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ABSTRACT
Background: Mixture models (MM) can be used to describe mixed stocks

considering three sets of parameters: the total number of contributing sources, their

chemical baseline signatures and their mixing proportions. When all nursery sources

have been previously identified and sampled for juvenile fish to produce baseline

nursery-signatures, mixing proportions are the only unknown set of parameters to

be estimated from the mixed-stock data. Otherwise, the number of sources, as well as

some/all nursery-signatures may need to be also estimated from the mixed-stock

data. Our goal was to assess bias and uncertainty in these MM parameters when

estimated using unconditional maximum likelihood approaches (ML-MM), under

several incomplete sampling and nursery-signature separation scenarios.

Methods: We used a comprehensive dataset containing otolith elemental signatures

of 301 juvenile Sparus aurata, sampled in three contrasting years (2008, 2010, 2011),

from four distinct nursery habitats. (Mediterranean lagoons) Artificial nursery-

source and mixed-stock datasets were produced considering: five different sampling

scenarios where 0–4 lagoons were excluded from the nursery-source dataset and six

nursery-signature separation scenarios that simulated data separated 0.5, 1.5, 2.5,

3.5, 4.5 and 5.5 standard deviations among nursery-signature centroids. Bias (BI)

and uncertainty (SE) were computed to assess reliability for each of the three sets of

MM parameters.

Results: Both bias and uncertainty in mixing proportion estimates were low

(BI � 0.14, SE � 0.06) when all nursery-sources were sampled but exhibited large

variability among cohorts and increased with the number of non-sampled sources up

to BI = 0.24 and SE = 0.11. Bias and variability in baseline signature estimates

also increased with the number of non-sampled sources, but tended to be less biased,

and more uncertain than mixing proportion ones, across all sampling scenarios

(BI < 0.13, SE < 0.29). Increasing separation among nursery signatures improved

reliability of mixing proportion estimates, but lead to non-linear responses in baseline

signature parameters. Low uncertainty, but a consistent underestimation bias affected

the estimated number of nursery sources, across all incomplete sampling scenarios.

Discussion: ML-MM produced reliable estimates of mixing proportions and

nursery-signatures under an important range of incomplete sampling and

nursery-signature separation scenarios. This method failed, however, in estimating
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the true number of nursery sources, reflecting a pervasive issue affecting mixture

models, within and beyond the ML framework. Large differences in bias and

uncertainty found among cohorts were linked to differences in separation of

chemical signatures among nursery habitats. Simulation approaches, such as those

presented here, could be useful to evaluate sensitivity of MM results to separation

and variability in nursery-signatures for other species, habitats or cohorts.

Subjects Aquaculture, Fisheries and Fish Science, Computational Biology, Ecology,

Marine Biology

Keywords Otolith chemistry, Mixture models, Mixed stocks, Mixing proportions, Mixing models,

Stock identification, Stock structure, Fish stocks, Population structure, Sparus aurata

INTRODUCTION
Evaluating the contribution of different sources to a mixture is a common problem

in ecology, biology and natural resource management (Kimura & Chikuni, 1987;

Smouse, Waples & Tworek, 1990; Van Dongen, Lens & Molemberghs, 1999; Fleischman &

Burwen, 2003;Manel, Gaggiotti &Waples, 2005; Phillips, Newsome & Gregg, 2005;Newman

& Leicht, 2007). Fish ecologists and fisheries scientists, for example, are frequently

interested in estimating the contribution from different nursery habitats (sources) to

adult aggregations, demographic units or stocks (mixtures). Beyond its inherent scientific

interest, this kind of assessment has practical relevance for both management and

conservation purposes (Kerr, Cadrin & Secor, 2010). Assessing the accuracy and precision

of parameters resulting from mixture analysis is a fundamental, still often neglected

step, required to facilitate the incorporation of these results into modern management

models (Kritzer & Liu, 2014).

Mixture analysis in fish ecology and other disciplines relies heavily on the use of

artificial and natural tags suitable for tracking or identifying the different sources (origins)

contributing to a mixture (Gillanders, 2009). Within natural tags, the elemental and

isotopic composition of teleost fish otoliths has been an increasingly common choice

for this type of studies during the last decades (Kerr & Campana, 2014). Otoliths grow

throughout lifetime by a regular deposition of calcium carbonate and protein layers,

which, unlike bones, are not reabsorbed (Panfili et al., 2002). While calcium can be

partially replaced by other metals (including Sr, Mn and Ba), dominant carbon and

oxygen isotopes (12C and 16O) can be replaced by their less frequent alternatives
13C and 18O. When these substitutions are under weak internal control, they may

reflect environmental and/or physiological variability (Panfili et al., 2002), and the

elemental/isotopic otolith signatures can be considered “fingerprints” for the water

masses inhabited by fish at carbonate deposition time (Elsdon et al., 2008). As deposition

time can be often inferred from the same otolith through ageing techniques, a

retrospective identification of nursery or feeding habitats, demographic units (∼stocks)
and/or migration patterns becomes possible (Campana & Thorrold, 2001; Rooker &

Secor, 2004; Elsdon et al., 2008; Rachel et al., 2008; Arkhipkin, Schuchert & Danyushevsky,

2009; Darnaude et al., 2014; Niklitschek et al., 2014).

Niklitschek and Darnaude (2016), PeerJ, DOI 10.7717/peerj.2415 2/23

http://dx.doi.org/10.7717/peerj.2415
https://peerj.com/


Two main statistical approaches have been used to estimate the contribution of

different sources to a mixture: Discriminant Functions (DF) and Mixture Models (MM)

(Millar, 1990a; Koljonen, Pella & Masuda, 2005). DF approaches include linear

discriminant analysis (LDA), quadratic discriminant analysis (QDA), multinomial

regression (MNR) and random forest analysis (RM), among several other related methods

(Edmonds, Caputi & Morita, 1991; Elsdon & Gillanders, 2003; Pella & Masuda, 2005;

Mercier et al., 2011; Jones, Palmer & Schaffler, 2016). Although some parametric DF can be

seen as special cases of MM, they have some important differences in focus and estimation

procedures. DF focus on developing discriminant algorithms, which are fit (“trained”)

using samples from known origins (i.e. pre-migratory juveniles sampled at their nursery-

sources), and applied, at a subsequent step, to assign putative origins to older (adult)

individuals sampled from the mixed-stock. Therefore, mixing proportions are not

estimated directly as model parameters, but quantities computed afterwards from the

putative origins assigned by the model to the individuals present in the mixed-stock

dataset. MM approaches focus, instead, on estimating these mixing proportions, which

are explicit and fundamental model parameters, estimated directly from the mixed-stock

dataset. Baseline nursery-signatures are also explicit MM parameters, which are

commonly of high scientific interest on their own.

Described in detail by Everitt & Hand (1981), MM were probably introduced into

fisheries science by Cassie (1954). Applications to mixed stock analysis were first

presented by Fournier et al. (1984) and increased largely after the HISEA software was

made available by Millar (1990b). Under their finite mixture distribution form (Everitt &

Hand, 1981), MM are defined as,

f ðxÞ¼
XK
k¼1

pk � g xi; �kð Þ

where, the density function f(x) is defined by three groups of parameters: the number

of components or sources (K), the mixing proportions (pk) and the set of baseline

parameters �k that characterize each source k, given the probability distribution function

g(). This function is frequently, although not necessarily, assumed multivariate normal.

Thus, �k can be decomposed in a vector of means (�k) and a covariance matrix (Sk) for all

response variables used to characterize each source k. Translating this terms into the

lexicons of otolith chemistry and mixed-stock analysis, K corresponds to the number of

nursery or spawning sources, pk to the proportional contribution made by each of these

sources to the mixed stock, and �k to the baseline chemical signatures (i.e. means and

covariances of elemental or isotopic ratios) that characterize otolith material formed at

each nursery source k.

Most MM applications to fisheries during the last four decades have used maximum

likelihood methods (Millar, 1987; Reynolds & Templin, 2004). Within this framework,

the expectation-maximization algorithm (EM) (Dempster, Laird & Rubin, 1977) has

been used as the dominant likelihood maximization procedure. In more recent years,

and following an evident worldwide trend in statistical methods, an important
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development of Bayesian approaches has been reflected in an increasing number of

mixed stock applications (Pella & Masuda, 2001; Koljonen, Pella & Masuda, 2005;

Munch & Clarke, 2008; White et al., 2008; Smith & Campana, 2010; Standish, White &

Warner, 2011), including parametric and non-parametric approaches and important

software development efforts (Neubauer, Shima & Swearer, 2013). Despite of these

promising developments, MM methods probably remain as the most common approach

being used for stock mixture analysis at scientific and management organizations.

Most MM applications to mixed stock analysis tend to focus on estimating pk, given

all potential nursery sources have been previously identified (i.e. K is known) and sampled

for pre-migratory juveniles to produce ex-ante �k estimates, which are then supplied to

the MM as fixed quantities. This conditional MM approach follows Millar (1987) and

tends to be dominant in the MM literature (Hamer, Jenkins & Gillanders, 2005; Crook &

Gillanders, 2006; Schloesser et al., 2010; Secor, Gahagan & Rooker, 2012). Some drawbacks

of this approach, shared by DF methods, are that it fails if not all nursery-sources are

known or sampled, and that it neglects all information about �k being contained in the

mixed-stock data. Under an unconditional MM approach, �̂k are produced or updated

using the information contained in the mixed-stock data. Thus, unconditional models

benefit (greatly) from nursery-source sampling, but can still be fit if such sampling fails for

some or all nursery-sources. Moreover, these models are expected to be less sensitive to

small sampling sizes (Koljonen, Pella & Masuda, 2005).

Failing to sample some or all nursery-sources is a common problem in fish ecology,

particularly for open marine populations (Campana et al., 2000), where the location of

nursery habitats may be unknown, remote or inaccessible, or where juvenile fish may be

to cryptic or invulnerable to the sampling gear. Under these scenarios, there may not be

other option than the simultaneous (unconditional) estimation of both pk and �k
parameters from the mixed-data (Smouse, Waples & Tworek, 1990; Niklitschek et al., 2010;

Smith & Campana, 2010). Furthermore, if not even K (the total number of nursery-

sources) is known, all three sets of parameters (pk, �k and K) need to be estimated from the

mixed-stock data. Estimating all three sets of parameters within the same likelihood

maximization fit may lead however to identifiability issues. As an alternative, a model

comparison approach can be used (Everitt & Hand, 1981), to select the most informative

value of K according to some criterion such as Akaike (1973) and Schwarz (1978), entropy

(Celeux & Soromenho, 1996), deviance (White et al., 2008) or some other information

criterion, depending on the modelling framework being used.

The simultaneous estimations of pk, �k and/or K from the mixed-stock data might

introduce bias related to the existence of multiple solutions and/or to multiple local

maxima (McLachlan & Peel, 2004; Reynolds & Templin, 2004), as well as to the presence

of confounding covariates affecting the mixed-stock data, which may either blur or

spuriously enhance variability in nursery signatures. Among the three sets of MM

parameters, K seems to be the most prone to bias, as shown by several theoretical and

practical studies (Titterington, 1990; Celeux & Soromenho, 1996; White et al., 2008;

Neubauer, Shima & Swearer, 2013). Assessing the magnitude of such bias under

incomplete sampling scenarios is not frequently reported (Wood et al., 1987) as no
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reference data exists to contrast the parameters estimated by the model. Indirect

assessment approaches can be conducted, however, using either simulated or empirical

datasets whose true pk, �k and/or K parameters were actually known.

In this article, we evaluate the performance of maximum likelihood mixture models,

from now on “ML-MM,” to estimate pk, �k and K parameters under several scenarios that

simulated incomplete sampling and different degrees of separation among nursery

signatures. Departing from the mainstream of ML-MM, we adopted an unconditional

approach to estimate and/or update �̂k using all available nursery-source and mixed-stock

data. To conduct this evaluation, we follow a case study approach focused on a

comprehensive spatio-temporal dataset containing baseline chemical signatures from

young-of-the-year Sparus aurata collected in four separate nursery habitats

(Mediterranean lagoons), in three highly contrasting years (Tournois et al., 2013). By

sub-setting, resampling and manipulating this dataset we evaluated bias and uncertainty

in pk, �k and K as a function of (i) the number of nursery sources identified and sampled

for pre-migratory juveniles to estimate nursery-signature parameters, (ii) the observed

variability in nursery-signatures among cohorts, and (iii) the degree of separation

among nursery-signature centroids.

MATERIALS AND METHODS
Data set description
The dataset used in the present work, obtained from Tournois et al. (2013), included

otolith fingerprints from 301 young-of-the-year Sparus aurata, collected in the Gulf of

Lions (NEMediterranean Sea) from four Mediterranean lagoons: Bages-Sigean, Mauguio,

Salses-Leucate and Thau, in three different years (= cohorts): 2008, 2010, and 2011.

Collection always occurred in the late summer, just before they returned to mix with

individuals from nearby lagoons in the open sea.

The chemical composition analysis of otolith samples was performed using Solution

Based Inductively Coupled Plasma Mass Spectrometry, and included 43Ca and another

11 elements (Tournois et al., 2013). For this study, we only kept the seven most

discriminant ones: 7Li, 11B, 25Mg, 85Rb, 86Sr, 89Y and 138Ba. Their concentrations in the

otoliths were expressed as elemental ratios to Ca, and standardized to mean = 0, and

SD = 1 to scale all elements equally and facilitate bias analysis. Three obvious outliers were

discarded, working with a depurated sample size of 298 otoliths. Data was normalized

using a multivariate Box & Cox (1964)’s transformation although it failed to fully

normalize three of the seven elemental ratios (Mg, Rb and Ba).

The four lagoons sampled by Tournois et al. (2013) differ greatly in size, depth,

freshwater input and degree of connection with the sea, leading to physical and

chemical differences in the water and, therefore, in otolith signatures of juvenile S. aurata

(Tournois et al., 2013). Nonetheless, these lagoons are strongly influenced by rainfall, wind

and other environmental forces (Sara, Leonardi & Mazzola, 1999; Martins et al., 2001),

leading to high interanual variability in otolith signatures (descriptive statistics provided

in Appendix 2). For instance, the average squared Mahalanobis distance among nursery

sources decreased from 3.29 to 1.18 SD, between 2008 and 2011, while its multivariate
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spread (effective general variance) ranged between 0.54–0.86 within the same interval

(Table 1). A multivariate analysis of variance showed significant effects of cohort, nursery-

source and their interaction upon these nursery signatures (p < 0.001).

Simulation approach and scenarios
All simulations and analyses were based upon the construction of two datasets: (i) a

“nursery-source dataset” that represented otolith composition data from pre-migratory

juveniles, sampled at their corresponding nursery-origins, and (ii) a “mixed-stock

dataset” that represented otolith composition data from older fish sampled after they had

mixed with fish from the other four origins (i.e. at the open sea). Besides the observed

variability among the three sampled cohorts, we simulated additional variability in two

dimensions: (i) the number of sources being sampled and included in the “nursery-source

dataset” and/or (ii) the degree of separation among nursery-signature centroids (Table 2).

Nursery-source sampling scenarios
Five scenarios were defined by the number of nursery-sources included in the nursery-

source dataset. At each run, KS = 0–4 sources were randomly selected to be included

in the nursery-source dataset as “known” nursery habitats, which had been sampled

for pre-migratory juveniles. These data had been used as baseline data to produce initial

estimates for �̂k and then mixed with the mixed-stock data to produce final �̂k parameters,

following an unconditional likelihood maximization approach. All remaining “unknown”

nursery sources (KU = K-KS) were excluded from the nursery-source dataset and

lacked of initial �̂k values.

Separation among nursery signatures
To improve our empirical understanding about the effects the separation among

nursery-signature centroids may have on bias and uncertainty in ML-MM parameters,

we applied the five sampling scenarios to (i) the three observed cohorts (2008, 2010 and

Table 1 Average Mahalanobis distance and effective standard deviation for elemental compositions

of selected metals in otoliths of juvenile Sparus aurata. Average Mahalanobis distance and effective

standard deviation for elemental compositions of selected metals in otoliths of juvenile Sparus aurata.

Average distances within nursery source and cohort computed from vectors of observations. Average

distances within years and within sources computed from vectors of means corresponding to each source

or year, respectively. All values computed after standardizing all data to = 0 and = 1.

Cohort Bages-Sigean Mauguio Salses-Leucate Thau Within cohorts

Average squared Mahalanobis distance (�2)

2008 2.52 2.53 2.53 2.55 3.29

2010 2.47 2.52 2.47 2.49 2.78

2011 2.48 2.54 2.51 2.50 1.18

Within sources 3.49 3.21 2.20 1.88 3.50

Effective standard deviation jSj1/14
2008 0.40 0.39 0.35 0.40 0.65

2010 0.41 0.51 0.63 0.53 0.86

2011 0.38 0.39 0.46 0.49 0.54

Within sources 0.63 0.66 0.73 0.71 0.85
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2011); and (ii) six virtual cohorts created to expand the range of Mahalanobis distances

�2 among nursery-signature centroids observed in the three sampled cohorts (�2 =

1.18–3.29), Table 1. To build these six virtual cohorts, covariance matrices were set equal

to those estimated in 2010 for each nursery-source (Appendix 1), while the vectors of

means correspondng to this same year (Appendix 1) were re-scaled to get �2 values of

0.5, 1.5, 2.5, 3.5, 4.5 and 5.5 (Table 2).

Resampling procedures
Datasets for each tested scenarios and independent run were produced by parametric

bootstrapping. Nursery-source datasets included 25 observations drawn from each of

the KS known nursery-sources and from each of the three cohorts. Mixed-stock datasets

included a total of 100 observations per cohort, drawn from all four nursery-sources,

mixed using uneven mixing proportions (m) of 0.1, 0.2, 0.3 or 0.4. These four

proportions represented the true value of pk and were randomly allocated to the four

nursery-sources, within each resampling run. Resampling was followed by a standard

modelling and fitting procedure, detailed in Appendix 1. This was a 12-steps sequence,

which was repeated 1,000 times for each cohort and scenario. Each repetition was

labelled as a “resampling run.”

Mixing proportions
To evaluate bias and uncertainty of mixing proportion estimates (p̂k), we assumed the true

number of nursery sources was known and fixed (K = 4) across all scenarios. Bias in p̂ was

computed as the sum of the average differences between the estimated (p̂mr) and the true

mixing proportion (pmr) assigned to each nursery-source within each resampling run. The

subscript m = {0.1, 0.2, 0.3, 0.4} represents here the vector of mixing proportions

Table 2 Main configuration of the simulation and resampling procedures used for assessing the

performance of maximum likelihood mixed models. Main configuration of the simulation and

resampling procedures used for assessing the performance of maximum likelihood mixed models.

Observed cohorts corresponded to juvenile Sparus aurata collected from four Mediterranean lagoons in

three highly contrasting years. Virtual cohorts corresponded to artificial data, aimed to expand the

observed range of separation among nursery signatures k and y subscripts represent nursey-sources and

cohorts, respectively. Observed mean vectors and covariance matrices available in Appendix 2.

Observed cohorts Virtual cohorts

Number of nursery sources included in

nursery-source datasets (KS)

0–4 0–4

Number of cohorts 3 6

Nursery-signature mean vectors (�k,y) Observed �k,y �k,2010 scaled to match target

separation

Nursery-signature covariance matrices

Sk,y

Observed Sk,y Observed Sk,2010

Average Mahalanobis distance among

nursery-signature centroids ð�2
yÞ

Observed�2
y ¼ 1:18� 3:29 Simulated

�2
y = {0.5, 1.5, 2.5, 3.5, 4.5,

5.5}

Mixing proportion of nursery-sources

in the mixed-stock dataset pk,y

pk,y = {0.1, 0,2, 0.3, 0.4},

randomly assigned to

sources within runs

pk,y = {0.1, 0,2, 0.3, 0.4},

randomly assigned to

sources within runs
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randomly allocated to the four nursery-sources, within each of the R = 1,000 resampling

runs. Therefore,

BIp̂ ¼
XM
m¼1

1

R

XR
r¼1

p̂mr � pmrj j

Uncertainty in p̂k was indexed as the average of the four empirical standard errors

of p̂ computed for each of the four possible values of m, across the R = 1,000

resampling runs,

SEp̂ ¼
1

M

XM
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp̂mr � pmrÞ2

R

s

Nursery-signature parameters
Under the assumption of multivariate normal distribution, each set of estimated nursery-

signature parameters �̂k was composed by a vector of means �̂k and a covariance matrix

�̂k , which described the multivariate distribution of the seven chemical elements

measured in the otoliths included in the dataset. Assessing bias in �̂k is a complex task,

which we considered that exceeded the scope of this paper. Therefore, all bias measures

provided hereafter for �̂k are strictly referred to �̂k.

As done for p̂k, the assessment of bias and uncertainty in �̂ was conducted assuming a

known and fixed value of K = 4. Overall bias in �̂k was indexed by averaging the absolute

mean differences between estimated (�̂kr) and true (�kr) vectors of means, across all

elemental ratios (J = 7) and nursery-sources (K = 4). As all elemental ratios were previously

standardized, bias units were equivalent to standard deviations and computed as follows,

BI�̂ ¼
1

J � K
XJ

j¼1

XK
k¼1

1

R

XR
r¼1

�̂kr � �k

�����
�����

Overall uncertainty in �̂i, was indexed by its effective standard deviation (Peña &

Rodrı́guez, 2003), defined as,

SE �̂¼
1

K

XK
k¼ 1

dX
k

���� ����1=2J
where, �̂k is the covariance matrix computed from all �̂kr estimated for each nursery-

source k across the R = 1,000 resampling runs.

Number of contributing nursery sources
For assessing bias and uncertainty in K̂ , this parameter was not set to a constant as

before, but estimated by a model selection approach as described in the next section.

Bias in K̂ was computed as BIK̂ ¼ K̂� 4, and uncertainty (SEK̂ ) as the standard error of

K̂ computed from all resampling runs, within each cohort and scenario. The strength of

the selection was indexed by�BICK, defined as the average of the differences between the
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lowest and the median Bayesian Information Criterion (BIC) values computed for all

competing models, within each resampling run.

ML-MM parameter estimation
Parameters p̂k and �̂k (�̂k and �̂k) were estimated by maximum likelihood, using the

Expectation-Maximization (EM) algorithm (Dempster, Laird & Rubin, 1977), modified to

follow an unconditional approach where initial �̂k estimates were updated to maximize

the joint likelihood of both nursery-source and mixed-stock datasets (Appendix 1).

The M-step was constrained to produce definite positive covariance matrices, with det

(S) > 109. Starting �̂k and �̂k parameters for the KS known nursery-sources were

computed directly from the nursery-source dataset. Starting �̂k for the KU unknown

nursery-sources were obtained from the mixed-stock dataset trough a semi-supervised

K-means clustering procedure, implemented using the R-package “vegclust” (De Cáceres,

Font & Oliva, 2010), which allowed for combining “fixed” and “mobile” centroids. Fixed

centroids corresponded to �̂k estimated at the previous step for the KS known nursery-

sources. KU additional mobile centroids, which represented the KU unknown nursery

sources, were estimated as the values that minimized the mean square distance between

the mixed-stock data and all (fixed and mobile) model centroids. Starting �̂k for the KU

unknown nursery-sources were computed, at a subsequent step, from the mixed-stock

data clustered into each of these KU additional clusters (Appendix 1). Starting p̂k were

calculated as the empirical proportion of individuals represented in the mixed-stock

dataset assigned to each putative nursery-source k in order to maximize de probability

density of each observation pðxij�̂kÞ, assuming xi � MVNð�̂kÞ.
Parameter K̂ was estimated following a model selection procedure, where multiple

competing models were fit to each pair of nursery-source and mixed-stock datasets.

These competing models considered a range of K values, between a minimum of

Kmin = KS and a maximum defined arbitrarily as Kmax = 8. As result, within each

resampling run, and depending upon the value of KS, a total of 4–9 competing models

were fit and compared. Model comparisons were performed using Schwarz (1978)’s

BIC, where the most informative value of Kwas addressed as the “estimated” number or

nursery-sources (K̂ ).

RESULTS
Mixing proportions
Bias in p̂ðBIp̂Þ ranged between 0 and 0.24 across all data availability scenarios and observed
cohorts. Relatively unbiased p̂ estimates ðBIp̂ < 0:1Þ were obtained under most data

availability scenarios (KS = 1–4) for cohorts 2008 and 2010 (Table 3; Fig. 1), but exceeded

0.11 across all scenarios for cohort 2011. The highest values ofBIp̂ (0.12–0.24)were found at

KS = 0, when none of the nursery-sources were known (Table 3; Fig. 1). When all

nursery-sources were known (KS = 4), BIp̂ approached zero for cohorts 2008 and 2010,

but remained relatively high (BIp̂∼0.11) for cohort 2011. Such a decrease in bias was near

one order of magnitude for cohorts 2008 and 2010, and greater than 50% for cohort

2011 (Fig. 1). Uncertainty in p̂ðSEp̂Þ ranged between 0.06 and 0.28, with much higher
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values observed for cohort 2011 (SEp̂ = 0.03–0.11) than for both cohort 2010 (SEp̂ = 0.007–

0.05) and for cohort 2008 (SEp̂ = 0.01–0.07). Following a pattern somewhat similar to BIp̂,

we found that SEp̂ decreased rapidly as KS increased (Fig. 1).

The rank order of BIp̂ and SEp̂ values among the three observed cohorts was inverse

to the rank order of their average distance among nursery-signature centroids (Table 1).

This inverse relationship was also observed in the six nursery-signature separation

scenarios, where BIp̂ and SEp̂ decreased rapidly as the distance among nursery signatures

increased (Fig. 2). Such a decrease tended to evolve from a linear pattern at the worse 1–2

scenarios (KS = 0–1) to a more exponential decay pattern as KS approached its maximum

(Fig. 2) There was also an evident trend to observe positive bias at lower p̂ values, and

negative bias at higher p̂ values, which was more pronounced as KS decreased (Table 3).

Nursery-signature parameters
Estimated nursery-signature parameters provided relatively unbiased and consistent

(similar shape and orientation) fits to the “true” distribution of means, even at the KS = 0

scenario (Fig. 3). Considering the observed cohorts, BI�̂ ranged between 0.005 and 0.13 at

KS = 4 and KS = 0, respectively (Fig. 4). As observed before for mixing proportions, BI�̂
tended to be much higher for cohort 2011 than for cohort 2008, across all scenarios.

However, the values of BI�̂ for cohort 2010 tended to be much closer to those computed for

cohort 2011, than to the ones computed for cohort 2008 (Fig. 4). As for the six nursery-

signature separation scenarios (Fig. 2),BI�̂ tended to increase with distance fromminimum

values atS2 = 0.5 towards maximumvalues and highest sensitivity to incomplete sampling

�2 values of 3.5 or 4.5 depending on the number of known nursery sources (Fig. 2).

Table 3 True and estimated mixing proportions of nursery-sources in the mixed-stock dataset (pk).
True and estimated mixing proportions of nursery-sources in the mixed-stock dataset (pk). Data from all

nursery-sources combined for simplicity. True values corresponded to the proportion of bootstrap

samples drawn from each cohort and nursery-source at each resampling runs (R = 1,000). These

nursery-source proportions were assigned randomly from the vector m = {0.1, 0.2, 0.3, 0.4}.

Cohort

True proportion in

mixed-stock dataset (pk)

Sampling scenario (number of habitats represented

in nursery-source datasets)

KS = 4 KS = 3 KS = 2 KS = 1 KS = 0

2008 0.1 0.10 0.10 0.11 0.13 0.15

0.2 0.20 0.20 0.20 0.21 0.21

0.3 0.30 0.30 0.30 0.29 0.29

0.4 0.40 0.40 0.39 0.37 0.35

2010 0.1 0.11 0.11 0.12 0.14 0.16

0.2 0.20 0.20 0.21 0.21 0.22

0.3 0.30 0.30 0.30 0.29 0.28

0.4 0.40 0.39 0.38 0.36 0.35

2011 0.1 0.14 0.15 0.16 0.17 0.19

0.2 0.21 0.22 0.22 0.23 0.23

0.3 0.28 0.29 0.28 0.28 0.27

0.4 0.36 0.34 0.34 0.33 0.31
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Uncertainty in �̂kðSE�̂Þ was less sensitive to data availability (KS) than BI�̂, showing a

moderate although nearly constant decrease with KS, in cohorts 2008 and 2010. For

cohort 2011, however, SE�̂ was similarly high between KS = 0 and KS = 2, decreasing

afterwards. Uncertainty in �̂k tended to be higher for cohorts 2010 and 2011 than for

cohort 2008, across all scenarios, but particularly between KS = 1 and KS = 3. Results

from simulated nursery-signature separation scenarios (Fig. 2) showed SE�̂ was not

affected by distance among nursery signatures when all nursery-sources were previously

known and sampled (KS = 4). Otherwise, SE�̂ tended to decrease with distance among

nursery signatures, although for KS = 0 this decrease was only evident at the two highest

distances among nursery signatures (Fig. 2).

Number of contributing nursery sources
ML-MM tended to underestimate the true value of K for all observed cohorts, under

most data availability scenarios (Fig. 5), with negative bias (BIk̂), between -0.56 and -2,
across all incomplete sampling scenarios. Only under the ideal scenario (KS = 4) BIk̂
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Figure 1 Bias and uncertainty in mixing proportions for observed cohorts. Bias (A) and uncertainty

(B) in mixing proportions (p̂) of four nursery-sources to artificial mixed-stocks of Sparus aurata built

using data from cohorts 2008, 2010 and 2011. Different sampling scenarios are represented by the

number of nursery-sources (KS) simulated to be known and sampled for pre-migratory juveniles.

Niklitschek and Darnaude (2016), PeerJ, DOI 10.7717/peerj.2415 11/23

http://dx.doi.org/10.7717/peerj.2415
https://peerj.com/


●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ta

l b
ia

s 
in

 p̂
 (B

I p̂
)

0.5 1.5 2.5 3.5 4.5 5.5

●

A
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

●
●

●

●

●

●

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
e 

st
an

da
rd

 e
rr

or
 o

f p̂
 (S

E
p̂)

0.5 1.5 2.5 3.5 4.5 5.5

●

B
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

●

●

●

● ●

●

O
ve

ra
ll 

bi
as

 in
 θ̂

 (B
I θ̂

)

0.5 1.5 2.5 3.5 4.5 5.5

0

0.04

0.08

0.12

0.16
●

C
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

●

● ● ● ●
●

E
ffe

ct
iv

e 
st

an
da

rd
 e

rr
or

 o
f θ̂

 (S
E

θ̂)

0.5 1.5 2.5 3.5 4.5 5.5

0

0.1

0.2

0.3

0.4

0.5 ●

D
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

●
●

●

●

●

●

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Av
er

ag
e 

bi
as

 in
 K̂

 (B
I K̂

)

0.5 1.5 2.5 3.5 4.5 5.5

●

E
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

●

●

●
●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

S
ta

nd
ar

d 
er

ro
r o

f K̂
 (S

E
K̂
)

0.5 1.5 2.5 3.5 4.5 5.5

●

F
Ks=0
Ks=1
Ks=2
Ks=3
Ks=4

Mahalanobis distance among centroids (Δ2)

Figure 2 Bias and uncertainty in mixture model parameters for virtual cohorts of Sparus aurata.
Average bias and uncertainty in mixing proportions p̂ (A and B), nursery-signature estimates �̂
(C and D) and number of contributing sources K̂ (E and F) as a function of the simulated distance

among nursery-signature signature centroids and the number of nursery-sources (KS) simulated to be

known and sampled for pre-migratory juveniles.

Niklitschek and Darnaude (2016), PeerJ, DOI 10.7717/peerj.2415 12/23

http://dx.doi.org/10.7717/peerj.2415
https://peerj.com/


became zero and the true value of K was correctly estimated in 100% of all simulations.

Nonetheless, it must be recalled that under KS = 4, K̂ was constrained to values greater or

equal to Kmin = 4. As for the remaining scenarios (KS < 4), the absolute value of BIk̂ tended

to decrease as KS increased, at least for cohorts 2008 and 2010 (Fig. 5).

The under-estimation of K̂ was a highly consistent pattern, observed across all

nursery-signature separation scenarios, were no estimated values of K̂ � 5 were ever
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Figure 3 Empirical and estimated distributions of elemental ratios in juvenile Sparus aurata
otoliths. Principal component diagrams representing the distribution of otolith elemental ratios in

juvenile Sparus aurata. Coloured points represent empirical means per nursery source and cohort (2008,

2010 and 2011), corresponding to 1,000 bootstrap samples (size = 25). Ellipses represent 67% confidence

intervals for estimated means under two selected sampling scenarios: KS = 0, where no nursery-sources

were sampled for pre-migratory juveniles (2008-A, 2010-A and 2011-A) and KS = 3, where three out of

the four nursery-sources were simulated as known and sampled for pre-migratory juveniles (2008-A,

2010-A and 2011-A).
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obtained, regardless of the data availability scenario or cohort (Fig. 2). Nonetheless, the

magnitude of this bias decreased by 50–70% as the distance among nursery signatures

increased (Fig. 2). Uncertainty in K̂ (SEK̂ ) was zero at KS = 4, but relatively high

(SEK̂ > 0.4) in cohorts 2008 and 2010 for all KS < 4, reaching maximum values at KS = 2

(Fig. 5). The strength of the model selection measured by �BICK tended to increase

towards KS = 4, where it was maximum for cohorts 2008 and 2010 (Fig. 5). The consistent,

although biased, values of K̂(BIK̂ = 1–2) lead to particularly low values of SEK̂ for

cohort 2011, across all scenarios. Consistent values of SEK̂ ≈ 0 at KS = 4, and a weak

relationship between KS and SEK̂ for all KS < 4 were observed across all nursery-signature

separation scenarios. Nonetheless, it was evident that SEK̂ tended to increase with

distance among nursery signatures for all incomplete sampling scenarios.

DISCUSSION
In this article, we combined real-world and virtual datasets to evaluate the performance

of unconditional ML-MM when used to estimate the three fundamental sets of

mixed stock parameters (pk, �k and K), under a range of data availability and distance
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Figure 4 Bias and uncertainty in nursery-signature estimates. Average bias (A) and uncertainty (B) in

estimated nursery signatures corresponding to juvenile Sparus aurata sampled from four nursery-

sources in three climatically contrasting years, bootstrapped and combined into artificial mixed-stocks.

Different sampling scenarios were represented by the number of nursery-sources (KS) simulated to be

known and sampled for pre-migratory juveniles. Data obtained after 1,000 resampling runs per scenario.
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among nursery-signature scenarios. Although using a single real-world dataset might

limit the generalization of our results, which may not be transferable to other stocks,

we believe the large variability observed among cohorts in the real-world dataset, along

with the additional variability included in the simulated datasets might represent a

relevant part of the variability that could be found in other populations

and geographical areas.
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Figure 5 Estimated number of contributing sources. Estimated number of nursery-sources (K̂ )

contributing to simulated mixed-stock of Sparus aurata obtained following a model selection approach

based on Bayesian Selection Criterion. Different sampling scenarios were represented by the number

of nursery-sources (KS) simulated to be known and sampled for pre-migratory juveniles. Relative fre-

quencies computed after 1,000 resampling runs per tested scenario. BIK̂ = mean bias for K̂ ; SEK̂ = mean

standard error of K̂ ; �BICK = difference between minimum and median values of the Bayesian

Information Criterion.
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Mixing proportions estimated by ML-MM (p̂k) showed low bias and variability when

at least one nursery source was included in the nursery-source dataset. Large variability in

bias and uncertainty of p̂k was found, however, among cohorts, with cohort 2011

exhibiting the highest bias and uncertainty values in p̂k . This variability in bias and

uncertainty among cohorts was consistent with inter-annual differences in sensitivity to

incomplete sampling resulting from variable degrees of separation among nursery

signatures. Results from simulations showed, for instance, that a minimum of three

sampled nursery sources had been required to reduce BIp̂ below 0.1, given a Mahalanobis

distance among nursery-signature centroids � 1.5.

Overall our results confirmed the suitability of using ML-MM for estimating unbiased

mixing proportions, given the number of nursery-sources (K) was known and there was

a proper balance between the number of nursery-sources sampled for prior nursery-

signature parameters and the actual degree of separation among nursery-signature

centroids. Although results from our simulated separation scenarios cannot be turn into a

prescriptive guideline, they explore such trade-offs and provide a general idea about which

combinations might work, at least for Mediterranean stocks of S. aurata.

When incomplete sampling and/or reduced distance among nursery signatures biased

mixing proportions estimates, bias tended to be greater for the most extreme p̂k values,

which were shifted towards intermediate values. Therefore, the smallest nursery

contributions tended to be overestimated, while the largest ones to be underestimated.

This behaviour is probably related to the model constrain that all proportions must sum

one, which limits the parameter space and tend to increase negative correlation between

the two most extreme values. It might be also somewhat related to the EM algorithm,

which may converge to unsatisfactory local maxima (Marin, Mengersen & Robert, 2005).

Nursery-signature parameter estimates were relatively unbiased for all evaluated

cohorts, under most data availability scenarios. When two or more nursery-sources were

known and previously sampled, BI�̂ dropped below 0.10. Uncertainty in �̂k , however, was

relatively high under incomplete sampling scenarios, particularly in cohorts 2010 and

2011, where SE�̂ exceeded 0.20 at all KS < 3 scenarios. The important differences in bias

and uncertainty we found among cohorts, were likely related to large environmental

variability in the study area (Tournois et al., 2013), which were reflected in highly variable

distribution patterns of nursery signatures among cohorts (Fig. 3). Simulated nursery-

signature separation scenarios showed a dome-shaped relationship between BI�̂ and

distance among nursery-signature centroids, with maximum bias at intermediate

distances and minimum bias at the shortest distance we tested (�2 = 0.5). This counter-

intuitive pattern may have emerged from the antagonistic effects of less separable nursery

signatures but more constrained parameter spaces at shorter distances among their

centroids.

Unlike what we found for p̂k and �̂k , the performance of our model selection approach

for estimating the true number of nursery-sources (K) was poor and exhibited an

evident trend to underestimate the true value of K by 1 or 2 nursery-sources in all

observed and most of the simulated cohorts. As the magnitude of this underestimation

bias was constrained by the number of known nursery-sources, it resulted obvious
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that enhancing our knowledge about the minimum number of contributing sources had

reduced the risk of underestimating K. Given this biasing trend, the model selection

approach we followed provided a lower bound rather than an accurate estimate of K.

Exploratory comparisons (not shown in results) between BIC and Akaike (1973)’s

Information Criteria (AIC) yielded results that agreed with the idea that BIC produces

underestimated but less variable estimates of K, while the opposite would be true for AIC

(Koehler & Murphree, 1988). Alternative model selection criteria have been proposed by

several authors and deserve further testing under a greater range of scenarios (Celeux &

Soromenho, 1996). Departing from model selection approaches, bootstrapping has been

proposed and used to evaluate consistency in K̂ (McLachlan & Peel, 2004). Neubauer,

Shima & Swearer (2013) followed, instead, a Bayesian approach to internalize the

estimation of K into a Dirichlet process mixture model, which had the advantage of

producing marginal distributions over a range of plausible K̂ values and allowed for a

direct probabilistic interpretation of model results. There is, however, a generalized

view that estimating K is one of the most difficult tasks within MM, for which more

satisfactory solutions are still needed (Celeux & Soromenho, 1996;McLachlan & Peel, 2004;

White et al., 2008; Neubauer, Shima & Swearer, 2013).

Although we focused on testing the performance of unconditional ML-MM, we must

acknowledge the growing importance of Bayesian approaches, observed in relatively

recent years (Pella & Masuda, 2001; Marin, Mengersen & Robert, 2005; Munch &

Clarke, 2008; White et al., 2008; Smith & Campana, 2010; Standish, White & Warner,

2011; Neubauer, Shima & Swearer, 2013). They represent obvious alternatives to

conventional ML-MM which may be particularly advantageous for considering missing

or incomplete data scenarios. Other approaches used for estimating mixing proportions

under partial or complete lack of nursery-source data have been based upon unsupervised

clustering followed by discriminant analysis (Arkhipkin, Schuchert & Danyushevsky, 2009;

Shima & Swearer, 2009; Schuchert, Arkhipkin & Koenig, 2010). Nonetheless, no

independent assessments of bias or uncertainty seem to be available for this clustering

approaches when applied to mixed stock analysis under incomplete sampling scenarios.

The large differences in chemical nursery signatures we found among cohorts in this

dataset reflected large interanual variability in these nursery habitats (Tournois et al.,

2013), which may be common to most shallow water and estuarine nursery areas

(Secor, 2015). The high sensibility of ML-MM reliability to this inter-annual variability

highlights the need to assure true independence among individual samples being used to

build nursery-signature parameter estimates. Otherwise, variability among nursery-

sources might be easily confounded with variability among years, schools, sampling events

or other sources of correlation, commonly neglected in fisheries and ecological studies

(Zuur, Ieno & Smith, 2007). Adding the effects of these random sources of correlation

through a mixed or hierarchical approach (Bolker et al., 2009) has been already explored as

extension of the EM algorithm by Heinzl & Tutz (2013). A very intuitive step here would

be to combine data from multiple cohorts to improve the estimation of K, although this

task could be also achieved using the joint likelihood from individual ML-MMmodels fit

to each yearly dataset.
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It is important to acknowledge that we did not explore sample size effects, but used

constant sample sizes of 25 individuals per known nursery-source and 100 individuals per

mixed-stock and cohort. While no major changes in bias would be expected at different

sample sizes, an obvious reduction in uncertainty would be expected if the number of

fish included in the nursery-source and/or mixed-stock datasets were larger. It would be of

particular interest to consider intermediate scenarios where some small level of sampling

existed for some/all nursery-sources, which maybe a common real-life situation when

juvenile sampling is rather opportunistic. Under the unconditional approach we have

followed, these pieces of information could be used without the risk of giving them full

weight, as it would occur if they were used for producing fixed nursery-signature

parameters, under the conditional approach. Moreover, these data, although limited,

could be used to sustain some resampling procedures aimed to explore the risk of biased

conclusions under plausible scenarios, as done in the present work.

In conclusion, unconditional ML-MM showed to be a suitable tool for estimating

mixing proportions and nursery signatures of S. aurata under multiple scenarios that

included incomplete sampling and a range of chemical signature separations among

nursery-sources. In contrast, our approach yielded rather discouraging results regarding

the estimation of the true number of nursery-sources (K), under incomplete sampling

and/or identification of nursery-sources. Therefore, new efforts aimed to develop new

mixed-stock analysis tools and/or to evaluate the performance of the existing ones are

required. Such evaluations should be conducted over the widest possible range of species,

habitats and biological scenarios, both to improve the reliability of these tools and to

enhance our understanding about the structure and connectivity of exploited and

threatened fish populations.
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