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COMMENTARY

Osmoregulation, bioenergetics and oxidative stress in
coastal marine invertebrates: raising the questions for future
research
Georgina A. Rivera-Ingraham and Jehan-Hervé Lignot*

ABSTRACT
Osmoregulation is by no means an energetically cheap process, and
its costs have been extensively quantified in terms of respiration and
aerobic metabolism. Common products of mitochondrial activity are
reactive oxygen and nitrogen species, which may cause oxidative
stress by degrading key cell components, while playing essential
roles in cell homeostasis. Given the delicate equilibrium between
pro- and antioxidants in fueling acclimation responses, the need for a
thorough understanding of the relationship between salinity-induced
oxidative stress and osmoregulation arises as an important issue,
especially in the context of global changes and anthropogenic
impacts on coastal habitats. This is especially urgent for intertidal/
estuarine organisms, which may be subject to drastic salinity and
habitat changes, leading to redox imbalance. How do osmoregulation
strategies determine energy expenditure, and how do these
processes affect organisms in terms of oxidative stress? What
mechanisms are used to cope with salinity-induced oxidative stress?
This Commentary aims to highlight the main gaps in our knowledge,
covering all levels of organization. Froman energy-redox perspective,
we discuss the link between environmental salinity changes and
physiological responses at different levels of biological organization.
Future studies should seek to provide a detailed understanding of
the relationship between osmoregulatory strategies and redox
metabolism, thereby informing conservation physiologists and
allowing them to tackle the new challenges imposed by global
climate change.

KEY WORDS: Hyper-/hypo-osmoregulator, Hyper-/iso-
osmoregulators, Osmoconformers, Antioxidants, Free radicals,
Hypometabolism, Mitochondria

Introduction
Marine invertebrates, such as mollusks and crustaceans, living in
coastal lagoons, mangrove swamps, deltas, estuaries or intertidal
areas are frequently exposed to large changes in their physical
environment. These changes are due to regular (daily or seasonal)
patterns (Helmuth, 1999; Zhang et al., 2010) but can also be induced
by sudden events (e.g. Williams et al., 2011). The changing physical
parameters include temperature, UV radiation and oxygenation;
however, in this Commentary, we focus on changes in salinity. This
constitutes one of the major challenges to shallow coastal
invertebrates (Freire et al., 2012), and the abrupt and unpredictable
variations in salinity determine the distribution and physiology of

these invertebrates (Henry et al., 2012; McNamara and Faria, 2012;
Peterson and Ross, 1991). Heavy rains and run-off waters, as well as
low tides in conjunction with high environmental temperatures, can
have a significant impact on salinity range – coastal salinity can
fluctuate from that of freshwater (near 0 ppt) to hypersaline seawater
levels, reaching maximum values in habitats such as supratidal pools
(>150 ppt) (McAllen et al., 1998). Anthropogenic intensification
(leading to urban/industrial wastewater or stormwater discharges)
and the consequent climate change-associated events also increase
the frequency and extent of these changes.

To correctly acclimate to salinity fluctuations, organisms must
make finely tuned adjustments at the cellular level in order to
compensate for and control ion and water flux across biological
membranes (e.g. Havird et al., 2013). In the event of increased
environmental salinity, the osmolality (see Glossary) of internal
media must be increased (through active uptake or synthesis of
osmolytes) in order to avoid water loss, dehydration and loss of
turgor pressure (Hoffman et al., 2009; Wehner et al., 2003), because
changes in cell volume can potentially lead to protein denaturation
(e.g. Gutierre et al., 2014), breakdown of cell volume regulatory
capacities and subsequent apoptosis (e.g. Gómez-Angelats and
Cidlowski, 2002). The opposite reaction is observed in the case of a
hypotonic challenge; mechanisms to control water fluxes into
cells include: (1) decreases in membrane permeability to water,
(2) changes in the concentration of osmotic effectors (amino acids
and organic ions) (reviewed by Pierce, 1982) to decrease internal
osmolality, (3) changes in the expression of channels or active
membrane carriers – such as Na+/K+-ATPase (NKA) or Na+/K+/Cl−

cotransporters, or carbonic anhydrase (Henry et al., 2002; Lovett
et al., 2006; Lv et al., 2016) – and (4) the production of ammonia
(Rosas et al., 1999), among others (Łapucki and Normant, 2008).

Animals exposed to salinity stress must increase their energy
expenditure to successfully acclimate to the stressor and ensure
cellular protection (Sokolova et al., 2012b). We may thus consider
osmoregulation as a costly process, which is probably why it has
been extensively studied in terms of bioenergetic costs, namely
respiration and aerobic metabolism (e.g. Gilles, 1973; Goolish and
Burton, 1989). In this sense, bioenergetic approaches have been
considered as a common denominator for predicting tolerance limits
when organisms are exposed to stress (Sokolova et al., 2012a). But
aerobic metabolism (and thus mitochondrial activity) inevitably
entails the production of reactive oxygen and nitrogen species (ROS
and RNS, respectively), although the relationship between
mitochondrial functioning and reactive species production is
highly variable (Barja, 2007). However, given the lack of studies
linking osmoregulation, energetics and oxidative stress in estuarine/
coastal marine invertebrates (Freire et al., 2012), this Commentary
aims to highlight key questions and potential ideas for future
investigation in this area. We begin by considering osmoregulation
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and ROS and RNS production in more detail. We then turn to the
field of biomedicine to discuss current knowledge of how ROS
affect osmoregulatory capacities in mammals because, to our
knowledge, there is no information available to date for marine
organisms. Finally, special attention is paid to cases in which hypo-
osmotic shock induces metabolic arrest, a situation in which active
mechanisms are energetically limited, and which may require
preparation for subsequent tissue re-oxygenation.

Osmoregulatory strategies
Osmoconformers
When exposed to salinity changes, many marine invertebrates do
not invest energy in transport mechanisms; thus, the osmolality of
their internal medium fluctuates according to the osmolality of the
environment. These organisms are termed osmoconformers (see
Glossary), and they include many bivalves (e.g. Carregosa et al.,
2014a; Shumway, 1977), polychaetes (e.g. Freitas et al., 2015;
Shumway and Davenport, 1977), crustaceans (e.g. McAllen et al.,
1998; Svetlichny et al., 2012) and echinoderms (e.g. Castellano et al.,

2016a,b). Osmoconformers are mostly stenohaline (see Glossary) and
are normally restricted to marine waters (Lignot and Charmantier,
2015). They are not able to perform osmotic regulation of their
extracellular fluid and rely solely on isosmotic intracellular regulation
(of volume) (IIR; see Glossary) (as defined by Florkin, 1962). This
involves (1) increasing or decreasing the concentrations of osmotically
active solutes [e.g. ninhydrin-positive substances, K+ and free amino
acids (FAA)] to achieve cell volume regulation, and (2) modifying
membrane-bound transporters (Gilles, 1987; Kirschner, 1991;
Péqueux, 1995). Osmosensing is achieved through a wide variety of
internal mechanisms (e.g. Ca2+ gradients, transient receptor potential
ion channels, cell volume sensors) (Kültz, 2007) and is often
controlled by specific hormones (Lignot and Charmantier, 2015).

Osmoregulators
As opposed to osmoconformers, other species (termed
‘osmoregulators’; see Glossary) perform not only IIR, but also
anisosmotic extracellular osmoregulation (AER; see Glossary) when
exposed to variations in environmental salinity (Florkin, 1962).
These organisms, when exposed to dilute seawater or freshwater,
initiate a series of (energetically costly) mechanisms that allow them
to hyper-regulate, i.e. to maintain their extracellular fluids at a higher
osmolality than that of their surrounding medium. This is thought to
represent a selective advantage when dealing with fluctuating
salinities (e.g. estuaries) (Barnes, 1967). However, at higher
salinities, osmoregulators behave as either iso- or hypo-regulators,
i.e. they maintain their body fluids at the same or lower osmolalities
compared with those of the surrounding medium, respectively. Thus,
osmoregulators can be hyper-/iso- or hyper-/hypo-osmoregulators.
Hyper-/iso-osmoregulation is mostly seen in freshwater species but
is also common in many estuarine invertebrates such as some

List of abbreviations
AER aniosmotic extracellular osmoregulation
FAA free amino acids
GST glutathione S-transferase
IIR isosmotic intracellular regulation
NKA Na+/K+-ATPase
POS preparation for oxidative stress
PUFA polyunsaturated fatty acids
RNS reactive nitrogen species
ROS reactive oxygen species

Glossary
Anisosmotic extracellular osmoregulation (AER)
Mechanisms acting to maintain body (extracellular) fluid volume, osmotic pressure and ionic composition despite environmental salinity changes.
DCFH-oxidizing species
Reactive oxygen or nitrogen species that are capable of oxidizing the redox-sensitive fluorophore DCFH [5-(and-6)-carboxy-2′,7′-
difluorodihydrofluorescein], a commonly used fluorescent dye for determining ROS/RNS formation in vivo or ex vivo.
Euryhaline species
Species that are able to tolerate large shifts in environmental salinity.
Free radical
An atom or molecule with unpaired electrons. Some highly reactive free radicals include those derived from oxygen (ROS) (e.g. superoxide anion, hydroxyl
radical or singlet oxygen). However, other ROS, such as hydrogen peroxide or peroxynitrite, although highly oxidizing, are not free radicals.
Hormesis
The process through which a compound that is toxic or deleterious at high doses or concentrations produces a beneficial effect at lower quantities.
Isosmotic intracellular regulation (IIR)
Cellular mechanisms that, upon a change in surrounding salinity, lead to the adjustment of the intracellular osmotic pressure tomeet that of the environment,
thus minimizing variations in cell hydration.
Isosmotic point
For hyper-/hypo-osmoregulating species, environmental salinity at which the osmolality of body fluids and environmental media are equal.
Osmoconformers
Species that maintain their internal medium isosmotic to their environment, minimizing water fluxes across membranes. Energetically, osmoconformation is
considered to be the cheapest strategy of osmoregulation, and it is the most common within marine invertebrates.
Osmolality
Osmotic pressure of a solution, i.e. measurement of the amount of osmotically effective solutes in a given solvent. It is commonly expressed in osmols per
kilogram of solvent.
Osmoregulators
Species that carry out anisosmotic extracellular regulation when exposed to extracellular osmolality changes. This is achieved through several
mechanisms involving various permeability and salt transport properties within different ion-transporting epithelia. Thus, it is often an energetically
expensive strategy.
Redox balance
The balance between cellular antioxidants and pro-oxidants to avoid a surplus of the latter; a vital physiological requirement for homeostasis.
Stenohaline species
Species that may only tolerate small shifts in environmental salinity.
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decapods (e.g. Lynch et al., 1973; Rivera-Ingraham et al., 2016a;
Young, 1979), isopods (e.g. Charmantier and Charmantier-Daures,
1994; Łapucki and Normant, 2008), amphipods (Morritt and Spicer,
1995) and cladocerans (Aladin, 1991). Hyper-/hypo-osmoregulatory
behavior is more frequent in organisms that experience frequent
changes in environmental salinity (e.g. estuarine invertebrates)
(Lignot and Charmantier, 2015), such as shrimp (e.g. Castille
and Lawrence, 1981; Chen et al., 1995), but also other isopods
(e.g. Kelley and Burbanck, 1972) and decapods (e.g. Anger and
Charmantier, 2000; Charmantier et al., 2002; Thurman, 2003).
Osmoregulation is achieved by controlling ionic fluxes, mostly those
of Na+ and Cl− ions; this control makes use of both limiting and
compensatory processes (e.g. control of membrane permeability or
epithelial leaks, and active pumping, respectively).
As mentioned above, osmoregulation is considered to be an

energetically costly process and the maintenance of ion gradients is
one of the most ATP-consuming processes (reviewed in Hand and
Hardewig, 1996; Sokolova et al., 2012a). For example, from studies
using arthropods, the theoretical cost of producing active solutes
such as proline and alanine has been estimated to represent as much
as 11.6% of daily energy use (Goolish and Burton, 1989). There are,
however, exceptions to this rule; for example, mollusks carry out
osmolyte (alanine) synthesis for IIR during high salinity acclimation
using anaerobic pathways of glucose degradation (Baginski and
Pierce, 1975; De Zwaan and Van Marrewijk, 1973), thus reducing
the costs of this process.

Fueling energetically expensive mechanisms: a double-
edged sword
In any healthy and undisturbed situation, the aerobic ATP
production necessary to fuel any active process will always
involve the formation of ROS and RNS. These species are derived
from membrane-linked electron transport and normal metabolic
processes (Fridovich, 1995). ROS and RNS play key roles in
cellular homeostasis (Palumbo, 2005; Viña et al., 2013), but are
mostly known for their deleterious effects on cellular compounds,
also known as oxidative stress (Sies, 1997). Dramatic increases in
ROS and RNS production often accompany exposure to stressors,
whether biotic (e.g. toxins, immune challenges) (Behrens et al.,
2016; Ciacci et al., 2010; Gómez-Mendikute and Cajaraville, 2003)
or abiotic (e.g. temperature, salinity, oxygenation) (Abele et al.,
2002; Paital and Chainy, 2014; Rivera-Ingraham et al., 2013,
2016b). Therefore, organisms must set up cellular mechanisms (often
located in specialized tissues) to re-establish cellular redox balance
(see Glossary), thus permitting the organism to respond to the
disturbance while maintaining homeostasis (Fig. 1). Thus, it is likely
that upon exposure to a stressor (here, salinity), energy expenditures
are not solely related to, in our case, osmoregulation, but are also
required to fuel the active mechanisms needed to restore cellular
redox balance. Thus, salinity change, osmoregulation, energetic
balance and redox equilibrium are deeply intertwined, and although
this has been well studied in plants, it is not always reflected in
heterotroph-related literature.

Fig. 1. The main environmental factors altered by anthropogenic climate change, to which intertidal organisms must acclimate. Human-induced
changes to the climate are affecting coastal environments such as lagoons, estuaries and mangrove swamps. The increase in greenhouse gas concentrations
is causing air and water temperature to rise, making intertidal organisms more likely to encounter progressive increases in environmental salinity. The
increased frequency of extreme meteorological events is another good example of how climate change affects coastal organisms, obliging animals to deal
with increasingly frequent exposures to diluted seawater. Thus, in this Commentary, special focus has been given to salinity variations in the intertidal
environment and the energetic and redox consequences of dealing with such changes. Osmoregulatory and non-osmoregulatory tissues (which are represented
here by the crab’s posterior and anterior gills, respectively) show different means of acclimation to these changes. Osmoregulation is an energetically costly
process requiring ATP production, namely by means of mitochondrial activity. As shown in the diagram, this has numerous implications in terms of cellular
redox metabolism.
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Lessons from coastal marine environments
At the whole-organism level, much work has been done on the
osmoregulatory capacity of a wide range of coastal invertebrates
(Bückle et al., 2006; Chen and Chia, 1997; Deaton et al., 1989;Webb
et al., 1971) at different stages of development (e.g. Charmantier,
1998) and even under the influence of physiological (e.g. Lignot
et al., 1999) and physical constraints (e.g. Goolish and Burton,
1989; LaMacchia and Roth, 2015). However, the question remains
of whether there is an advantage in terms of energetics or redox
balance of being a hyper-/hypo-osmoregulator compared with a
hyper-/iso-osmoregulator or an osmoconformer. Most importantly, is
there a link between osmoregulation strategy, environmental salinity
and oxidative adaptation (i.e. the ability to sense and neutralize
pro-oxidant conditions)?

Energetic costs associated with osmoconformity
Hypothetically, respiration rates should vary according to the degree
of osmoregulation or osmoconformity (Williams, 1984), and
osmoconforming marine invertebrates should have lower energy
requirements (Willmer, 2001). However, as shown in Fig. 2, the
relationship between osmoregulatory strategies and energy-redox
parameters [e.g. respiration, production of free radicals (see
Glossary), antioxidant defenses and oxidative damage markers] is
not straightforward. Throughout this Commentary, we highlight
some of the possible sources for the large interspecific differences.
The large variability in physiological mechanisms leading to
cell volume regulation, and their associated energetic costs, could
be a source of difference. In osmoconformers (i.e. some intertidal
copepods), hypo-osmotic shock is associated with increased
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Fig. 2. Representation of the patterns of physiological response according to osmoregulation strategy and environmental salinity in marine
invertebrates. This compilation of the literature shows the enormous complexity of responses, demonstrating that environmental salinity must not be the sole
factor affecting respiration and oxidative status. IP, isosmotic point; SW, seawater; FR, free radical. Numbers correspond to relevant references, as follows: [1]
(Goolish and Burton, 1989); [2] (McAllen and Taylor, 2001); [3] (Kim et al., 2001); [4] (Bouxin, 1931); [5] (Navarro and González, 1998); [6] (Sara ̀ et al., 2008); [7]
(Shin et al., 2011); [8] (Widdows, 1985); [9] (Yu et al., 2013); [10] (Begum et al., 2009); [11] (Shumway, 1978); [12] (Svetlichny et al., 2012); [13] (Bertrand et al.,
2016); [14] (Freitas et al., 2015); [15] (Velez et al., 2016b); [16] (Carregosa et al., 2014b); [17] (De Zoysa et al., 2009); [18] (Moreira et al., 2016a); [19] (Velez et al.,
2016a); [20] (Zanette et al., 2011); [21] (Rivera-Ingraham et al., 2016a); [22] (Rivera-Ingraham et al., 2016b); [23] (Dehnel, 1960); [24] (Gilles, 1973); [25] (King,
1965); [26] (Vlasblom et al., 1977); [27] (Sabourin and Stickle, 1980); [28] (De Martinez Gaspar Martins and Bianchini, 2009); [29] (Freire et al., 2011); [30] (Pinto
Rodrigues et al., 2012); [31] (Rosas et al., 1999); [32] (Fernandes, 2010) [33] (Rowe, 2002); [34] (Chen and Lin, 1992); [35] (D. Theuerkauff, G.A.R.-I., J. Roques,
L. Azzopardi, M. Lejeune, E. Farcy, J.-H.L. and E. Sucré, unpublished); [36] (Edwards, 1982a); [37] (Liu et al., 2007); [38] (D. Theuerkauff, G.A.R.-I., Y. Mercky, M.
Lejeune, E. Sucré and J.-H.L., unpublished); [39] (Pallavi et al., 2012); [40] (Paital and Chainy, 2010).
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respiration rates (Goolish and Burton, 1989; McAllen et al., 2002).
This was interpreted as an attempt to oxidatively deaminate FAA
(such as proline or alanine) in order to decrease the osmolyte pool,
allowing the organism to control water and ion fluxes and to
successfully cope with hypo-osmotic shock (Gilles, 1987). It is
possible that an individual’s behavior during exposure to an
environmental salinity change could further contribute to observed
differences in energetic costs. Some authors have suggested that the
increased energetic cost may be linked to increased activity
(McAllen and Taylor, 2001) as the animal attempts to escape
from unfavorable conditions (Gross, 1957).
In other osmoconforming copepods, environmental salinity does

not influence oxygen consumption rates (Svetlichny et al., 2012).
However, most sources indicate that osmoconformers have low
energetic requirements when exposed to decreased salinity. As
salinity increases, their respiration rates also increase (Bouxin,
1931; Navarro and González, 1998; Sarà et al., 2008; Shin et al.,
2011; Widdows, 1985; Yu et al., 2013), probably because of the
active production of methylamines, FAA and derivates. These
organic osmolytes are used by marine osmoconforming molluscs,
polychaetes, crustaceans (Goolish and Burton, 1989) and other
marine invertebrates such as sipunculids (Peng et al., 1994; Virkar,
1966) to increase intracellular osmolality. This is most probably a
widespread and conserved ancestral strategy.

Energetic costs associated with osmoregulation
A wide variety of estuarine invertebrates behave as hyper-/iso-
regulators, and thus only osmoregulate at lower environmental
salinities. The physiological mechanisms of hyper-regulation come
at an energetic cost, which usually translates into higher respiration
rates (Dehnel, 1960; Rivera-Ingraham et al., 2016a; Sabourin and
Stickle, 1980) required to fuel the catabolism of osmotically active
amino acids (Gilles, 1973) and the active uptake of salts (Willmer,
2001). As shown in the hyper-regulating isopod Idotea chelipes,
metabolic rates increase linearly with increasing difference between
the osmolality of the medium and the hemolymph (Łapucki and
Normant, 2008). However, this is far from a general trend; for
example, the marine intertidal flatworm Macrostomum lignano is
able to regulate its body volume at extremely low salinities while
appearing to enter a state of metabolic arrest (Rivera-Ingraham et al.,
2016b). So how can organisms control water and ion fluxes with
limited energetic resources? In cases of limited oxygen, and thus
energy availability, nematodes such as Caenorhabditis elegans can
reduce the permeability of their cellular membranes through the
downregulation of aquaporin water channels, thus reducing the
energetic cost of countering hypo-osmotic effects (LaMacchia and
Roth, 2015). These mechanisms that allow the maintenance of ion
homeostasis under conditions of reduced energy availability have
been well described in various animal and cellular models (reviewed
by Hand and Hardewig, 1996), but the use of highly tolerant sessile
intertidal organisms may open up new perspectives in the study of
energetic trade-offs.
As opposed to osmoconforming and hyper-/iso-osmoregulating

species, some invertebrates regulate extracellular fluids at both
low and high salinities. As shown in Fig. 2, the physiological
responses are significantly more variable among these hyper-/
hypo-osmoregulating species. In some species, hyper-regulation
induces an increase in respiration rates (Chen and Lin, 1992),
whereas, for others, hypo-regulation is more energetically costly
(D. Theuerkauff, G.A.R.-I., J. Roques, L. Azzopardi, M. Lejeune,
E. Farcy, J.-H.L. and E. Sucré, unpublished). One exception is the
case of saltwater mosquito larvae, which are nearly perfect

osmoregulators (e.g. Edwards, 1982b; Nayar and Sauerman, 1974)
(although they represent only 5% of all mosquito species; Bradley,
1987). Results by Edwards (1982a) show that respiration rates of these
larvae are not altered by changes in environmental salinity. Thus, at
this point, we can only highlight the large range of responses existing
among the different osmoregulating strategies in terms of whole-
animal respiratory patterns. Even if respiration rate measurements are
traditionally used as a marker for energy metabolism, they do not
necessarily correlate with ATP production, a matter that may partly
explain the diversity of respiratory patterns shown in Fig. 2.

Current research on fundamental mitochondrial functioning
indicates the need to analyze mitochondrial efficiency – that is, the
amount of ATP generated per molecule of O2 consumed by
mitochondria – in order to correctly address energetic studies (Salin
et al., 2015a). In fact, much of the O2 consumption by mitochondria
can be explained through H+ pumping and leaking across internal
membranes, a subject that has received much attention in the field of
biomedical research. Data on rodents indicate that the contribution
of H+ leak-associated respiration can account for an average of 20%
of the total standard metabolic rate (Rolfe and Brand, 1997). Thus,
could variations in mitochondrial efficiency partially explain the
discrepancies in whole-animal respiration rates across organisms
with different osmoregulation strategies? To address this question,
mitochondrial respiratory control could be assessed by looking at
mitochondrial respiration rates in response to ADP from isolated
osmoregulatory tissues. The cellular rate of ATP production, proton
leak rate, coupling efficiency, maximum respiratory rate, respiratory
control ratio and spare respiratory capacity, along with the
mitochondrial membrane potential, could be measured from
isolated ion-transporting cells (ionocytes) of individuals kept at
different salinities. But could these functional differences also explain
the differences in salinity-induced patterns of ROS formation?

Redox metabolism
There are very few reports analyzing ROS formation during salinity
changes in marine organisms, which is hardly surprising given the
technical difficulty of quantifying free radicals due to the limitations
of the most accessible tools (Kalyanaraman et al., 2012) and the
extremely low half-life of these particles. The latter range from
10−9 s for OH• (Karogodina et al., 2011) to ∼1 ms for H2O2 (Bak
and Weerapana, 2015), thus requiring in vivo or ex vivo
measurements. But again, in marine invertebrates these reports are
not only scarce, but also contradictory.

From two examples of hyper-/iso-regulators, we see that
respiration rates may increase at higher salinities (e.g. in the
intertidal flatworm M. lignano) (Rivera-Ingraham et al., 2016b) or
at lower salinities (e.g. the Mediterranean green crab Carcinus
aestuarii) (Rivera-Ingraham et al., 2016a). Live-imaging techniques
and in vivo analysis of free radical production can be used with
M. lignano, as this organism is small and transparent. We recently
revealed that when exposed to hypersalinity, these flatworms increase
respiration rates, which is accompanied by a dramatic increase in
superoxide anion (O2·−) production while H2O2 and other ROS/RNS
(specifically DCFH-oxidizing species; see Glossary) decreased
(Rivera-Ingraham et al., 2016b). This hypersaline exposure is
accompanied by upregulation of the gene expression of various
antioxidants, although this does not always enable organisms to
avoid increased apoptosis following exposure to high environmental
salinities, a failure that is most probably due to dysfunctioning,
worn-out cells. However, some of the FAA synthesized during
exposure to hypersaline environments can also play a direct or
indirect role in redox balance (see Yancey, 2005 and references
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therein). In C. aestuarii, increased respiration rate at low salinity
is accompanied by increased ROS formation in hemolymph and tissues
(Rivera-Ingraham et al., 2016a). But, as highlighted by Salin et al.
(2015b), respiration and ROS production are not necessarily linked.
In contrast to M. lignano and C. aestuarii, the hyper-/hypo-

osmoregulating estuarine crab Neohelice granulata increases H2O2

formation under hyperosmotic shock (H2O2 measured in the
surrounding medium) (Fernandes, 2010). In Uca urvillei, a
mangrove crab with similar osmoregulating strategies, increased
salinity causes an increase in respiration rates, which is not
accompanied by changes in ROS formation in freshly collected
hemolymph (D. Theuerkauff, G.A.R.-I., J. Roques, L. Azzopardi,
M. Lejeune, E. Farcy, J.-H.L. and E. Sucré, unpublished).
Could the variety of results on the relationship between ROS-

formation patterns and salinity changes be explained by the lack of
fundamental mitochondrial data? The relationship among
mitochondrial respiration rates, ATP production and ROS formation
has been a subject of debate for some time now, and most of the
available data were collected in mammalian models. It is generally
accepted that there is a fixed percentage of ROS produced per unit of
O2 consumption (Nicholls, 2004) at the level of complex I and III in
the mitochondrial electron transport chain (Turrens, 2003). However,
the contribution of complex III to ROS formation is determined by
mitochondrial membrane potential (ΔΨm) and, consequently, by the
processes modifying this parameter, i.e. ATP production (Adam-Vizi
and Chinopoulos, 2006), H+ leak (Brookes, 2005) and expression of
uncoupling proteins (Mattiasson et al., 2003; Speakman et al., 2004).
An elegant study by Salin et al. (2015b) showed that H2O2 formation
in fish mitochondria is negatively correlated with standard metabolic
rates. Once again, this highlights the need to complement whole-
animal respiration measurements with analysis at lower levels of
organization (e.g. cellular or molecular levels).
It is also worth noting an issue that is rarely discussed in

the literature: the physiological cost of osmoregulation may
greatly vary among tissues. Thus, another possible source of
variation in the patterns shown in Fig. 2 could be related to
differential oxidative adaptation between osmoregulatory and non-
osmoregulatory organs. In Rivera-Ingraham et al. (2016a), we used an
estuarine hyper-/iso-osmoregulating decapod crab as a studymodel to
demonstrate that non-osmoregulating (anterior) and osmoregulating
(posterior) gill tissues facing hypo-osmotic shock can clearly differ in
their metabolic and oxidative response. Posterior gills with
osmoregulatory function respond by generating new mitochondria,
thus producing the energy needed to fuel osmoregulatory structures as
well as the antioxidant defenses (namely superoxide dismutase) that
are required to counteract stress-induced ROS production. However,
anterior gills (which are mainly respiratory) enter a state of metabolic
arrest on exposure to hypo-osmotic shock, and are affected by a
higher apoptotic rate. Further analyses dissociating the functional
partitioning between osmoregulatory and non-osmoregulatory tissues
will certainly open interesting new perspectives on antioxidant
defense evolution and adaptive responses to oxidative stress at the
tissue level. For example, in hyper-/hypo-osmoregulating crabs,
could the physiological cost of replacing osmoregulatory ionocytes
lead to an optimized protection of the posterior gills at the expense of
purely respiratory anterior gills? Also, when – and how – does
upregulation of the antioxidant defense occur?

Effects of oxidative stress on osmoregulation capacities:
implications from mammalian work
As reviewed above, radical and non-radical reactive species are
generated by mitochondrial respiration and other processes during

salinity stress, and these can attack virtually all types of
biomolecules. Among these, polyunsaturated fatty acids (PUFA),
which are essential components of membrane phospholipids, are
especially prone to oxidation. The two or more carbon-to-carbon
double bonds in PUFA render these molecules vulnerable to ROS
interactions, resulting in lipid radicals which, in the presence of
molecular oxygen, result in lipid peroxyl radical formation (Fig. 3).
In turn, these can react with other fatty acids to produce lipid
peroxides and additional fatty acid radicals. These processes have
been well documented in mammals (reviewed by Yin et al., 2011),
as they have been suggested to be associated with diverse
pathologies ranging from cancer (e.g. Gönenç et al., 2001) to
Alzheimer’s disease (e.g. Montine et al., 2004). As we discuss
above, the literature shows that both high and low environmental
salinities can be associated with increased ROS production (Fig. 2)
(Freire et al., 2012), which can, in turn, interfere with
osmoregulation through different pathways.

As discussed above, under hypo-osmotic conditions, some weak
osmoregulators (e.g. euryhaline brachyuran crabs; see Glossary)
respond by overexpressing and enhancing the activity of membrane-
bound ion channels, co-transporters/exchangers and ATPases (e.g.
Havird et al., 2013; Towle et al., 2011). This can be accompanied by
mitochondrial biogenesis to meet the energy requirements to fuel
osmoregulation (Rivera-Ingraham et al., 2016a). While small
amounts of ROS are required to activate osmoregulatory pathways
(Wagner et al., 2013), larger and uncontrolled quantities lead to
the degeneration or inactivation of the membrane-bound ion-
transporting pumps such as NKA (Kim and Akera, 1987; Kukreja
et al., 1990), thus reducing osmoregulatory capacities. Invertebrates
have rarely been the subject of this type of study, but many works
using different mammalian cells show how pro-oxidant conditions
not only induce lipid peroxidation, but also lead to a decrease in the
activity of NKA (Dobrota et al., 1999; Ostadal et al., 2004; Thomas
and Reed, 1990) or Ca2+-ATPase (Kaneko et al., 1989; Lee and
Okabe, 1995), both of which are essential for osmoregulation in
marine invertebrates.

For some species, hyperosmotic stress can equally result in
increased ROS formation (e.g. Rivera-Ingraham et al., 2016b), and
these pro-oxidant conditions, if not properly controlled, may also
interfere with correct acclimation. The mechanisms used by renal
cells to counteract hypersalinity are well studied; in this system,
the synthesis or accumulation of FAA and other osmolytes is
essential. However, it has been reported that in renal cells, ROS
may inhibit the activity of enzymes involved in osmolyte synthesis.
Rosas-Rodríguez and Valenzuela-Soto (2010) show this for
betaine aldehyde dehydrogenase (catalyzing glycine betaine
production), aldose reductase (converting glucose to sorbitol) and
glycerophosphochiline:choline phosphodiesterase (involved in the
synthesis of glycerophosphocholine), all of which produce
important solutes necessary for correct renal cell osmoregulation.
In the context of anthropogenic effects on shallow aquatic
environments, the study of the impact that exposure to ROS-
generating stressors may have on osmoregulatory capacities is a
relevant line of research.

Salinity-induced metabolic depression and recovery: does
the ‘preparation for oxidative stress’ hypothesis apply for
hypo-osmotic shock?
A common response to environmental stressors is the induction of
metabolic depression (Hand and Hardewig, 1996), a state in which
animals decrease their basal metabolic rate to minimize energy
expenditure (Guppy and Withers, 1999), thus maximizing survival
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time until the return of favorable conditions. Although this is most
commonly attributed to exposure to low temperature or hypoxia, for
example, a review of the literature shows that some marine
invertebrates – ranging from flatworms (Rivera-Ingraham et al.,
2016b) and echinoderms (Yu et al., 2013) to mollusks (Morritt
et al., 2007; Sokolova et al., 2000; Stickle and Sabourin, 1979) –
enter a state of metabolic depression when exposed to hypo-osmotic
conditions or freshwater (Fig. 4). This environmentally induced
metabolic depression may predominantly affect specific tissues in a
wide variety of species (e.g. Flanigan et al., 1991; Lewis and
Driedzic, 2007; Smith et al., 1996).
The physiological and biochemical processes triggeringmetabolic

depression and arousal are complex but have been the focus of much
scientific attention (Biggar and Storey, 2010; Storey, 1988; Storey
and Storey, 2004). Physiologically, mitochondrial recovery is one of
the most challenging processes; cell re-oxygenation commonly leads
to large peaks in ROS and RNS formation, a process known as the
‘oxidative burst’, which, if not controlled, can have deleterious
consequences for cellular compounds and for survival. Thus, it may
be of critical importance for organisms frequently encountering
environmental or functional hypoxia (e.g. many shallow coastal
invertebrates, which are mainly sessile or have low motility and are
thus unable to escape from such conditions), to prepare adequate
mechanisms to counteract the pro-oxidant conditions of arousal and
re-oxygenation. When facing hypoxia, freezing, starvation or other
environmental constraints inducing metabolic arrest, tolerant species
are indeed capable of ‘preparing for oxidative stress’ (POS)
(Hermes-Lima et al., 2015, 1998). This requires such organisms to
increase their antioxidant defenses before triggering metabolic
shutdown in order to counteract the burst of ROS generated upon

reperfusion. A recent literature review by Moreira et al. (2016b)
shows that the diversity of organisms capable of POS is
phylogenetically broad, suggesting that this is an old and relatively
conserved mechanism.

Could a hypo-osmotically induced metabolic decrease lead to a
similar preparation for oxidative stress? As recently shown in
Rivera-Ingraham et al. (2016b), flatworms under hyposaline
conditions not only decrease their activity and respiration rates,
but also significantly increase very specific antioxidant defenses,
namely the level of glutathione S-transferase (GST). Could this be
interpreted as a POS mechanism? If animals are indeed under
metabolic depression, how would investing in GST upregulation
benefit the individuals except as a preparatory step for the expected
return to pro-oxidant conditions? If this is the case, what are the
triggering signals? Current hypotheses consider that small
quantities of ROS are involved in this process (i.e. it is an
example of hormesis; see Glossary) and may, thus, be essential for
correct homeostasis (Fig. 4).

Over the last decades, the ROS-induced hormetic effect in
acclimation to environmental challenges has been increasingly
highlighted by numerous studies (e.g. Russell and Cotter, 2015),
although mainly in plants (Carmody et al., 2016; Suzuki et al.,
2012). As reviewed by Hermes-Lima et al. (2015), there is
considerable indirect evidence supporting the role of ROS (and
products of biomolecule oxidation) in activating transcription
factors in animals, leading to antioxidant upregulation. Regarding
salinity changes, in human renal cells exposed to high salinity stress,
for example, ROS are required for the transactivation of specific
transcription factors leading to the transcription of osmoprotective
genes (Zhou et al., 2005). However, direct measurement of ROS
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formation under in vivo or ex vivo conditions is challenging, and
thus not often performed in marine eco-physiological studies, and
there is no clear evidence of when this signaling could occur.
Shallow coastal invertebrates that respond to large salinity changes
by entering metabolic depression could constitute interesting study
models to analyze the applicability of POS under osmotic stress.
This would allow us to understand (1) the energetic trade-offs
between energy savings and upregulation of antioxidant and
osmoprotective genes required for recovery from metabolic
depression, (2) the role of ROS in signaling and triggering such
processes and (3) the consequences of anthropogenically derived
changes in ROS-mediated signals and homeostasis.

Ecological relevance
It is worth considering any integrated physiological approach such as
the one described in this Commentary in a broader ecological context.
Could the highlighted differences between species be linked to
evolutionary adaptations to distinct habitats? Above, we highlighted
that particular osmoregulatory strategies are normally associated with
certain habitats. Moreover, numerous studies have shown how
zonation in shallow coastal environments is related to differential
physiological responses to environmental factors such as salinity. In
the literature, one can find examples relating to differential
‘horizontal’ distribution, such as a salinity gradient in estuaries that
transitions from seaward stenohaline to landward euryhaline
conditions (e.g. Giménez, 2003; Pinkster and Broodbakker, 1980).
An interesting study by Freire et al. (2011) compares two

estuarine crab species of the genus Callinectes with different

distributions along a salinity gradient. Despite their similar
osmoregulatory behavior, the two species show significant
differences in their redox metabolism. Callinectes danae, a more
euryhaline species inhabiting more unstable environments, shows
higher antioxidant defenses than the congeneric species
C. ornatus, which lives in more stable conditions. There are
other cases, such as the recent work of Theuerkauff et al.
(unpublished) using two tropical crabs (Neosarmatium meinerti
and U. urvillei), but in this case, the species inhabit the same area
of a mangrove swamp. The authors demonstrate that despite
having the same osmoregulatory strategy and similar isosmotic
points (see Glossary), the two species have significantly different
physiological responses to salinity changes. While N. meinerti
does not show significant change in respiration rates, U. urvillei
increases its respiration during hypo-regulation. Other examples of
intraspecific variation can also be found. Two recent studies show,
for example, how the mollusk Ruditapes philipinarum displays a
completely different redox response to the same environmental
salinity fluctuations depending on whether the animals come from
a coastal lagoon (Velez et al., 2016b) or an estuary (Velez et al.,
2016a). These variations were interpreted as differences relating to
their ecological background (C. Velez, personal communication).
Differential physiological responses are not restricted to
‘horizontal’ distributions (e.g. river–ocean gradient across an
estuary). There are similar examples with ‘vertical’ distributions
(e.g. different intertidal levels), showing how congeneric species
(e.g. subantarctic limpets) living at different heights/depths from
zero-tide also show different responses in terms of redox
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imbalances (e.g. Malanga et al., 2004). The same also applies to
congeners distributed at different tidal levels, where mussels
located in the upper areas (and thus exposed to longer cycles of air
exposure) present greater antioxidant defenses compared with
populations located lower in the intertidal zone (e.g. Letendre
et al., 2008).

Conclusions and future perspectives
Intracellular and extracellular osmoregulation mechanisms have
been widely studied in most phyla, as have the biotic and abiotic
factors influencing this capacity. The associated energy
requirements have also been quantified through classical
research methods. But the biomedical field is shedding new
light on this domain, revealing the need to examine these
mechanisms at the subcellular (namely mitochondrial) level to
fully understand the energetic requirements (and consequences) of
these processes. Undoubtedly, the large diversity of marine
invertebrates and the great variability in osmoregulatory
strategies, life histories, evolutionary backgrounds, tissue
functions, etc., are responsible for the enormous variability of
energy-redox responses upon changes in environmental salinity
that we have briefly highlighted here. Benefiting from such a large
biodiversity, we suggest applying a functional mitochondrial
approach (analysis of mitochondrial morphology, number and
efficiency, i.e. oxygen consumption, electron transport chain
activity and H+ leak and associated ROS/RNS formation), which
may help us to disentangle patterns linking energy, redox and
salinity-related responses. Most importantly, understanding such
subcellular processes may help us to elucidate different
evolutionary adaptations to different marine environments as
well as to predict the role of ROS/RNS in promoting or preventing
essential physiological responses leading to stress acclimation.
The field of plant biology may provide key clues to aid in
deciphering the mechanisms of salinity-induced ROS and RNS
formation, as well as hinting at their role in acclimation to
hypersaline conditions. This Commentary highlights the need to
integrate the methodological approach, working hypotheses and
future research directions from these two fields. In the wider
context of global climate change and the anthropogenic alteration
of coastal habitats, there is an increasing need to apply these
research directions to the study of how changes in ROS/RNS
balance may affect salinity acclimation in marine intertidal
organisms. These organisms represent ideal models that can be
used to make important advances in the field of animal
conservation physiology.
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Abele, D., Heise, K., Pörtner, H. O. and Puntarulo, S. (2002). Temperature-
dependence of mitochondrial function and production of reactive oxygen
species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205,
1831-1841.

Adam-Vizi, V. and Chinopoulos, C. (2006). Bioenergetics and the formation of
mitochondrial reactive oxygen species. Trends Pharmacol. Sci. 27, 639-645.

Aladin, N. V. (1991). Salinity tolerance and morphology of the osmoregulation
organs in Cladocera with special reference to Cladocera from the Aral Sea. In
Biology of Cladocera: Proceedings of the Second International Symposium
on Cladocera, Tatranska Lomnica, Czechoslovakia, 13–20 September 1989 (ed.
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Péqueux, A. (1995). Osmotic regulation in crustaceans. J. Crustac. Biol. 15, 1-60.
Peterson, M. S. and Ross, S. T. (1991). Dynamics of littoral fishes and decapods
along a coastal river-estuarine gradient. Estuar. Coast. Shelf Sci. 33, 467-483.

Pierce, S. K. (1982). Invertebrate cell volume control mechanisms: a coordinated
use of intracellular amino acids and inorganic ions as osmotic solute. Biol. Bull.
163, 405-419.

Pinkster, S. and Broodbakker, N. W. (1980). Influence of environmental factor on
distribution and reproductive success of Eulimnogammarus obtusatus (Dahl,
1938) and other estuarine gammarids. Crustaceana 6, 225-241.

Pinto Rodrigues, A., Correia Oliveira, P., Guilhermino, L. and Guimaraẽs, L.
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