(p) processes of the same order. We tested orders of p = 1, 2,

and 3 and found that the best-fitting model was an AR(3), with

less-good fits for p = 1 (DAIC = 36.67) and p = 2 (DAIC = 1.75).

The fit of the threshold AR(3) model was significantly better than

the fit of a simple AR(3) (x2
4+ x2

5 = 27.79, P,0.0001). The tests of

the same comparison were similarly significant for the AR(1) (x2
2+

x2
3 = 18.07, P,0.0004) and AR(2) (x2

3+ x2
4 = 20.88, P,0.0003)

(Fig. 8). The consistent results from the fitted threshold AR(p)

models confirmed that the dataset was characterized by two

distinct states, which suggests that in the future the system may

eventually stabilize in the alternative state.
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Potential analysis. Contrary to the threshold AR(p) model

fitting, potential analysis was performed within rolling windows of

different size (ranging from 10 to half the size of the dataset). We

applied it on untransformed data for both CSD and flickering

datasets (Fig. 9). In the CSD dataset, we found that the method

detected predominantly 1 state along the entire time series

regardless of window size (red color Fig. 9A), but, interestingly,

also identified two states especially for large size rolling windows

(green color Fig. 9A). In the flickering dataset, one state was largely

identified for most of the time series, except from the last 2,000

points onwards when multiple states where identified (Fig. 9B).

Such high number of detected states meant that, in principle, the

data were on the edge of having no clear potential.

Step 4 Sensitivity Analysis
The utility of each of the leading indicators depends on the

characteristics of the particular datasets we explored, and the

specific choices made when performing the analyses, e.g., data

transformations or detrending/filtering. Thus, it is necessary to

check the robustness of our results to such choices. Here we did

this for autocorrelation, standard deviation and skewness in the

CSD dataset to illustrate that assumptions over specific parameters

in the estimation of leading indicators need to be accompanied by

a sensitivity analysis. In particular, we investigated the robustness

of our rolling window metric results to the size of rolling windows

and the degree of smoothing (filtering bandwidth). For this, we

estimated autocorrelation, standard deviation and skewness in

window sizes ranging from 25% to 75% of the time series length in

increments of 10 points, and for bandwidths ranging from 5 to 200

in increments of 20 [8]. We quantified trends for all combinations

of these two parameters using Kendall’s t - although other

quantifications of the trends can also be used. It is important to

note that increasing but oscillating trends in the indicators can

produce weak or even negative t’s, and thus special care should be

taken in the interpretation of the results of the sensitivity analysis.

We found that autocorrelation at-lag-1 increased rapidly

regardless of the bandwidth choice and the size of the rolling

window (Fig. 10A, B). We found similar strong trends for standard

deviation, even if there were negative trends identified for small

bandwidths (Fig. 10C, D). This was probably due to the fact that

small bandwidths over-fit the data and removed most of the

variability, which the standard deviation was expected to capture.

Trends in skewness were weaker, but mostly as expected (Fig. 10E,

F). Although such sensitivity plots can guide in selecting the

bandwidth and rolling window size to maximize the estimated

trend, the specific choices of these two parameters should always

be done according to the characteristics of the time series used. For

instance, the choice of the rolling window size depends on a trade-

off between availability of data and reliability of the estimation of

the indicators [8]. We also did a sensitivity analysis for DFA

exponents for both datasets (Fig. 3 E, F). The DFA exponent

showed strong positive trends for both datasets. Similar sensitivity

analysis on specific choices of parameters used should be

conducted for any leading indicator applied to any time series.

Step 5 Significance Testing
Although sensitivity analysis was important for testing the

robustness of our results, it was equally important to test the

significance of our results. Significance testing is especially relevant

for identifying false positives (or type I errors): that trends in the

indicators are not due to random chance. Some of the methods

have built-in significance testing procedures (like conditional

heteroskedasticity and the BDS test). The model-based indicators

also allow for formal significance testing and model selection (e.g.,

the time-varying and threshold AR(p) models, and the potential

analysis). The nonparametric DDJ model can be simulated after

fitting to produce pseudo-data in Monte Carlo simulations that

can be refitted to compute error estimates for total variance and

jump intensity from the ensemble of fits [16].

For the remainder of the rolling window metrics, there is no

built-in way to test a null hypothesis. The problem lies in the

difficulty of specifying the exact null hypothesis, as it is not clear

which particular data generating process could be used as the null

model. Here, we suggest that the simplest null hypothesis one

could imagine is that the trend estimates of the indicators are due

to chance alone. To test this null hypothesis, we produced

surrogate datasets to compare trend estimates in the original

record with trend estimates obtained from records that have the

same correlation structure and probability distribution as the

original dataset, but that were produced by linear stationary

processes [8]. Surrogate datasets can be obtained by different

approaches, including generating data with the same Fourier

spectrum and amplitudes [8,51], or generating data from the

simplest fitted linear first-order autoregressive model. Although

these are only some of the ways surrogate data can be produced to

test for trends [52], we used here a more general approach. We fit

the best linear autoregressive moving average model (ARMA(p,q))

based on AIC to residuals (after detrending/filtering), then

generated 1,000 simulated datasets of the same length as the

residual time series. For each simulated dataset, we estimated the

trend of the rolling window metric (in particular we only tested for

autocorrelation at-lag-1, standard deviation, and skewness) using

Kendall’s t. We compared the Kendall t of the original data to the

number of cases in which the statistic was equal to or smaller than

the estimates of the simulated records, P (t*#t). We estimated this

probability for all combinations of bandwidth and rolling window

size as we did for the sensitivity analysis (Fig. 10).

We found that the increasing trends for autocorrelation at-lag-1

were significant (P,0.025) for any combination of rolling window

size and filtering bandwidth (Fig. 11A, B), and P#0.001 for the

parameters we used in Fig. 1. Similar significant trends were

estimated for the standard deviation with a few exceptions

(Fig. 11C, D, P = 0.073 for original choice of parameters in the

CSD dataset). Skewness trends were not significant, however

(Fig. 11E, F, P = 0.8 for original choices of CSD dataset).

Whatever statistical testing is used, the conclusions will depend

on the specific model chosen either to fit data in the case of model-

based approaches, or to produce simulated records for metric-

based approaches. Thus, when interpreting significance testing of

leading indicators estimates, one needs to take these considerations

into account.

Discussion

In this paper we applied a range of proposed early warning

signals for critical transitions to two simulated time series. We

presented a framework of combining metric-based indicators and

model-based indicators to time series data to successfully identify an

upcoming critical transition (Fig. 12). We found that there was no

single best indicator or method for identifying an upcoming

transition in line with previous studies [16,48,53]. Also, all

methods required specific data-treatment to yield sensible signals

(Table 3). This observation across all methods for the same

datasets stresses that a combination of approaches is the best way

to determine whether there is a robust signal of an imminent

transition in a time series.

We only analyzed time series of a simulated ecological variable

(resource biomass), however, our methods can equally be applied
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for time series representing any other response of interest:

biological (e.g. gene expression), climatic (e.g. daily temperature),

physiological (e.g. respiratory rhythm), social (e.g. numbers of

tweets), or financial (i.e. price of a stock). In all these cases, if the

system in question undergoes a critical transition through a fold

bifurcation, we expect the indicators to behave in a similar way as

we presented here. It is worthwhile testing this expectation on

simulated data from such disparate systems, or even testing the

indicators for other types of critical transitions than the ones we

treated here. The big challenge for the future, though, is to test the

indicators on real-world time series. Most studies so far have

treated only subsets of indicators on real time series. Using our

framework to test indicators on real-world time series will highlight

limitations in the application and interpretation of the indicators

other than the ones we presented here. Future work is needed

towards this direction.

Nonetheless, our framework of combining metric-based and

model-based indicators to detect critical transitions is encouraging

as it may reduce the chance of false alarms. For instance, a

systematic increase in the external noise over the period leading up

to a shift can signal an increase in variance indicators [29], but not

memory indicators (Table 1). However, cross-validation does not

exclude the possibility of ‘missed alarms’ - cases where the

indicators will not signal an approaching transition. Missed alarms

can occur especially for transitions between attractors induced by

major perturbations, or chaotic dynamics far from local bifurca-

tion points [15]. Importantly, early warnings can only signal an

upcoming transition if conditions slowly move the system towards

a bifurcation. This excludes their applicability for instance to

situations in which external forcing changes are faster than the

response rate of the system [14].

Clearly the possibility of false alarms or missed signals is difficult

to eliminate. Even in the case of a simulated time series that is

known to be approaching a transition, certain methods may not be

very informative [48]. By using single realizations from model-

generated time series, we have been able to compare different

methods on typical dynamical behaviors that occur before a

critical transition. It will be worthwhile to robustly evaluate the

performance of the different methods to quantify their reliability in

signaling upcoming transitions. This could be done either

statistically, by estimating indicators on multiple realizations of

model generated time series, or by blind-testing the different

methods on multiple datasets (e.g. [54]). Our results caution,

however, that in all cases the performance of any method, as well

as the interpretations based on them, will strongly depend on the

characteristics of the actual time series tested.

In view of the limited scope of generic early warning signals,

specific knowledge of the system may be of great use to reduce

uncertainty. For instance, information about the noise level can

help correct early warning estimates [55], or information on

measurement error can be incorporated in the time-varying and

threshold AR(p) model-based methods to improve estimation [38].

However, the most important source of information is insight

about the drivers (or slow variables) that affect the stability

properties of the system. For example, incorporating dynamics of

drivers in the general model structure of time-varying AR(p) or

Drift-Diffusion-Jump nonparametric model-based methods can

greatly improve the estimation of early warnings. In other cases,

information on drivers may offer evidence in support of

concordant indicators, or can help explain why different indicators

give different results [5].

In addition, driver-response relationships can help build

mechanistic models of how the system works. On the one hand,

such models can be used for estimating early warnings directly.

For instance, generalized models in the presence of limited data

can help measure critical slowing down [56]. Early warnings

combined with dynamic linear modeling also can improve the

estimation of indicators when information on mechanisms is

limited [28]. On the other hand, such models can be used for

building null models to statistically test the significance of most

indicators.

Unfortunately, knowledge to build such specific mechanistic

models is limited in most cases. In the extreme case, the only

source of information available is a time series of a response

variable, as in the datasets we analyzed here. Of course, in practice

there are typically some other available data on drivers, triggers, or

other processes, but mechanistic understanding differs widely

between systems. The families of metric- and model-based generic

early warnings offer the opportunity to identify upcoming

transitions even in the absence of any specific knowledge over

the underlying generating process. Moreover, advances in data

collection and high frequency monitoring can increase confidence

in the potential of using early warnings in cases where mechanistic

understanding is limited.

Such high frequency observations might also lead to considering

alternative methods. For instance, for high frequency data with

inherent periodicities, such as electroencephalogram (EEG) time

series of neural activity, Fourier decomposition or wavelet analysis

may prove useful. In the Supporting Information (Fig. S4), we

illustrate the potential application of wavelet analysis for such data,

but such period decomposition techniques have not yet been fully

tested for detecting critical transitions.

In other cases, observations of multiple time series may be

available. Monitoring .1 species in a community, or measuring

the activity of numerous neural cells yields multivariate time series

that could enhance our ability to detect approaching transitions. In

such case, multivariate indices (like covariances) can be used [23],

or extensions of the univariate time-varying AR(p) models to

multivariate analogs have been proposed [38]. Similarly, spatial

data can be of added value as spatial information may also provide

early warning signals. Some of these signals are in fact

mathematical analogs of the signals in time series indicators

(spatial variance [57], spatial skewness [58], spatial autocorrelation

[59]), while others can be system-specific, such as patch shape [60]

and patch size distribution [61,62]. These spatial indicators can be

combined with the indicators for time series presented here to

provide more reliable signals [53]. We treat spatial indicators in

depth in a separate paper.

Clearly we face formidable uncertainty when it comes to

making decisions in the prospect of potential upcoming transitions.

This uncertainty stems from multiple factors including imprecise

forecasts, insufficient data, and hidden nonlinearities [63,64] as

well as from the peculiarities in perception and tolerance of risk.

Our framework for using early warning signals may help pave the

way to a more robust evaluation of the risk of imminent

transitions. Testing our framework in real world datasets is the

next step towards that direction.

Supporting Information

Figure S1 Rolling Window Metrics: Autocorrelation at-
lag-1 (ACF(1) and AR(1)), Spectral ratio, Return rate,
Standard Deviation, Coefficient of Variation, Skewness,
Kurtosis for the filtered critical slowing down dataset.

(TIF)

Figure S2 Rolling Window Metrics: Autocorrelation at-
lag-1 (ACF(1) and AR(1)), Spectral ratio, Return rate,
Standard Deviation, Coefficient of Variation, Skewness,
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Kurtosis for the unfiltered (original) critical slowing
down dataset.
(TIF)

Figure S3 Spectral densities and spectral exponent for
the critical slowing down and flickering datasets.
(TIF)

Figure S4 Wavelet analysis for the critical slowing down
and flickering datasets.
(TIF)
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