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ABSTRACT: In 2010, an international group of 35 sea turtle researchers refined an initial list of
more than 200 research questions into 20 metaquestions that were considered key for manage-
ment and conservation of sea turtles. These were classified under 5 categories: reproductive biol-
ogy, biogeography, population ecology, threats and conservation strategies. To obtain a picture of
how research is being focused towards these key questions, we undertook a systematic review of
the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In
total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively
address the 20 key questions, with others focusing on basic science and monitoring. Progress to
answering the 20 questions was not uniform, and there were biases regarding focal turtle species,
geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort,
quantifying peer-reviewed literature output is ob viously not the only, and possibly not the best,
metric for understanding progress towards informing key conservation and management goals.
Along with the literature review, an international group based on the original project consortium
was assigned to critically summarise recent progress towards answering each of the 20 questions.
We found that significant research is being expended towards global priorities for management
and conservation of sea turtles. Although highly variable, there has been significant progress in
all the key questions identified in 2010. Undertaking this critical review has highlighted that it
may be timely to undertake one or more new prioritizing exercises. For this to have maximal ben-
efit we make a range of recommendations for its execution. These include a far greater engage-
ment with social sciences, widening the pool of contributors and focussing the questions, perhaps
disaggregating ecology and conservation.

KEY WORDS:  Sea turtle · Marine conservation · Evidence-based conservation · Systematic review ·
Research prioritisation
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INTRODUCTION

The key research question approach has been used
effectively to engage ecologists with priority topics
determined by policy makers or the researchers them-
selves (Sutherland et al. 2006, 2009). The ap proach
draws on the knowledge of a broad range of targeted
experts to set out their priority questions for the sub-
ject matter. The individual questions are then dis-
cussed and synthesised to generate a number of pri-
ority questions that, if addressed, would have the
greatest impact (Cooke et al. 2010). This ap proach
has been used on a range of subject areas, from
global conservation and biodiversity issues (e.g.
Sutherland et al. 2009) to taxon specific initiatives,
such as for sea birds (Lewison et al. 2012) and
cetaceans (Parsons et al. 2015).

The status of sea turtles and the need for conserva-
tion to aid population recovery have captured the
interest of government agencies, non-governmental
organisations (NGOs) and the general public, world-
wide. This has facilitated increased research focusing
on a wide variety of topics relating to sea turtle biol-
ogy and conservation. However, management actions
are often hindered by the lack of data on turtles
themselves, human−turtle interactions, turtle popu-
lation status and threats or the effectiveness of con-
servation interventions. In an effort to inform effec-
tive sea turtle conservation, Hamann et al. (2010)
compiled a list of priority research questions based
on the opinions of 35 sea turtle researchers from 13
nations. A list of more than 200 questions was con-
densed into 20 metaquestions that were classified
under 5 categories: reproductive biology, biogeogra-
phy, population ecology, threats and conservation
strategies (see Fig. 1). Now, more than 5 years later,
we set out to critically appraise the progress that has
been made towards informing these key research
priorities in this taxon.

METHODS

Reviewing the literature

To determine how published research has been
focused towards informing sea turtle management
and conservation, we evaluated the peer-reviewed
literature. We undertook a systematic review using
Web of Science (v.5.22.3; 21 June 2016). In order to
ensure capture of all relevant texts we used the
topic search ‘sea turtle’ or ‘marine turtle’ or ‘log-
gerhead turtle’ or ‘green turtle’ or ‘leatherback tur-

tle’ or ‘olive ridley’ or ‘Kemps ridley’ or ‘hawksbill
turtle’ or ‘flatback turtle’ in ‘All databases’ for the 2
most recent complete years (2014 and 2015), which
re sulted in a list of 707 articles. We then removed
duplicates, spurious hits, generic texts (such as ref-
erences to entire proceedings) and non-peer-
reviewed ‘grey’ literature based on title and abstract,
or main text if relevance was unclear from the
abstract.

Literature analysis

For each article, 2 authors (A.F.R. and B.J.G.) inde-
pendently reviewed and ascribed its application to
the original 20 questions highlighted in Hamann
et al. (2010). These assignations were compared, and
where differences occurred they were resolved
through discussion. As a further check, input on the
assignation of articles was sought from the other co-
authors. Papers were, where possible, classified by
sea turtle species and ocean basin.

Expert opinion

A total of 63 publishing sea turtle researchers
were invited to contribute to this initiative. Those
that responded positively (n = 42) were requested to
indicate the 3 most relevant questions in Hamann et
al. (2010) that matched their expertise. Based on
their indications, they were then assigned to groups
of 2 or 3 to compile summaries on recent progress
towards answering each of the 20 questions. These
summaries were then shared among all co-authors
for comment, cross-linkage, internal review and
refinement.

RESULTS

In total, 605 articles were reviewed in full and
from these 355 (59%) were judged to substantively
ad dress the 20 key questions in sea turtle conserva-
tion and management (Fig. 1 and Appendix). A total
of 40 (11%) of these papers cited the Hamann et al.
(2010) paper. Papers on palaeontology (n = 21; 3%)
were excluded. Publications on fundamental science
(n = 74; 12%) and novel techniques (n = 36; 6%) not
yet linked with conservation or management ques-
tions were not included here, although we stress the
im portance of such work in leading innovation that
can underpin significant advancement. Baseline
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What are the factors that underpin nest site selection
and behaviour of nesting turtles? 

What are the primary sex ratios being produced and 
how do these vary within or among populations and species? 

What factors are important for sustained hatchling production?

What are the population boundaries and connections that exist 
among rookeries and foraging grounds? 

What parameters influence the biogeography of sea turtles 
in the oceanic realm? 

Where are key foraging habitats?

Can we develop methods to accurately age individual turtles, 
determine a population’s (or species’) mean age-at-maturity, ...?

What are the most reliable methods for estimating 
demographic parameters? 

How can we develop an understanding of sea turtle 
metapopulation dynamics and conservation biogeography?

What are the past and present roles of sea turtles in 
the ecosystem?

What constitutes a healthy turtle?

What will be the impacts from climate change on sea turtles 
and how can these be mitigated? 

What are the major sources of fisheries bycatch and how can 
these be mitigated in ways that are ecologically, economically …?

How can we evaluate the effects of anthropogenic factors 
on sea turtle habitats? 

What are the impacts of pollution on sea turtles 
and their habitats? 

What are the etiology and epidemiology of 
fibropapillomatosis, and how can this disease be managed? 

How can we effectively determine the conservation status of 
sea turtle populations?

What are the most viable cultural, legal and socioeconomic 
frameworks for sea turtle conservation?

Which conservation strategies are working (have worked) 
and which have failed?

Under what conditions (ecological, environmental, social and 
political) can consumptive use of sea turtles be sustained?

Proportion of publications (%)

N = 355 

Fig. 1. Proportion of publications from 2014 and 2015 that address the 20 key questions of Hamann et al. (2010). Dashed line
represents the mean value of the proportion of publications (8%). Percentages sum to greater than 100 as some publications 

covered more than one question
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nesting monitoring reports that did not include
extensive time series (n = 20; 3%), or reports of sim-
ple trophic interactions (n = 16; 3%), were further
examples of articles that were not included in the
final list, although we acknowledge that such data
underpin studies of ecology, efficacy of conservation
or assessments re garding the severity of threats. A
total of 202 papers (33%) were considered to cover
single key questions but 153 (25%) were more
broadly scoped papers ad dressing up to 6 of the
questions (Fig. 2a).

Outputs by species, ocean basin and 
publication venue

Species bias in published articles was prevalent
(Fig. 2b). By far the most common species reported
upon were green turtles (41% of articles) and logger-
head turtles (34% of articles). As might be expected,
sea turtle species with more restricted ranges (Kemp’s
ridley and flatback turtles) featured least, appearing
in less than 6% of the articles (see also Jeffers & God-
ley 2016). Geographically, work was biased towards
the North Atlantic and, to a lesser extent, the North
Pacific (Fig. 2c), possibly demonstrating the great
interest and relatively enhanced funding in nations
bordering these regions. Sea turtle literature con-
tributing to the key questions was published in over
130 outlets, with the top 6 journals accounting for
32% (n = 114) of all articles (Fig. 3). Three of these
are Open Access venues, with the other 3 being lead-
ing marine ecology journals.
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Fig. 2. (a) Proportion of papers addressing the key conservation questions highlighted by Hamann et al. (2010). Prevalence
and biases in publications from 2014 and 2015 per (b) species and (c) ocean area. Dashed lines represent mean values. Per-
centages sum to greater than 100 as some publications covered more than one species. Cc = Caretta caretta, Cm = Chelonia
mydas, Dc = Dermochelys coriacea, Ei = Eretmochelys imbricata, Lk = Lepidochelys kempii, Lo = Lepidochelys olivacea, Nd = 

Natator depressus
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Fig. 3. Frequency of publishing outlet of all sources with 4 or
more publications for the 355 articles that were adjudged as
describing work that substantively informs sea turtle conser-
vation or management that may be ascribed as contributing
to answering the 20 key questions. Dashed line represents
the mean value of publications per all publishing outlets, i.e. 

2.6 publications
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To what extent are the 20 questions 
being addressed?

Progress to answering the 20 questions in the 2
years of peer-reviewed literature was not uniform
(Fig. 1). The related questions which extensively utilise
modern technologies such as satellite tracking and
molecular genetics: ‘What are the population bound-
aries and connections that exist among rookeries and
foraging grounds?’ and ‘How can we develop an un-
derstanding of sea turtle metapopulation dyn amics
and conservation biogeography?’ featured most highly
(both at 17% of publications numerically). Eight ques-
tions were each addressed in less than 5% of the liter-
ature with those relating to reproductive biology
(Q1−3), threats (Q12−16) and conservation strategies
(Q17−20) generally the least addressed. The question
‘How can we evaluate the effects of anthropogenic
factors on sea turtle habitats?’ was singly the least
represented (<1% of articles).

Quantifying peer-reviewed literature output is not
the only metric for understanding research progress
towards informing key conservation and management
goals. Nevertheless, it is a useful tool with which to
de termine research output as an indicator of the
focus and extent of work valuable to the manage-
ment and conservation of sea turtles. The following
20 sections present synthesized expert opinion on the
actual progress towards answering each of the origi-
nal key questions set out by Hamann et al. (2010).
They reference up-to-date findings together with
foundation research carried out prior to publication
of the 20 questions.

Q1. What are the factors that underpin nest site
selection and behaviour of nesting turtles?

How do turtles decide where and when to lay their
eggs? We know the necessary conditions for oviposi-
tion and incubation (Mortimer 1990, Ackerman 1997),
we recognize that some anthropogenic activities can
disrupt nesting (Miller et al. 2003) and have identi-
fied that delays to nesting can increase embryonic
death (Rafferty et al. 2011, 2013). However, we still
lack a deeper understanding of how sea turtles select
nest sites at intra- and inter-beach levels. Natal hom-
ing has been the predominant explanation for main-
tenance of populations of turtles at specific nesting
beaches (Bowen et al. 2016; see Q4 and Q9), and
recent region-level analyses suggest that the inter-
play of abiotic patterns with natal homing, may also
play a role in beach selection, including destructive

weather patterns (Fuentes et al. 2011a), access of
hatchlings to major oceanic currents for dispersal
(Putman et al. 2010a), and variation in the Earth’s
magnetic field used for geolocation (Brothers &
Lohmann 2015). There may also be local adaptation
to specific incubation conditions at the beach level
that constrains where a turtle may choose to nest
(Weber et al. 2012).

Once a beach is selected by a reproductive female,
it remains unclear where along the beach she may
emerge to lay her eggs, and whether lateral, spatial
proximity to previous nests is the product of a ran-
domized process (Nordmoe et al. 2004, Tiwari et al.
2005). Others have reported that nearshore factors
such as wave height and steepness of approach
(Yamamoto et al. 2012, Lamont & Houser 2014) or
major beach-strand structures such as vegetation
(Reising et al. 2015), buildings and other types of
construction (Witherington et al. 2011), and natural
or artificial debris (Fujisaki & Lamont 2016) influence
where along the beach females lay their eggs.

Once a female has emerged from the ocean onto a
nesting beach, she chooses where to place her eggs
relative to the high tide line, dune line, and/or vege-
tation line. There has been some debate about the
repeatability of nest site selection by individual
females (e.g. Kamel & Mrosovsky 2005 vs. Pfaller et
al. 2009 and Nordmoe et al. 2004). Recent studies
have focused on quantifying nests laid in different
beach zones such as open sand, intermediate and
vegetation, and/or repeatability of location. Contrast-
ing with lateral placement, most report that the nest
locations are not randomly dispersed, and that indi-
vidual females generally prefer to use the same zone
for placing sequential nests in the same season (Nee-
man et al. 2015a). Interestingly, a multi-season study
suggests that while females tended to lay clutches in
similar zones in the same season, in other seasons the
same females would change zones to lay their nests
(Santos et al. 2016). The pattern of non-random nest-
ing at a fine scale (on a given beach) while retaining
the capacity to widely vary nest position at a larger
scale (between beaches) would seem to be a prereq-
uisite for populations of turtles to maximise hatching
success while still being able to respond to environ-
mentally caused changes in the suitability of beaches
over time. Individuals with a lower nest site fidelity
are needed for the establishment or drift of nesting
along a coastline as conditions change. Overall,
progress in understanding nest site selection and
nesting behaviour has primarily been focused on
observational research. While this is valuable for
identifying the factors involved in these behaviours,
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a deeper understanding will likely require an exper-
imental approach, by manipulating either the habi-
tat, nesting opportunity or sensory inputs of nesting
females. Greater knowledge of these processes, par-
ticularly including inter-specific variability, may be
critical to informing management decisions related to
beach manipulation or beach construction following
coastline changes from climate change and sea level
rise (see Q3 and Q12).

Q2. What are the primary sex ratios being produced
and how do these vary within or among populations

and species?

The prevalence of temperature-determined sex
 determination (TSD) in reptiles (Charnier 1966),
 including turtles, is still puzzling from a molecular,
ecological and evolutionary point of view. Progress
has, however, been made. It has been suggested that
TSD is a form of condition-dependent sex allocation
favoured over genotypic sex determination when in-
cubation temperature influences fitness in a manner
that differs between the sexes (Charnov & Bull 1977).
A new hypothesis linking the evolution of TSD with
difference in age at maturity in males and females is
very promising (Schwanz et al. 2016). Currently,
however, we lack information on the age at maturity
in sea turtles, although new data are be coming avail-
able (see Q7). Although the molecular and cellular
mechanisms of temperature on sex determination still
remain elusive, it seems clear that activity of the Sox9
gene is implicated at early stages (Sifuentes-Romero
et al. 2013), and that gene methylation is used to lock
gene expression after sex determination is complete
(Venegas et al. 2016). The Cold-Inducible RNA-
 Binding Protein (CIRBP) gene could play an essential
role as being the sensor of temperature for TSD in
Chelydra serpentina (Schroeder et al. 2016).

Few recent studies have produced primary sex
ratio estimates using histology (a lethal method) and
most have used a small sample size, during a limited
time in the nesting season or only for 1 season, which
precludes a correct understanding of primary sex
ratio for sea turtles (see Wyneken & Lolavar 2015 for
discussion). A new promising method to estimate the
sex of hatchlings based on steroids extracted from
eggshell is a non-lethal sexing method (Xia et al.
2011, Kobayashi et al. 2015), but the approach re -
mains to be validated. Many primary sex ratio studies
use indirect proxies such as average temperatures
during incubation (entire or middle-third) to cover all
the nesting season or several seasons. These esti-

mates have been rendered possible by the develop-
ment of new statistical methods to reconstruct the
sand temperature from various proxies (Fuentes et al.
2013, Laloë et al. 2014, 2016, Girondot & Kaska
2015). However, the use of indirect proxies to estab-
lish primary sex ratio can generate significant error
(e.g. Georges et al. 1994, Wyneken & Lolavar 2015).
Additionally, many studies ignore the difference of
thermal reaction norm for sex ratio (Hulin et al. 2009)
or embryo growth (Morales Mérida et al. 2015)
between populations (Girondot & Kaska 2014) and
more research must be undertaken to produce vali-
dated proxies.

Primary, subadult and adult sex ratio have been
established for loggerheads in the Mediterranean
Sea, and it appears that a gradient in the sex ratio is
observed, with a strong female bias for the primary
sex ratio (Uçar et al. 2012, Sarı & Kaska 2015), a mod-
erate female bias for the sex ratio in subadults
(Casale et al. 2006), and no bias (White et al. 2013,
Casale et a. 2014, Cocci et al. 2014, Stewart & Dutton
2014) or a male bias (Rees et al. 2013) observed in
adults. These findings suggest that demographic or
behavioural factors that do not generally reflect pri-
mary sex ratio can greatly affect subadult or adult sex
ratios, but proximity to nesting areas may contribute
to local sex ratio variation (see Q8). Finally, few stud-
ies take into account the multifactorial nature of the
ecology of TSD. When it has been studied, data sug-
gest that TSD may be more resilient in the face of cli-
mate change (see Q12) than originally thought
(Fuentes et al. 2011b, 2013, Abella Perez et al. 2016).

Q3. What factors are important for 
sustained hatchling production?

Improving the knowledge of factors that influence
hatchling production will aid the long-term mainte-
nance of sea turtle populations, especially under
changing climate or human-dominated landscapes.
In 2010, the theme areas believed to be important
were related to embryology and physiology, popula-
tion-scale data on hatchling production, and devel-
oping and evaluating reliable techniques in order to
assess hatchling fitness. Each of these areas remain
relevant, but only some are well reflected as foci of
recent research: (1) abiotic factors influencing em -
bryonic development, emergence success, hatching
success, and/or hatchling condition, including temp -
erature (e.g. Horne et al. 2014, Rafferty & Reina 2014,
Lolavar & Wyneken 2015) and oxygen availability
(Cheng et al. 2015); (2) biotic factors that affect
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embryonic development, emergence success, hatch
success, and/or hatchling condition, including pater-
nity (Phillips et al. 2013, Alfaro-Núñez et al. 2015)
and maternal health (Perrault et al. 2012), microbes
(e.g. Sarmiento-Ramírez et al. 2014b, Bézy et al.
2015), insect (Baena et al. 2015) and avian (Burger &
Gochfeld 2014) predators; (3) population or rookery
viability and hatchling production in a changing cli-
mate (e.g. Laloë et al. 2014, Santidrián Tomillo et al.
2014, 2015; see Q12) and (4) examinations of long-
term programmes, policy or management instru-
ments related to improving management of, or main-
taining, high hatchling production (e.g. Brost et al.
2015, Fuentes et al. 2015b, Liles et al. 2015, Muñoz &
Arauz 2015, Revuelta et al. 2015b; see Q19). Addi-
tionally, more research is required to investigate
potential health effects (i.e. abnormalities) caused by
contaminants on sea turtle development (Alava et al.
2011; see Q15).

Most research on hatchling production has focused
on loggerhead, green and leatherback turtles, and
the majority of studies have been conducted on
North Atlantic and Pacific turtle populations. In gen-
eral, the key species gaps are for hawksbill, flatback
and ridley turtles, and studies on populations of any
species from the Mediterranean, Indian Ocean and
South Atlantic regions. These are important species
and location gaps; 6 sea turtle Regional Management
Units (RMUs) determined to be at highest risk and
8 of the 12 RMUs with critical data needs are in
the Indian Ocean, and 8 of the 12 hawksbill turtle
RMUs have critical data needs (Wallace et al. 2011).
Al though there are numerous turtle research and
conservation initiatives throughout these regions,
much of the data and publications from these regions
exist as grey literature (project or governmental re -
ports, etc.) and are not available to a wider audience.

In addition to filling knowledge gaps on popula-
tion-scale hatchling production for species in these
locations, further research is also required to develop
and evaluate techniques to assess hatchling fitness,
analyse long-term data sets on hatchling production,
understand the abiotic factors that link hatchling pro-
duction to nest site selection (see Q1) and determine
critical thresholds for hatchling production for all sea
turtle populations or management units. Our predic-
tions of rookery and population viability and the abil-
ity of sea turtles to shift nesting locations in relation
to human-impacted changes to the environment will
be informed not only by measuring hatchling pro-
duction, but also by understanding the effects of abi-
otic and biotic factors during incubation on hatchling
survivorship and dispersal.

Q4. What are the population boundaries 
and connections that exist among rookeries 

and foraging grounds?

Defining the geographical boundaries of cryptic
organisms including sea turtles is a fundamental but
complex process. Major advances in defining breed-
ing populations have led to a comprehensive under-
standing of stock structure for most species globally.
Perhaps the biggest recent genetic advances have
been made in the Indian and Pacific Oceans, for
green (e.g. Dutton et al. 2014a,b, Nishizawa et al.
2014b, Bourjea et al. 2015a, Jensen et al. 2016),
hawksbill (e.g. Gaos et al. 2016, Vargas et al. 2016)
loggerhead (e.g. Nishizawa et al. 2014a, Shamblin et
al. 2014, Matsuzawa et al. 2016), and olive ridley tur-
tles (Jensen et al. 2013). Globally, significant advances
have been made integrating male- and female-medi-
ated gene flow by incorporating both mitochondrial
and nuclear DNA (Dutton et al. 2013) for delineating
demographically independent populations. Progress
towards increasingly multidisciplinary approaches,
where data such as genetics and ocean particle mod-
elling (e.g. Gaspar et al. 2012, Monzón-Argüello et
al. 2012, Putman & Naro-Maciel 2013, Putman et al.
2013), stable isotopes and satellite telemetry (e.g.
Zbinden et al. 2011, Seminoff et al. 2012, Shimada et
al. 2014, Vander Zanden et al. 2014, 2016), or track-
ing and modelling (Putman & Mansfield 2015), have
been combined to reveal new information, including
about the cryptic ‘lost years’.

Nonetheless, researchers continue to identify and
fill significant gaps in sampling and to address
methodological limitations. There is insufficient
information regarding connectivity in flatback tur-
tles, which are still listed as ‘Data Deficient’ (Red List
Standards & Petitions Subcommittee 1996). Some re -
gions remain less studied than others in light of ac -
cessibility, permitting, funding, safety, or other obsta-
cles. Despite recent pioneering work, to more fully
understand the boundaries and constraints of sea tur-
tle movements, connections among Management
Units (MUs; rookeries) and less accessible juvenile/
adult foraging grounds, and ‘lost years’ habitats,
must be further investigated (see Q5).

New technological advances are increasingly being
applied to address these gaps through tracking, mod-
elling, and genomic analyses. Satellite tags are being
developed for use on cryptic stages such as small
pelagic turtles (Putman & Mansfield 2015), and high
resolution particle models are challenging ideas of
boundaries defined solely by passive pelagic drift
(Wolanski in press). New DNA sequencing technolo-
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gies are resolving stock structure through whole
mito genome approaches (Shamblin et al. 2012a,b)
and short tandem repeats (STRs, Tikochinski et al.
2012). Indeed, the small segment traditionally se -
quenced stands to be dwarfed by next-generation
data. One of the advantages of these genome-wide
data, compared to traditional markers, possibly relies
on the chance to identify traces of selection shaping
population genetic differentiation (Funk et al. 2012).
Furthermore, not only will more of the genome be
covered, but sea turtle connectivity may soon be
approached more comprehensively through environ-
mental DNA (eDNA) sequencing of entire communi-
ties from water or soil samples. Although the signifi-
cant obstacle of international comparisons has been
overcome through the widespread adoption of a stan-
dardised sequence nomenclature for now, this will
continue to be an important consideration in the
genomics era. As we reveal the boundaries and con-
straints of sea turtles, we will better understand the
processes leading to these biogeographic patterns.
However, we should always keep in mind that
boundaries must been viewed as being flexible, par-
ticularly in a changing world (see Q12).

Q5. What parameters influence the biogeography of
sea turtles in the oceanic realm?

Satellite tracking has continued to expand our
knowledge of adult oceanic movements with note-
worthy advances in data-sharing and collaborative
partnerships that have allowed assessment of the
spatial distribution of populations over entire ocean
basins, such as for leatherback turtles in the Atlantic,
where it has been revealed how individuals target
productive areas for foraging (Fossette et al. 2010,
2014, Benson et al. 2011). For oceanic juvenile stages,
the last few years have seen a profusion of work
using 3 distinct approaches: (1) assessing likely drift
patterns for post-hatchlings based on ocean currents,
(2) direct tracking of individuals that are large enough
(generally >20 cm carapace length) to carry satellite
tags, and (3) using chemical markers (trace elements
and stable isotopes) in the tissues to indicate the
likely oceanic foraging areas of individuals.

It is generally assumed that once their swimming
frenzy finishes a few hours or days after they enter
the water, hatchlings then drift passively, at least in
their first months, so that their patterns of movement
can be approximated by ocean circulation models or
the movement of Lagrangian drifters (e.g. Hays &
Marsh 1997, Hays et al. 2010a, Hamann et al. 2011,

Putman et al. 2012a), although in some cases the lim-
ited swimming ability of hatchlings has also been
parameterized within these models (Hamann et al.
2011, Putman et al. 2012a, Scott et al. 2012a). Emerg-
ing from these studies is a view that the movements
of post-hatchlings may shape the oceanic breeding
migrations subsequently seen in adults, with adults
travelling to foraging sites that they experienced in
their earlier oceanic juvenile stage, i.e. adult migra-
tion patterns may not be innate but are rather a
learned response to an individual’s earlier experi-
ence (Scott et al. 2014b). Simulated drift of young tur-
tles has also shed light on potential interactions of
young turtles with pollutants (Putman et al. 2015a),
helped to inform on growth rates (Scott et al. 2012b)
and started to reveal how inter-annual variability in
ocean currents may impact survival of oceanic juve-
nile stages and hence subsequent recruitment rates
to adult populations (Ascani et al. 2016).

As young turtles grow and their swimming ability
improves, these assumptions of largely passive drift
become less realistic. There have been a number of
landmark studies to directly track juvenile individu-
als, from 14 cm carapace length (Putman & Mansfield
2015) and bigger (Briscoe et al. 2016), as well as ongo-
ing efforts to track larger (>50 cm) juveniles caught
at sea (Dalleau et al. 2014). These studies suggest
that even small oceanic turtles may sometimes show
movements that are independent of the prevailing
currents, presumably in cases where passive drift is
not enough to ensure movements to favourable oceanic
resources such as temperature and food. A challenge
for our understanding of sea turtles and other marine
megafauna remains the synoptic assessment of the
ocean currents where turtles are located, to better
resolve the roles of active directional swimming ver-
sus passive drift (Hays et al. 2016).

Chemical signatures in the tissues of individuals
sampled once they have settled in neritic sites have
started to reveal their previous oceanic habitats.
Work on this topic suggests that from a single rook-
ery each juvenile may occupy one of several distinct
oceanic foraging areas, and that these areas are
shared by multiple rookeries (López-Castro et al.
2013, 2014b, Fujioka et al. 2014a). A goal of future
studies will be to see a convergence of the conclu-
sions drawn from these different approaches (cur-
rent models, direct tracking, chemical signatures),
combined with niche modelling approaches (Varo-
Cruz et al. 2016) to provide a more complete picture
of oceanic foraging areas for juvenile turtles and
how they connect to neritic developmental areas
(see Q6).
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Q6. Where are key foraging habitats?

Multi-disciplinary approaches have advanced our
knowledge on the distribution and use of sea turtle
foraging habitats. These approaches include teleme-
try (satellite, radio, acoustic), intrinsic markers (gen -
etics, stable isotopes, trace elements), bycatch, mark-
recapture (including photo-ID), strandings, aerial
and underwater surveys, particle tracking, modelling
and behaviour simulation (e.g. Foley et al. 2007, Put-
man et al. 2012b, Stewart et al. 2013, Dunbar et al.
2014, López-Castro et al. 2014b, Luschi & Casale
2014, Seminoff et al. 2014, Walcott et al. 2014, Ceri-
ani et al. 2015, Fuentes et al. 2015a, Narazaki et al.
2015, Pikesley et al. 2015, Putman et al. 2015a,b).

While strong focus remains on post-nesting fe -
males (logistically more accessible; e.g. Griffin et al.
2013), more studies are investigating males and juve-
niles (Meylan et al. 2011, Arendt et al. 2012a,b, Casale
et al. 2013, Mansfield et al. 2014; see also review by
Jeffers & Godley 2016). Consequently, our under-
standing of migratory connectivity among breeding,
foraging and developmental habitats has im proved.
This information facilitates the delineation of migra-
tory corridors (Pendoley et al. 2014b, Baudouin et al.
2015, Shaver et al. 2016) and the identification of for-
aging habitats supporting high genetic diversity for
protection (Hart et al. 2012, Hardy et al. 2014, Joseph
et al. 2014). While some foraging habitats overlap
with protected areas (Scott et al. 2012c, Hart et al.
2013, Revuelta et al. 2015a), others are more suscep-
tible to fisheries pressure (Fossette et al. 2014, Semi-
noff et al. 2014) or industry (Whittock et al. 2014).

Some foraging habitats support large aggregations
of turtles of different species and size/age classes
from different populations (Bresette et al. 2010, Van-
der Zanden et al. 2013, Sampson et al. 2014, Gorham
et al. 2014), whereas others support small numbers of
individuals distributed across wide areas (Hawkes et
al. 2006, Luschi & Casale 2014). Turtles tend to ex hibit
high fidelity to oceanic and/or coastal foraging habi-
tats (Goodman Hall et al. 2015, Shimada et al. 2016,
Vander Zanden et al. 2016), which, in some places,
could be the result of adults and late-stage juveniles
retaining high fidelity to known resources after drift-
ing there as hatchlings (Hays et al. 2010a, Putman et
al. 2015a,b). However, turtle behaviour is also more
complex than previously hypothesized, with many
exceptions to traditional life-history models.

Plasticity in the distances travelled to foraging habi-
tats, home range size, and foraging strategy exists
(Hatase et al. 2013, Schofield et al. 2013), possibly
driven by competition, resource quality or resource

availability, predation risk or climatic variability
(Stadler et al. 2015, Prior et al. 2016). Our knowledge
about movement patterns and interactions within for-
aging habitats is constantly advancing through the
use of high-resolution technologies, including acoustic
tracking, Fastloc GPS, ROVs, and camera systems
(e.g. Narazaki et al. 2013, Smolowitz et al. 2015, Thom-
son et al. 2015a,b, Crear et al. 2016). An emphasis,
however, is required on understanding resource par-
titioning and the trophic structuring of turtles at the
ecosystem level (Thomson et al. 2015a,b; see Q10).

Ultimately, sea turtles spend most of their lives in
foraging habitats, which are fundamental for juve-
niles to recruit into adult populations (Velez-Zuazo et
al. 2014, Colman et al. 2015) and for adults to have
sufficient reserves to breed and produce offspring.
Thus, future studies must focus on how to assess
which are the key foraging areas, including how
their distribution and productivity will alter with cli-
mate change and impact reproductive output (Pikesley
et al. 2015, Willis-Norton et al. 2015; see Q12), in order
to prioritise the protection of these key habitats.

Q7. Can we develop methods to accurately 
age individual turtles, determine a population’s 
(or species’) mean age-at-maturity, and define 

age-based demography?

Understanding the demography of sea turtle popu-
lations is fundamental for accurate population mod-
els and conservation (see Q8). Age structure of indi-
viduals and populations, as well as age-at-maturity
are crucial for such models, yet are among the most
elusive aspects of sea turtle biology. So far, aging sea
turtles has largely relied on skeletochronology, a
technique that analyses humerus bones of dead ani-
mals (Zug et al. 1997, Snover & Hohn 2004). Indeed,
skeletochronology can determine individual age (IA),
offer some inferences about population age distribu-
tion, and when combined with capture-mark-recap-
ture (CMR) techniques, provide insights about age-at-
maturity (AM) (Van Houtan et al. 2014a). However,
progress in these areas has been slow and these tools
have been applied sparingly, due to the limitation
that dead carcasses are required.

During the past decade, there have been several
advances in understanding IA and AM of sea turtles
based on (1) study of captive turtle growth and matu-
ration (Bjorndal et al. 2014), (2) application of the ‘liv-
ing tag’ technique on hatchlings (Tucek et al. 2014),
and (3) increased use of skeletochronology and growth
analysis (e.g. Avens et al. 2009, 2015, Hawkes et al.
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2014, Ramirez et al. 2015, Turner-Tomaszewicz et al.
2015). New non-destructive, epigenetic approaches
have also emerged for studying IA; however, these
have yielded mixed results. For example, reduced
telomere length in sea turtle blood cells has been sug-
gested to be a function of age. However, while telom-
ere length analysis has been promising in some cases
(Hatase et al. 2008), others have found no link with
age (Girondot & Garcia 1999, Plot et al. 2012). Meas-
uring DNA methylation within tissues is another epi-
genetic approach; this shows promise for the study of
tissue-specific changes that occur as a result of aging
(Richardson 2003, Varriale & Bernardi 2006). Reduced
DNA methylation in crocodilians has been shown to
be a function of age (Nilsen et al. 2016), but substantial
research and development is necessary to establish
the efficacy of this technique for sea turtles.

Genetic approaches to determining AM represent a
new frontier. Until now, CMR studies have been con-
strained by the absence of a reliable way of tagging
hatchlings and identifying them later in life. Two re-
cent advances have occurred that now make large-
scale and long-term CMR studies of hatchlings through
adulthood feasible, using DNA as genetic ‘tags’. Firstly,
the development of rapid non-injurious methods for
collecting small genetic samples from hatchlings in
the field (Dutton & Stewart 2013), and secondly,
 advancement in laboratory technologies for high
throughput processing and genotyping of DNA (Han-
cock-Hanser et al. 2013). The rapidly accelerating
pace of progress in molecular biology will continue to
offer new techniques over the next de cade to rapidly
and cheaply genotype these DNA samples (Giardina
et al. 2011, Schneider & Dekker 2012).

Knowledge of sea turtle demography will continue
to be paramount to aiding in population modelling and
conservation planning. Whereas traditional approaches
will continue to yield important insights in this realm,
the advent of genetic and epigenetic approaches shows
even greater promise for studying sea turtle age dy-
namics. As these technologies become widespread and
cost-effective, there will be opportunity to develop
long-term monitoring experiments with wild popula-
tions to validate age estimates (e.g. Dutton et al. 2005)
and ultimately better understand population vital
rates and heterogeneity among  individuals.

Q8. What are the most reliable methods for 
estimating demographic parameters?

Important demographic parameters include abun-
dance, fecundity, age at sexual maturity (see Q7),

survival rates, and sex ratios (see Q2). Chaloupka &
Musick (1997), Heppell et al. (2003) and National
Research Council (2010) presented in-depth sum-
maries of sea turtle demography and the role that
demographic parameters play in sea turtle popula-
tion assessments. A wide variety of methods with long
time-series of data are necessary to estimate these
parameters for sea turtle populations.

On nesting beaches, total counting (census) of
nests is generally unnecessary and often infeasible;
sampling can be a cost-effective option for abun-
dance estimates based on nest counts; there are dif-
ferent ways to sample nests on a beach and to sta-
tistically estimate the total number of nests from a
sample (Jackson et al. 2008, Sims et al. 2008, Giron-
dot 2010, Whiting et al. 2013, 2014a). A time-series
of hatchling production is essential for determining
the change in the productivity of a population (e.g.
Brost et al. 2015). In recent years, genetics, satellite
tele metry and ultrasonography have been used to
generate improved estimates of clutch frequency,
the number of nesting females, and effective popu-
lation size (Tucker 2010, Blanco et al. 2012, Frey et
al. 2014).

Somatic growth is determined through long-term
capture-recapture studies (e.g. Hawkes et al. 2014,
Colman et al. 2015). A combination of skeletochrono-
logical and stable isotope analyses can be used to
estimate growth rates and age at maturity (e.g. Avens
et al. 2013, 2015; see Q7). Data collection at foraging
grounds is essential because multiple stage classes,
both sexes and turtles originating from different rook-
eries can be sampled at the same time. To estimate
demographic parameters at a foraging ground, dis-
tance sampling and CMR methods can be used. Dis-
tance sampling is useful for estimating density and
abundance as a snapshot (e.g. Lauriano et al. 2011,
Seminoff et al. 2014), whereas CMR methods are
useful for estimating various demographic para meters
with long-time series of data (e.g. Sasso et al. 2007,
Patrício et al. 2014, Stewart et al. 2014). Al though a
CMR study using both nesting beaches and foraging
grounds is needed to obtain rookery-specific esti-
mates on survival and movement rates within a pop-
ulation, this kind of approach has not been imple-
mented because of the logistical difficulty in collecting
sufficient data at nesting beaches and foraging
grounds simultaneously.

The sex ratio is a poorly understood demographic
characteristic of sea turtle populations (see Q2).
 Primary sex ratios at a nesting beach have been
 estimated from histological examination of hatch-
lings, laparoscopy (after allowing some growth of the
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hatchlings), incubation durations, or environmental
temperatures (e.g. Maulany et al. 2012, Woolgar et
al. 2013, Lolavar & Wyneken 2015, Marcovaldi et al.
2016; see Q2 for a discussion on methodological
issues and new developments concerning primary
sex ratio estimation). In foraging areas, hormone-
based sex determination methods (Wibbels 2003,
Braun-McNeill et al. 2007, Allen et al. 2015) require
minimal invasive procedures and are promising;
more validation studies of hormone-based methods
should be conducted (e.g. Allen et al. 2015).

A fundamental issue in studies of sea turtle demog-
raphy is the characterisation of the functional demo-
graphic units (Chaloupka & Musick 1997), which can
be accomplished via multiple techniques, including
genetics, tagging and telemetry (Wallace et al. 2010;
see Q4 and Q5). There exists a need for assessing the
intrinsic variability of demographic parameters (Bjorn -
dal et al. 2014, Tucek et al. 2014) and for comparing
and combining subpopulation data to capture vari-
abilities of demographic parameters in the wider pop-
ulation (Patrício et al. 2014, Bjorndal et al. 2016).

Q9. How can we develop an understanding 
of sea turtle metapopulation dynamics and 

conservation biogeography?

The first step is to identify the metapopulations.
Significant advancements have been made in recent
years, with the identification of groups of populations
occupying large areas at the ocean basin level, such
as RMUs by IUCN (Wallace et al. 2010) or Distinct
Population Segments by NOAA, USA (e.g. Seminoff
et al. 2015). These units were identified mainly —
 al though not exclusively — through a high degree of
genetic differentiation among nesting sites caused by
the homing behaviour of adults, particularly of fe -
males. Hence, these units are basically ‘anchored’ to
groups of nesting sites and may still be subject to
changes. The same genetic data indicate that these
large units are also structured internally (e.g. Car-
reras et al. 2014b, Shamblin et al. 2014, Bourjea et al.
2015a, Gaos et al. 2016, Vargas et al. 2016) and can
be regarded as the metapopulations targeted by the
present question. These unit approaches were partic-
ularly valuable and needed for circumglobal species,
as many are known to exhibit local adaptations (Se -
minoff & Shanker 2008, Wallace et al. 2011, Fukuoka
et al. 2015, Liles et al. 2015, Vargas et al. 2016). For
example, in the Indian Ocean and southeast Asia
there are 9 RMUs identified by Wallace et al. (2010)
but these 9 RMUs contain at least 30 genetically dis-

tinct genetic stocks (Dethmers et al. 2006, Fitz -
Simmons & Limpus 2014).

A second step is to assess the structure within a
metapopulation, with each population anchored to a
nesting area (group of nesting sites with genetic sim-
ilarity) and occurring at one or multiple foraging
grounds. When compared to genetic data, the degree
of geographic overlap among different populations
can help in understanding metapopulation structure
and dynamics. While a population is intrinsically
linked to a nesting site, identifying foraging grounds
is particularly challenging. First approaches to assess
connectivity between nesting and foraging sites
were represented by flipper tag returns (Mortimer &
Carr 1987, Limpus et al. 1992), satellite tracking of
adults from nesting sites (reviewed in Godley et al.
2008, Hart & Hyrenbach 2009, Jeffers & Godley 2016)
and genetic analyses of individuals sampled at forag-
ing grounds (See Q4). However, these approaches
are limited by numbers of tracked individuals and
numbers of sampled foraging areas, respectively.
Significant advancements are derived from coupling
satellite tracking and stable isotope analyses (Zbinden
et al. 2011, Ceriani et al. 2012, Pajuelo et al. 2012,
Jones & Seminoff 2013, Vander Zanden et al. 2015;
see Q4 and Q6) and from understanding the role of
currents in the dispersal of hatchlings into their
future foraging grounds (e.g. Casale & Mariani 2014,
Putman & Mansfield 2015, Naro-Maciel et al. 2016).
Technological advances to track smaller turtles are
improving the understanding of habitat use by sea
turtles during their first and most cryptic life stage
(Mansfield et al. 2014, Scott et al. 2014a; see Q5). All
these aspects can also inform the degree of dispersal
and exchanges within a metapopulation, which plays
a key role in a context of extinction-recolonisation
and, ultimately, in the vulnerability of the metapopu-
lation. Understanding how specific features of differ-
ent nesting sites affect metapopulation dynamics in
terms of extinction-recolonisation cycles can inform
where to prioritise conservation efforts. In this re -
spect, attempts to consider factors like incubation
temperature (Pike 2013a) and dispersal facilitation
(Putman et al. 2010b) are promising.

A third step is to assess population-specific demo-
graphic parameters (see Q7 and Q8). While separate
approaches at nesting sites and foraging grounds
(e.g. for growth rate, fecundity) are consolidated,
novel approaches can relate the 2 different habitats,
for instance reproductive output as dependent on
the foraging area (Zbinden et al. 2011, Vander Zan-
den et al. 2014, Ceriani et al. 2015, Patel et al.
2015b).
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In conclusion, despite significant advances in tools
to determine population-level connectivity as well
as the level of heterogeneity and the geographical
range of a sea turtle metapopulation, a true under-
standing of metapopulation dynamics and the appli-
cation of spatially structured models (Akçakaya
2000) are probably still far in the future.

Q10. What are the past and present roles of sea
turtles in the ecosystem?

When recovery goals are set at returning sea turtle
populations to ‘fulfil ecological roles’ (Bjorndal &
Bolten 2003), this definition extends beyond simple
metrics of abundance or dietary intake, and precisely
because of the complex nature of studying sea turtles
in this context, research in this category remains
underrepresented. Ecological models aimed at char-
acterising the complexity of the relationships between
organisms in a given ecosystem can allow an explo-
ration of the consequences of different management
scenarios, past and future impacts of fisheries and
environmental disturbance, disease, or the carrying
capacity for different species.

Ecopath trophic models that include sea turtles
represent advances in understanding their ecological
roles (Wabnitz et al. 2010, Viet Anh et al. 2014,
Piroddi et al. 2015), but remain limited by the exten-
sive data required for model parameterisation, as the
analysis is highly dependent on the availability and
quality of such data. Nevertheless, these models can
provide insight into the structure and functioning of
marine ecosystems. Additionally, other intrinsic mark-
ers such as stable isotopes and fatty acids can be
important to understanding food web structure and
the basal resources contributing to different food
webs that include sea turtles (Cardona et al. 2015).

Some of the most pressing research needs identi-
fied in 2010 included studies to address roles of sea
turtles as ecosystem engineers, nutrient transporters,
consumers, and prey (Hamann et al. 2010). With re -
spect to ecosystem engineers and consumers, re -
search on green turtles — the only herbivorous sea
turtle species — has composed the majority of re -
search in these areas. The past and present roles of
green turtle grazing in seagrass pastures and the
regulation of green turtle populations by top-down
vs. bottom-up processes are critical to understanding
the ecosystem effects of green turtle recovery (Bjorn-
dal & Jackson 2003, Burkholder et al. 2013, Heithaus
et al. 2014). As densities of green turtles increase in
seagrass pastures, reports of ‘destructive foraging’

that may prevent seagrass recovery after grazing
have garnered much attention (Fourqurean et al.
2010, Lal et al. 2010, Christianen et al. 2014). Under-
standing green turtle foraging strategies, including
rotational grazing and cues that trigger patch aban-
donment (Bresette et al. 2010, Lacey et al. 2014,
Molina Hernández & van Tussenbroek 2014), as well
as seagrass responses to grazing, are critical to eval-
uation of carrying capacities of seagrass pastures for
green turtles. Whether high densities of green turtles
represent historical conditions (Bjorndal & Jackson
2003) or a release from predation with the decline of
shark populations (Heithaus et al. 2014) is an essen-
tial question to ask when determining recovery goals
in restoring ecosystem structure and function. Addi-
tionally, sea turtle grazing may have implications for
the resilience of coral reef habitats, as hawksbills and
green turtles target the consumption of algal turfs
and macroalgae (Goatley et al. 2012).

Sea turtles have important roles in the terrestrial
environment as nutrient transporters and prey. Nutri-
ents from productive marine ecosystems are trans-
ported to less productive beach ecosystems by nest-
ing turtles. These nutrient subsidies are assimilated
by beach vegetation, predators, and detritivores and
may influence the productivity and community struc-
ture of coastal ecosystems (Bouchard & Bjorndal
2000, Hannan et al. 2007, Madden et al. 2008, Vander
Zanden et al. 2012, Peterson et al. 2013). As prey, nest-
ing sea turtles provide a supplemental food resource
for terrestrial species such as jaguars, crocodiles, and
alligators (Nifong et al. 2011, Whiting & Whiting
2011, Veríssimo et al. 2012, Guilder et al. 2015), and
as a possible last-resort resource for Mediterranean
monk seals during the nesting season (Margaritoulis
& Touliatou 2011, Tonay et al. 2016). Sharks remain
an important predator of sea turtles, and tiger sharks
appear to alter their surfacing behaviour to enhance
predation opportunities in areas of high sea turtle
activity (Hammerschlag et al. 2015). Future emphasis
should be on quantitative studies of all sea turtle spe-
cies in oceanic, neritic, and terrestrial habitats that
address the complex functions of sea turtles in
healthy, functioning ecosystems.

Q11. What constitutes a healthy turtle?

This overarching question is addressed as 5 sub-
topics, as it was previously divided.

(1) The need for normal baseline physiological (blood
work) studies. This has been amply addressed with
numerous studies presenting basic haematology and
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blood chemistry: juvenile and adult loggerhead tur-
tles (Delgado et al. 2011, Ley-Quiñónez et al. 2011,
Flower et al. 2015, Kelly et al. 2015), juvenile and
adult green turtles (Prieto-Torres et al. 2013, Lewbart
et al. 2014, McFadden et al. 2014, Zwarg et al. 2014,
Flint et al. 2015a, Li et al. 2015, Page-Karjian et al.
2015c), adult leatherback turtles (Harris et al. 2011,
Perrault et al. 2012, Stewart et al. 2012, Innis et al.
2014), and hawksbill turtles (Montilla et al. 2014,
Whiting et al. 2014b). Data for other species are still
lacking and obtaining regional values for different sub-
populations would contribute to better understanding
spatial variation. Overall, these studies have enriched
the archive of reference values that are needed to
assess the health status of both free- ranging and re -
habilitating turtles. Rehabilitation plays an important
role in stabilising debilitated turtles (Baker et al. 2015)
and reintroducing them into the wild, yet, a consen-
sus on declaring a rehabilitated turtle suitably healthy
for release has still to be achieved.

(2) Impacts of disease on population viability. This
hinges on ways to assess or predict the survivorship of
sea turtles carrying disease and prevalence of the dis-
ease within the population. Flint et al. (2015b) identi-
fied clear links between infectious and non-infectious
diseases and poor body condition of green turtles.
Similarly, Work et al. (2015a) identified infectious/
inflammatory diseases as a significant contributor to
turtle mortality (18% of known causes of death) in
green turtles. Page-Karjian et al. (2014) found that
 ocular tumours increased the likelihood of mortality
eight fold in turtles with fibropapillomatosis (FP).
 Finally, a number of sea turtle health and mortality
 indexes (based on blood chemistry) recently proposed
for predicting sea turtle survival (e.g. Stacy et al. 2013,
Li et al. 2015) could have important applications.

(3) The role of environmental factors in disease.
This remains poorly understood, but there are some
recent advances in understanding the links between
climate change and sea turtle health. Extreme tem-
peratures can lead to sea grass diebacks, reducing
body condition of green sea turtles (Thomson et al.
2015a). Climate change has also been linked to
increases in the geographic distribution, intensity,
frequency and toxicity of harmful algal blooms (Wells
et al. 2015). Cold stress continues to be an issue in
eastern USA, and an index to predict events has been
developed (Pirhalla et al. 2015).

(4) Health impacts. Helminth parasites continue to
dominate the infectious disease literature for sea tur-
tles (Werneck & Silva 2015), and a new coccidian
parasite has been found in leatherback adrenals
(Ferguson et al. 2016). Fungi are starting to become

more prominent, with recent descriptions of new
 fungal infections in green (Donnelly et al. 2015) and
loggerhead (Schumacher et al. 2014)  turtles, and doc-
umentation that the ovopathogenic fungus Fusarium
has a broad global distribution (Sarmiento-Ramírez
et al. 2014a). There is also in creasing evidence that
exposure of sea turtles to marine toxins can be wide-
spread (Capper et al. 2013) and adversely affect turtle
health (Fauquier et al. 2013) (see Q15).

(5) Health status of pelagic turtles. This remains
poorly understood, primarily due to the lack of infor-
mation on this life stage (see Q5).

Overall, there is a clear need for new and innova-
tive laboratory tools to understand physiology and
disease pathogenesis. Several new such tools have
recently been developed: computer-aided tomogra-
phy to diagnose decompression sickness (García-
Párraga et al. 2014); COMET assay to look at DNA
damage (Caliani et al. 2014); haemoglobin binding
protein adds to the repertoire of acute phase proteins
useful for monitoring turtle health (Dickey et al. 2014);
and laser capture microdissection (Page- Karjian et
al. 2012).

Q12. What will be the impacts from climate change
on sea turtles and how can these be mitigated?

Given the potential impacts of climate change on
sea turtles, there has been a substantial growth in the
number of studies exploring this topic. Most of the
earlier studies explored the relationship between
temperature and the sex of sea turtles (Mrosovsky et
al. 1984) and highlighted potential impacts from pro-
jected increases in temperature. Consequently, sev-
eral studies have estimated primary sex ratio at nest-
ing grounds (Fuller et al. 2013, Marcovaldi et al.
2016) and predicted sex ratios under several scenar-
ios of climate change (Hawkes et al. 2007, Laloë et al.
2014), using a variety of proxies (Girondot & Kaska
2014, 2015, Wyneken & Lolavar 2015; see Q2).

Despite a more robust understanding of sex ratio
baseline in advance of climate change, limited knowl-
edge still exists in relation to the operational sex ratio
of the sea turtle population, and this has been high-
lighted as an emerging theme, although some stud-
ies have made some advancements in this area (see
Hays et al. 2010b, 2014a, Wright et al. 2012, Lasala et
al. 2013, Laloë et al. 2014). A focus also exists on the
implications of projected increases in temperature on
hatching success and population sustainability (San-
tidrián Tomillo et al. 2014, 2015a,b; see Q3), with
recent work suggesting that the embryos of some
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species may be more resilient to higher temperatures
than previously thought and that their thermal toler-
ance may change as they grow (Howard et al. 2014,
2015).

The development of new biomarkers to detect ther-
mal stress on clutches is a promising tool to detect the
negative effects on the nesting environment and the
resilience of embryos to extreme heating events
(Tedeschi et al. 2015). The direct effect of tempera-
ture on hatchling attributes has also been explored,
including clutch success, hatch weight and hatchling
performance (Dudley & Porter 2014, Fisher et al.
2014, Horne et al. 2014). Further, studies have focused
on impacts of sea level rise on nesting grounds and
future availability of nesting areas (Katselidis et al.
2014, Patino-Martinez et al. 2014, Calvillo Garcia et
al. 2015) as well as the overlap between cyclonic
activities and nesting activities (Fuentes et al. 2011a,
Dewald & Pike 2014, Kumar et al. 2014) highlighting
the fact that monitoring the morphological changes
of nesting habitat is a key factor in assessing the
impact of climate change on sea turtles (Yamamoto et
al. 2015).

Advancements have been made in evaluating the
impacts of climate change on the oceanic realm; pre-
dicted variations in wave regimes and currents (Oso-
rio et al. 2014) may have a great impact on foraging
areas for several sea turtle species (Robinson et al.
2014, Thomson et al. 2015a, Willis-Norton et al. 2015),
highlighting the need to also monitor the vulnerabil-
ity of the ecosystems used by sea turtles. Typically
the impacts of climatic processes on sea turtles have
been explored individually, but processes are likely
to occur simultaneously with other anthropogenic
threats and cause cumulative and synergetic effects,
emphasizing the need to simultaneously analyse
multiple threats (Fuentes et al. 2011b). This is impor-
tant, since the resilience of sea turtles to climate
change is likely affected by several factors including
non-climate-related threats such as disease, pollu-
tion and fisheries interactions (Fuentes et al. 2013,
Abella Perez et al. 2016). The adaptive capacity of
sea turtles to climate change, among other factors, may
be dependent on their dispersal potential (Boyle et al.
2014). This dependence is especially relevant as cli-
mate change has been suggested to affect dispersal
by impacting key offspring attributes, such as fitness
(Cavallo et al. 2015, Sim et al. 2015). Some changes
in the timing of the nesting season, possibly as an
adaptation, have been detected and related to sea
surface temperature (Neeman et al. 2015b). Adaptive
capacity will also be dependent on the future avail-
ability of habitat with optimal incubating environ-

ment (Pike 2013b). Thus, further knowledge of the
factors contributing to population expansion and spe-
cies range, such as nest site selection, fidelity and
dispersal from nesting areas is important (Pike 2014,
Mazaris et al. 2015, Neeman et al. 2015c, Pikesley et
al. 2015, Maffucci et al. 2016). Although several
strategies (e.g. shading of nests, sprinkling, assisted
migration) have been suggested to mitigate potential
impacts from climate change on sea turtles (Wood et
al. 2014, Hill et al. 2015b, Jourdan & Fuentes 2015,
Lopez et al. 2015), there is general consensus that
robust knowledge of their risks and effectiveness is
needed before implementation.

Q13. What are the major sources of fisheries bycatch
and how can these be mitigated in ways that are

ecologically, economically and socially practicable?

Drifting longlines have attracted most of the re -
search attention during the past 5 years, partially
because along with purse seiners, industrial longlin-
ers often carry on-board observers collecting bycatch
data. As a result of this new information, researchers
have developed risk assessment models (Fossette et
al. 2014, Roe et al. 2014, Pikesley et al. 2015) and
tools to help predict bycatch risk in near-real time
(Howell et al. 2015). There is also growing evidence
that hook removal has the potential to reduce post-
release mortality (Swimmer et al. 2006, Álvarez de
Quevedo et al. 2013, Swimmer et al. 2014, Gilman &
Huang 2016).

Recent research on trawl fisheries has demonstrated
that in some regions, only bottom trawls operating on
shallow water are likely to catch significant numbers
of turtles (Warden 2011, Domènech et al. 2015). Al -
though turtle excluder devices (TEDs) and tow times
have been enforced in some fleets operating in shal-
low water, recent evidence indicates that captured
turtles may suffer decompression sickness, and
hence there is a high risk of significant post-release
mortality (García-Párraga et al. 2014). There remains
an urgent need to assess post-release mortality of tur-
tles caught in bottom trawls.

There is increasing evidence that passive net fish-
eries, drift nets in particular, are a major threat for
sea turtles in many ocean regions around the world
(e.g. Gilman et al. 2010, Casale 2011, Wang et al.
2013a, Wilcox et al. 2013, Girard et al. 2014, Ayissi et
al. 2015, Ortiz et al. 2016). Many of these are small-
scale fisheries that are poorly monitored and studied.
The use of LED lights or chemical light sticks has
proven promising in reducing bycatch (Wang et al.

350



Rees et al.: Research priorities for sea turtles: a review

2010, 2013a, Ortiz et al. 2016), as well as the use of
buoyless nets (Peckham et al. 2016). However, the
use of shark models, as visual deterrents near fishing
gear may also reduce the value of the commercial
catch to unacceptable levels (Wang et al. 2010, Bost-
wick et al. 2014). These mitigation measures require
additional testing in other fisheries before their use
can be recommended.

Recent studies indicate very low levels of bycatch
associated with purse seiners (Hall & Roman 2013,
Bourjea et al. 2014). Drifting fish aggregating devices
(DFADs), however, might result in some ghost fishing
(Balderson & Martin 2015, Maufroy et al. 2015). It is
therefore essential to assess the magnitude of overall
mortality of turtles through entangling in DFADs at
sea or beached.

Efforts to develop risk assessment models, predict
the demographic consequences of bycatch and set
limit reference points (Curtis et al. 2015a,b, Murray
2015, Warden et al. 2015, Casale & Heppell 2016) are
complicated by: variation over time in fishing gear
and fishing area resulting in fluctuations in turtle
bycatch (e.g. Álvarez de Quevedo et al. 2013, 2014,
Báez et al. 2014a,b); poor coverage of species’ entire
foraging grounds affected or the suite of fisheries
operating in a region (with small-scale fisheries par-
ticularly under-represented; Alfaro-Shigueto et al.
2010); and large uncertainties about reproductive
parameters (Warden et al. 2015) and post-release
mortality (Murray 2015).

Further research should encompass all major fish-
eries of concern, assess both direct and post-release
mortality, determine the species and natal popula-
tions of captured turtles (Dutton et al. 2014b), con -
textualize bycatch figures according to life stage
and population size, and periodically update bycatch
numbers (Casale & Heppell 2016). Additional effort
is required in regions other than the North Pacific,
North Atlantic and Mediterranean, because large
portions of the oceans and their resident turtle popu-
lations are under-studied and vulnerable to massive
levels of fishing effort, especially from net gears.
Artisanal fisheries deserve particular attention and
on-board observers may play a critical role in the
monitoring of industrial fleets.

Q14. How can we evaluate the effects of anthro-
pogenic factors on sea turtle habitats?

Recent advancements in remotely sensed data and
spatial analysis tools have greatly improved our abil-
ity to map sea turtle habitats, detect changes over

time and model habitat suitability. For example, Hed-
ley et al. (2016) mapped persistence of seagrass habi-
tat in Moreton Bay from 1998 to 2010, Yamamoto et
al. (2015) mapped morphological changes of nesting
beaches in southeastern Florida from 1999 to 2005,
and Dunkin et al. (2016) mapped loggerhead nesting
habitat suitability along part of Florida’s Atlantic coast.
In addition, cumulative human impacts in marine en -
vironments (e.g. climate change, pollution, commer-
cial shipping) have been mapped on a global scale
(Halpern et al. 2015). These types of studies gener-
ally have a global overview and focus on a particular
habitat type (e.g. seagrass, mangroves, coral reefs).
However, it could be argued that understanding the
anthropogenic effects on marine habitats at a coarse,
global scale is, in fact, providing important informa-
tion on the human impacts in local sea turtle habitats.
Certainly, there is great potential within the current
literature to overlap global anthropogenic-induced
changes to marine habitats with known sea turtle
habitat locations. However, there is still some ques-
tion as to whether the scale of these global assess-
ments is fine enough to provide meaningful informa-
tion about the anthropogenic impacts within specific
sea turtle habitats.

The effects of sea turtle habitat degradation on
sea turtle populations have been relatively well re -
searched in recent years (Mathenge et al. 2012,
Schuyler et al. 2014a, Vander Zanden et al. 2016), as
have acute, large-scale impacts such as the BP Deep-
water Horizon discharge (Bjorndal et al. 2011,
 Putman et al. 2015a, Vander Zanden et al. 2016). Re -
search has continued to assess the impact of nesting
beach development on nesting turtles (Flores-Mon-
ter et al. 2015), and the effects of artificial lighting on
hatchling dispersal and nesting (Kamrowski et al.
2012, 2014a, Berry et al. 2013). Assessments of spe-
cific anthropogenic impacts on sea turtles on nesting
beaches continue (e.g. van de Merwe et al. 2012). In
addition, it could be argued that impacts such as cli-
mate change (see Q12; although impacts may not
always be negative, Hawkes et al. 2007) and pollu-
tion (see Q15) are affecting sea turtle populations via
habitat degradation. For example, increases in nest-
ing beach temperature affect hatchling survival and
sex ratios (Santidrián Tomillo et al. 2015a), and accu-
mulation of plastic in core foraging areas results in
plastic ingestion in young green turtles (González
Carman et al. 2014a). A threat of emerging concern is
that of anthropogenic noise (Estabrook et al. 2016,
Nelms et al. 2016a)

However, due to the often cumulative nature of
human-induced impacts on sea turtle habitats, deci-
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sion and risk-based frameworks (e.g. Whittock et al.
2014, Fuentes et al. 2015b, Riskas et al. 2016) are
required to better identify the most important im -
pacts of anthropogenic activities on sea turtle popu-
lations. Likewise, more studies establishing attrib-
utes of good quality habitat (e.g. beach characteristics
and environmental conditions that support mass
nesting events, Barik et al. 2014; see Q1) are needed
for a systematic evaluation of sea turtle habitats. This
will promote more efficient and effective allocation of
conservation and management resources.

Q15. What are the impacts of pollution 
on sea turtles and their habitats?

The primary pollutants influencing sea turtles and
their ecosystems may be grouped into plastic and
other debris (including microplastics), toxins, and
nutrient runoff. Although not discussed here, artifi-
cial lighting and anthropogenic noise are discussed
elsewhere (see Q14).

The understanding of the impacts of plastic debris,
broadly to marine life (Vegter et al. 2014, Ryan 2016)
and specifically to sea turtles, has gained significant
attention since the previous review (Barreiros &
Raykov 2014, Schuyler et al. 2014a, 2016, de Car-
valho et al. 2015, Nelms et al. 2016b). Acute threats
posed by plastic debris include physical entangle-
ments in derelict fishing gear (discarded monofila-
ment lines, ‘ghost’ nets etc.) and other plastic debris
(Poli et al. 2014, Wilcox et al. 2015). Mortality as -
sociated with gastrointestinal tract blockage from in -
gested plastic is another known acute impact. Inges-
tion of debris can also cause sub-lethal effects such
as internal injuries, dietary dilution, malnutrition,
and increased buoyancy (Nelms et al. 2016b). These
effects may result in poor health, reduced growth
rates and reproductive output but are not well quan-
tified. Additional indirect impacts may include harm
from persistent organic pollutants that adsorb to
ingested plastic, and endocrine disruption resulting
from chemicals leached from plastic (Santos et al.
2015), but these are also poorly understood and chal-
lenging to obtain (Casale et al. 2016).

Juveniles may be particularly susceptible to in -
gestion of plastics, as the offshore convergence zone
ecosystems where they reside also concentrate ocean
debris (González Carman et al. 2014a, Van Houtan et
al. 2016). Further research to locate these areas (see
Q5) and understand the trophic structure of these
ecosystems (Choy et al. 2015) and the resulting
bioaccumulation of contaminants is needed. There is

increasing research on the detection of microplastics
in the marine environment and marine fauna, both
resulting from macroplastic degradation or from
sewage. However, very little is published on the
presence or  impact of microplastics on sea turtles,
and this deserves future attention.

Literature on the accumulation of heavy metals
(e.g. García-Fernández et al. 2009, Bucchia et al.
2015) and organic contaminants (e.g. Orós et al.
2009, Lazar et al. 2011, Camacho et al. 2013b) in sea
turtles continues to grow. However, only 3 studies
have further assessed the risks associated with chem-
ical accumulation in sea turtles (Lam et al. 2006, van
de Merwe et al. 2009, Dyc et al. 2015). Toxicity of
heavy metals varies with species, developmental
stage, environmental conditions, and the anthropo -
genic source (Godley et al. 1999, references in Buc-
chia et al. 2015). Maternal transfer of pollutants to
eggs has also recently been described (Guirlet et al.
2008, 2010, van de Merwe et al. 2010, Ikonomo -
poulou et al. 2011), indicating potential risk to devel-
oping embryos. However, very little is known about
the toxic effects of chemical contaminants on sea tur-
tles (Finlayson et al. 2016). Most recent studies in this
area focus on correlations between contaminant con-
centrations (mostly PCBs, PAHs and DDT) and ef -
fects, such as clinical blood parameters (e.g. Swarthout
et al. 2010, Komoroske et al. 2011, Camacho et al.
2013a,c), FP (e.g. Keller et al. 2014, da Silva et al.
2016; see Q16), diseases (e.g. Orós et al. 2013) and
hatchling body condition (e.g. Perrault et al. 2011).
Not surprisingly, considering the conservation status
of sea turtles, direct in vivo exposure of contaminants
to measure toxicity has decreased in recent years.
More recently, in vitro, or cell-based, approaches
have been used as an ethical alternative for assessing
the effects of contaminants in sea turtles (e.g. Wang
et al. 2013b, Webb et al. 2014, Wise et al. 2014,
Young et al. 2015). Investigating toxicity thresholds
for pollutants and the effects of complex chemical
mixtures are important areas for future research.

Oil spills can lead to varied threats, including
injuries, oil-derived toxic effects and habitat degra-
dation (Putman et al. 2015a). However, immuno -
toxicity is not typically assessed during oil spills (Bar-
ron 2012). On the other hand, due to the migratory
behaviour and sharing of feeding grounds, oil spills
may impact turtles from different, distant populations
(Putman et al. 2015a).

Exploratory analyses must also be carried out to
reveal the presence of currently undetected pollu-
tants from land-based activities. Land-based nutri-
ents originating from human wastewater and agri-
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culture cause eutrophication, harmful algal blooms,
hypoxia, and alter coastal ecosystems dramatically
(Carpenter et al. 1998). Cyanobacteria blooms fa -
voured by such wastes, e.g. Lyngbya majuscule
blooms in East Australia, are noted to impact sea tur-
tle habitats and turtle health, but to varying degrees
over large spatial scales (Arthur et al. 2006, 2008).
Impaired waterways are often hotspots for FP (Aguirre
& Lutz 2004), and eutrophication has re cently been
linked as a potential key factor (Van Houtan et al.
2010; see Q16).

Q16. What are the etiology and epidemiology of
fibropapillomatosis (FP), and how can this disease

be managed?

Since the previous update, there have been 2 pub-
lished reviews (Kane et al. 2012, Jones et al. 2016)
and one international symposium (Hargrove et al.
2016) on FP, all identifying needs for research that
may lead to better understanding of the manifesta-
tion, occurrence, cause, and population impacts of
FP. Though yet to be conclusively proven, FP is still
considered to be caused by a herpesvirus. Descrip-
tion of the genetic sequence of the ChHV5 virus
(Ackermann et al. 2012) was a big step forward. Fur-
ther, a global phylogeography of FP-associated her-
pesviruses (Patrıcio et al. 2012) revealed no recent
viral mutations, suggesting the recent epizootic may
be driven by other factors. Nested and quantitative
PCR documented high levels of ChHV5 in normal tis-
sues of several species (Page-Karjian et al. 2012,
Alfaro-Núñez & Gilbert 2014, Alfaro-Núñez et al.
2014, 2016, Page-Karjian et al. 2015b).

Aside from the well-known occurrence of FP in
green turtles from Hawaii, Florida, and Australia,
more information is emerging in other regions. New
descriptions of FP for olive ridleys in Costa Rica
(Chaves et al. 2013), green turtles in Principe (Duarte
et al. 2012) and Brazil (Rodenbusch et al. 2012,
Rodenbusch et al. 2014, Zwarg et al. 2014, Monezi et
al. 2016), and loggerheads in Brazil (Rossi et al. 2015)
are available. In green turtles, the population-level
prevalence varies among sites (e.g. Sterling et al.
2013, López-Mendilaharsu et al. 2016). Turtle fishers
in the Caribbean may elevate FP prevalence by
selecting against tumoured turtles (Stringell et al.
2015b).

Previously documented in Hawaii, tumour regres-
sion was also described in Brazil (Machado Guimarães
et al. 2013) and Puerto Rico (Patrício et al. 2016). For
Puerto Rico green turtles, FP does not appear to be

influenced by demographics (Patrício et al. 2011,
2016) and may not always alter growth rates (Patrício
et al. 2014). In Hawaii, disease transmission may de -
pend in part on disproportional viral shedding from a
few individuals (Work et al. 2015c). Electrotherapy
(Brunner et al. 2014) and phototherapy (Sellera et al.
2014) may be promising tools for treatment of af -
fected turtles. Additional studies retrospectively
examined FP rehabilitation cases in green (Page-
Karjian et al. 2014) and loggerhead (Page-Karjian et
al. 2015a) turtles from Florida.

FP has long been associated with impaired coastal
ecosystems but the exact mechanisms are unknown
(see Q15). Heavy metal burdens are associated with
FP in green turtles from Brazil (da Silva et al. 2016).
However, persistent organic pollutants do not appear
to be associated with FP in green turtles from Hawaii
(Keller et al. 2014) or Brazil (Sánchez-Sarmiento et al.
2016). In Hawaii, FP is prevalent in watersheds where
invasive algae and land-based nutrients are chronic
management concerns (Van Houtan et al. 2010). Ele-
vated nitrogen is sequestered by macroalgae in argi-
nine, which when consumed, may contribute to FP by
promoting herpes (Van Houtan et al. 2014b), but this
is subject to debate (T. M. Work et al. unpubl. data).

Q17. How can we effectively determine the 
conservation status of sea turtle populations?

This can be divided into 2 sub-questions: (1) What
is the appropriate conservation unit and (2) What are
the appropriate methodological approaches to assess
the extinction risk and type of data required?

(1) The IUCN Red List assessments are the most
cited. Significant advancement has been made from
the original global scale at species level to a new
scale: the RMU (Wallace et al. 2010). Thus far, the
RMU approach has been applied to leatherback and
loggerhead sea turtles (www.iucnredlist.org), while
others are underway. Although an improvement, an
RMU may include several biological units whose
individual fate is not reflected by the overall risk as -
sessment. As genetic markers improve, smaller bio -
logical units are recognised (Shamblin et al. 2015a,b,
Gaos et al. 2016).

(2) Trends or indices of abundance are often used
to determine population status, but require precise
annual abundance estimates, which can be difficult
to ascertain (see Q8). Thus, models have been devel-
oped to obtain reliable abundance estimates from
partial nest counts (e.g. Girondot 2010, Delcroix et al.
2014, Whiting et al. 2014a). Trend analysis can be
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improved by additional demographic parameters
obtained through physical tagging (flipper and PIT)
of nesting females (e.g. survival, movements, detec-
tion, recruitment of nesting females; Pfaller et al.
2013, Stokes et al. 2014, García-Cruz et al. 2015).
However, these analyses require consistent, thor-
ough data collection, which may be implausible at
remote nesting beaches. To include more than adult
females in trend analysis, in-water indices (e.g. Bre-
sette et al. 2010, Pons et al. 2010, Casale et al. 2012,
Redfoot & Ehrhart 2013, Lagueux et al. 2014, Patrício
et al. 2014, 2016, Williams et al. 2015), especially for
the juvenile life-stages, are necessary to complement
nesting indices and detect population changes
before they are observed at nesting beaches (see Q7
and Q8). Unfortunately, abundance estimates at for-
aging areas are challenging to obtain and un -
available for many populations (Fuentes et al. 2015a).
Possible future technological development may in -
clude the use of drones or improvements to sampling
techniques such as photo identification coupled with
citizen science. These would reduce or eliminate the
cost and risk of conducting aerial surveys at near-
shore foraging grounds and nesting beaches. With
these demographic data, the status of a marine turtle
population can be determined via population model-
ling, which can be used to estimate the probability of
persistence (e.g. Dethmers & Baxter 2011).

Additionally, incorporating the human dimensions,
via traditional ecological knowledge, can strengthen
species assessments and provide unique insight into
a population’s conservation status, especially for data-
limited populations and locations where baselines
are lacking (Sáenz-Arroyo et al. 2005, Drew & Henne
2006, Fraser et al. 2006, Gaos & Yañez 2012). To in -
clude human dimensions, combining the social (e.g.
interviews, workshops) and natural sciences can pro-
vide unique insight via traditional ecological knowl-
edge. Studies have used this inter-disciplinary ap -
proach to assess local perceptions of species (Gaos et
al. 2010, Butler et al. 2012, Braga & Schiavetti 2013,
Liles et al. 2014), sea turtle bycatch in artisanal fish-
eries (Moore et al. 2010, Braga & Schiavetti 2013),
and to inform species assessments of endangered
whales (Frans & Augé 2016).

Q18. What are the most viable cultural, legal and
socioeconomic frameworks for sea turtle conservation?

Generally, the same 4 categories identified by
Hamann et al. (2010) addressed topics related to cul-
tural, legal, and socioeconomic frameworks of con-

servation. From the literature reviewed, we found
the emphasis remained on description and assess-
ment, rather than quantifying relative costs and ben-
efits and how they are distributed among impacted
human populations. Slow progress has been made,
although there have been some novel approaches.
These include several methods for ecological assess-
ments and further identification of conservation pri-
orities — such as the use of fuzzy logic mathematical
systems (Aguilar-González et al. 2014), habitat mod-
elling (Fujioka et al. 2014a), modelling food webs
(Viet Anh et al. 2014), modelling of threat risk and
mitigation measures (Kvamsdal & Stohs 2014, Wat-
son & Bigelow 2014), and including budget constraints
together with local and expert opinions (Fuentes et
al. 2015b) — in order to model cost effective manage-
ment options (Gjertsen et al. 2014). A further novel
approach was the use of religious education address-
ing turtle conservation (Macrae & Whiting 2014).

Several studies have shown the importance of ap -
plying inter-disciplinary frameworks which consider
social, cultural, ecological and governance factors to
bring about management changes (Jackson et al.
2015, Stringell et al. 2015a, Teh et al. 2015). How-
ever, the limitations on the extent to which research
can effectively support legislation, management and
overall conservation seem to be a general concern
(Lagueux et al. 2014, Kvamsdal & Stohs 2014, Harris
et al. 2015, Humber et al. 2015, Lewison et al. 2015,
Lopez 2015, Lopez et al. 2015, Stringell et al. 2015a).
For instance, sea turtle conservation within the con-
text of other long-distance marine migratory species
(Gredzens et al. 2014, Lascelles et al. 2014), assess-
ments of critical habitat and environmental sensitiv-
ity (Lopez et al. 2015, Martin et al. 2015b), manage-
ment of wider ocean ecosystems (Maxwell et al.
2014, 2015) and understanding the connections be -
tween diverse stakeholders (e.g. Weiss et al. 2012,
2013) all call into play broad international and cross-
sector governance and legal issues which are as yet
unresolved. Insufficient integration and application
of social and natural science in institutions, agencies,
universities, and organisations remains an impedi-
ment, along with the limits to collaboration created
by thematic siloes.

Although on the increase, psychological and be -
havioural research is still limited (Kamrowski et al.
2014b, McDonald et al. 2014, Hill et al. 2015a). Neu-
ropsychology, neuroeconomics and neuroconser -
vation are areas to watch for emerging themes and
breakthrough insights within this category, as appli-
cations of neuroimaging technology become more
viable. Studies of the cognitive, emotional, psycho-
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logical, social, and spiritual value of access to ‘blue
space’, wildlife, and biodiversity will begin to include
sea turtles, their habitat, and conservation projects
(Kuo 2015, Cracknell et al. 2016, White et al. 2016).

Despite some historical knowledge of sea turtle
fisheries around the world (Halkyard 2014, Lagueux
et al. 2014, Van Houtan & Kittinger 2014), we still
have a lot to learn about the long-term impact of har-
vests. On the other hand, with successful conserva-
tion efforts, some sea turtle populations have been
downlisted. In many places the conversation about
legal consumption (see Q20) is increasing and will
have to be addressed within cultural, legal, and socio -
 economic frameworks to avoid conflict. Thus, studies
of conflict resolution will be useful in addressing these
issues.

As technologies to monitor both human and animal
behaviour expand in use, concerns about privacy,
rights, and access to data will enter this discussion
with increased frequency, and could be considered an
emergent area for further study. Conservation efforts
must adapt to this digital age through a better appre-
ciation of the drivers of human behaviour, social struc-
ture and effective communication. Advancements on
these emerging themes may help resolve some of the
longstanding challenges, limitations, and conflicts by
offering a wider, deeper, and more inclusive and
robust framework for understanding the human−sea
turtle relationship.

Q19. Which conservation strategies are working
(have worked) and which have failed?

Complex population dynamics and life cycles, long
lifespans and extended generation times, and multi-
ple natural and anthropogenic stressors across wide
distributions present significant challenges to com-
prehensive, effective conservation approaches for
sea turtles. There is clearly room to improve the crit-
ical appraisal of our interventions and to incorporate
lessons learned from holistic approaches to sea turtle
conservation that explicitly integrate human commu-
nities at relevant geographic scales to maximise their
effectiveness. See discussion of evidence-based con-
servation (Flaspohler et al. 2000, Pullin & Knight
2001, 2009, Pullin et al. 2004, Sutherland et al. 2004,
Fazey et al. 2005) and scale-dependent engagement
of human actors in holistic sea turtle conservation
(Campbell 2007, Dutton & Squires 2011). A compre-
hensive, integrated analysis of current conservation
practices that includes political and human dimen-
sions at different geographic scales (sensu Frazier

1999, Marcovaldi & Thomé 1999, Campbell 2007,
Dutton & Squires 2011) is beyond the scope of this
section; below we focus discussion on the progress
(or lack thereof) of some sea turtle conservation ap -
proaches in recent years.

Decades of protection of females at nesting beaches
and the advent of CITES and locally en abling legisla-
tion have likely contributed to successful population
recovery at nesting sites around the world (Dutton et
al. 2005, Marcovaldi & Chaloupka 2007, Abreu-
Grobois & Plotkin 2008, Chaloupka et al. 2008, Allen
et al. 2010, Mortimer et al. 2011, Ehrhart et al. 2014,
Weber et al. 2014, Balazs et al. 2015b, Bourjea et al.
2015b). Preserving nesting females (and their breed-
ing, migratory and foraging habitats) remains an
 essential element of any conservation programme
 because their delayed sexual maturity and lifetime
 fecundity makes each mature female disproportion-
ately valuable to the population. In contrast, conser-
vation efforts focused only on the youngest sea turtle
life stages have not shown clear benefits — e.g.
19th/20th century fisheries legislation protecting small
turtles preferentially to adults (Mortimer 1984), and
head-starting of hatchlings in captivity (Mortimer
1995, but see Bell et al. 2005). Nevertheless, it is
 essential to develop conservation strategies that also
target the often overlooked in-water life stages
(Crouse et al. 1987). Efforts must be expanded to
 address threats to, and monitor status of, all life stages
of individual population segments to effect durable
sea turtle population recoveries. In some cases, this
can be challenging: for example, green turtle recovery
in various geographies is leading to concerns regard-
ing ecosystem collapse and human-wildlife conflict
(Lal et al. 2010, Christianen et al. 2014) in some in-
stances, while in others it has been posited that in-
creases in abundance may be a result of predator re-
lease due to shark overfishing (Heithaus et al. 2014).

A major threat is fisheries bycatch (see Q13), and
there have been significant advances evaluating and
addressing this threat, particularly in small-scale fish-
eries in developing nations (Wallace et al. 2013, Lewi-
son et al. 2015). Rapid, port-based interviews and
 radio communication with fishers from large numbers
of ports provide baseline information about sea turtle
bycatch in fisheries that are typically poorly moni-
tored, if at all, by conventional techniques (e.g. on-
board observers) (Alfaro-Shigueto et al. 2011, 2012).
The ability to identify areas of bycatch risk im proves
predictions and informs management through analy-
ses that overlay sea turtle distribution and abundance,
fishing effort, and environmental correlates of both
(Howell et al. 2008, Fossette et al. 2014, Roe et al.
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2014). Although effectiveness of bycatch mitigation —
typically through changes in fishing gear — has been
the focus of more critical research effort than any
other interventions (Gilman et al. 2006, 2007, 2010,
Read 2007, Alessandro & Antonello 2010, Bostwick et
al. 2014, Senko et al. 2014b, Ortiz et al. 2016,
Peckham et al. 2016), there is a paucity of published
papers evaluating the success of other conservation
interventions in reducing effects of bycatch on sea
turtles, especially in recent years. Exceptions include
efficacy of marine protected areas (Revuelta et al.
2015a) and rehabilitation success (Baker et al. 2015).

Restoring sea turtle populations to their historic
abundance may be infeasible in most cases, given
the current state of available habitats and anthro-
pogenic threats. Nonetheless, tangible, measurable
recovery goals are needed to orient management
efforts, especially at regional and global scales.
Indeed, several sea turtle populations have increased
significantly in abundance, thrusting a challenging,
but positive, question before the conservation com-
munity: What protections should remain in place, if
any, when a population reaches levels by status
assessment frameworks (e.g. IUCN Red List, USA
Endangered Species Act, Australia’s Environmental
Protection and Biodiversity Conservation Act) that
merit ‘downlisting’ to less- or non-threatened cate-
gories? There is a valid concern that downlisting will
encourage ex cessive resource use by communities
whose activities are currently constrained by protec-
tive regulations (see Q20). However, conservation
approaches should engage human actors appropri-
ately at different geographic scales, paying special
attention to how communities use, value, and man-
age sea turtles at local scales (Campbell 2007). Nev-
ertheless, as this challenge continues to emerge, the
sea turtle conservation community must embrace a
holistic perspective that recognises the need to both
celebrate and ensure conservations gains.

Q20. Under what conditions (ecological, 
environmental, social and political) can 

consumptive use of sea turtles be sustained?

The issue of sustainable use of sea turtles continues
to be contentious (Campbell 2012). Since 2010, 3 cat-
egories of research have featured in the literature: (1)
biological sustainability, (2) social, economic, or cul-
tural sustainability, or (3) both of the above. Although
there are studies of illegal take of sea turtles and
eggs, we focus on legalized take regimes where sus-
tainability is an explicit or implicit goal.

In the first category, studies focus on documenting
and describing levels of legal take of sea turtles,
either for a specific project or area over time (Hum-
ber et al. 2011, Valverde et al. 2012, Lagueux et al.
2014), or globally (Humber et al. 2014). These data -
sets provide necessary information for improved
understanding of what kind of directed take exists,
and help establish a baseline against which to evalu-
ate future trends. Beyond this, focused research on
what level of harvest is sustainable to the target pop-
ulation is relatively rare. Nearly all recent research
on harvest has focused on stage class survivorship
and population trends of turtle rookeries exposed to
directed take of either eggs or later life stages, and
these studies tend to suggest that any harvest will
cause population decline (e.g. Campbell & Lagueux
2005, Santidrián Tomillo et al. 2008, Macrae & Whit-
ing 2014, Senko et al. 2014a, Bourjea et al. 2015b),
even if there has been no documented decline in all
the study populations.

In the second category, 2 relevant papers were
published in the same year as the Hamann et al. 20
questions, in a special issue of the journal Conserva-
tion and Society dedicated to social science research
on sea turtle conservation (Campbell 2010, Garland
& Carthy 2010). Garland & Carthy (2010) describe
shifts in consumption of turtle meat among the
Miskito people of Nicaragua, and how this was influ-
enced by changing taste preferences and economic
context, among other things. They found pressures
for both increased and decreased consumption in
the future. Grayson et al. (2010) evaluate the poten-
tial for community-based versus regionally-based co-
management of sea turtles by Hammond Islanders in
the Torres Straits, with the aim of balancing the
rights of Torres Strait Islanders with long-term sus-
tainability of turtle harvesting. More recently, a long
standing and well known case of use — the legal har-
vest and sale of olive ridley sea turtle eggs from
Ostional, Costa Rica (Campbell 1998, Campbell et al.
2007) — was assessed through the lens of common
property resource (CPR) theory. Madrigal-Ballestero
et al. (2013) analyse how rule-following behaviour
among egg harvesters varies according to demo-
graphics, economic dependence, perceived legiti-
macy of rules, and social norms. Schlüter & Madrigal
(2012) also use the Ostional case to further methodo -
logical thinking about social-ecological systems. All
these studies recognise that questions of biological
sustainability do not exist in isolation; they are tightly
linked to, and arguably dependent on, social, eco-
nomic, and cultural sustainability of institutions guid-
ing  management.
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The third category both recognises, and empirically
interrogates, these linkages. A multi-disciplinary study
on the legal fishery of green and hawksbill turtles in
the Turks and Caicos Islands (Richardson et al. 2009)
assessed ecological, social, economic, and cultural
aspects of the fishery, and led to national legislative
changes. These changes were directed at maintain-
ing the fishery while reducing negative im pacts to
population growth and on the more vulnerable
hawksbill turtle (Stringell et al. 2015a). An innovative
participatory research method (Community Voice
Method.org) was used both to collect data and to
engage fishers and community members in dis-
cussing and vetting the recommended legislative
changes before they were submitted to government
(see TCI case study in Christie et al. 2014). Continued
monitoring will reveal whether this fishery is sustain-
able, and highlights the need for long-term monitor-
ing for assessing sustainability.

Although legal harvest regimes for sea turtles are
uncommon in contrast to other conservation ap -
proaches, the need to assess the possibilities for sus-
tainable use remains. For example, green turtles
make up more than 80% of turtles harvested legally
world-wide (Humber et al. 2014), and with the recov-
ery of many green turtle rookeries globally (Weber et
al. 2014, García-Cruz et al. 2015), we need further
research into how to manage turtle fisheries to mini-
mize negative impacts, as it is unlikely that they will
become a thing of the past. Research must include
socio-economic studies into the drivers of both legal
and illegal fisheries in order to better manage and
protect populations (Hancock et al. in press).

GENERAL DISCUSSION

This review finds that significant effort is being
expended towards global research priorities for man-
agement and conservation of sea turtles. Sea turtles
are now a very well researched taxon, and are sub-
ject to a wide variety of conservation actions which
ap pear, in some cases, to be leading to recovering
turtle  populations.

Although variable, there has been clear advance-
ment towards the key research questions identified
by Hamann et al. (2010), whether we look at the sys-
tematic review of 2 recent years of publications or the
integrated expert opinion of contributing authors. As
yet under-resesearched are those relating to repro-
ductive biology (Q1−3), threats (Q12−16) and conser-
vation strategies (see Q17−20). Some of these biases
may have been less marked if we had incorporated

non-peer-reviewed literature and/or non-English lit-
erature sources. Additionally, no proactive effort was
made to promote the 20 key questions, other than
Open Access publication which may have lessened
the impact of the exercise.

Compiling this critical review has highlighted that
it may be timely to undertake one or more new prior-
itizing exercises. For this work to have maximal ben-
efit we make the following recommendations that
echo those of the original exercise.

A need for a far greater engagement 
with social sciences

Although the field of conservation has traditionally
been dominated by natural scientists — primarily
conservation biologists and ecologists — calls for
increased engagement with social sciences from
those within and external to the field are now ‘rou-
tine’ (Bennett et al. 2016) and have been directed to
sea turtle conservation specifically (Frazier 2005,
Campbell 2010). Yet, as this paper reveals, the ten-
dency to prioritize biological questions remains.
Although this prioritization reflects both ‘who’ partic-
ipated in the original question setting and in this
review of progress, and ‘how’ the review of progress
was conceptualized, it also likely reflects 2 related
realities: (1) sea turtle conservation remains domi-
nated by natural scientists, (2) integration of natural
and social sciences is difficult, both generally (Sand-
brook et al. 2013, Bennett et al. 2016) and for sea tur-
tle conservation, specifically (Campbell 2007).

However, if we accept that natural science alone is
‘insufficient to find solutions to complex conservation
problems that have social dimensions’ (Sandbrook et
al. 2013, p. 1488), then we need to tackle, rather than
shy away from, these difficulties. Social science
research ‘for’ sea turtle conservation — defined as
research that strives to enhance conservation by
studying, for example, how humans interact with and
impact on biodiversity, and how individuals or com-
munities can be motivated or incentivised to reduce
negative impacts or contribute directly to conserva-
tion (cf.  Sandbrook et al. 2013) — is evident in this
review, but we need more of it. Furthermore, most of
the existing research ‘for’ conservation is directed at
specific field sites or conservation projects. Although
it is essential to understand the history, culture, poli-
tics and economics of people and communities who
interact with sea turtles in particular places, there is
also a need for work at broader scales or on general
policies that influence these place-specific outcomes,
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i.e. to understand how decisions are made, policies
formulated and finally translated into practice. For
example, how do new national or regional policies in
support of other sectors or goals — e.g. tourism,
poverty reduction, fisheries reform, port develop-
ment, coastal re silience — interact with or impact
existing formal and informal institutions for sea turtle
conservation and management? Current quantitative
frameworks such as network analyses and graphical
models provide both an approach to understand
these processes as well as tools for effective decision
and practice.

Social science research ‘on’ conservation ‘studies
the conservation movement itself as a social phenom-
enon’ (Sandbrook et al. 2013, p. 1488) and is less evi-
dent in this review (e.g. Campbell 2012, Liles et al.
2014). Re search ‘on’ conservation is often met with
hostility by conservationists, seen as counter-produc-
tive to their interests. However, Sandbrook et al.
(2013, p. 1489) argue that conservation professionals
need to ‘understand themselves as a community with
particular interests, habits, and characteristics’, and
understand ‘the political and economic processes that
not only affect the state of the natural world, but also
frame and constitute the work of conservation organ-
izations themselves’ (p. 1489). This kind of research
may prove particularly important if and when conser-
vation biologists and practitioners have to reorient
their activities and priorities in the face of recovering
sea turtle populations, as referenced in several sec-
tions above.

After over 50 years of orienting activities around
the perceived threat of extinction, how will existing
institutions for sea turtle conservation be transformed
and remain relevant in the face of recovered popu -
lations? The response of scientists, volunteers, local
residents, and conservation professionals and gov-
ernments (local, state, and federal) invested in a par-
ticular vision of sea turtle conservation will have
important impacts for the sustainability of existing
institutions and/or the emergence of new ones.

Widening the pool of contributors

As pointed out in Hamann et al. (2010) future exer-
cises would benefit from a wider range of stakehold-
ers consulted and involved in generating questions,
and weighting their importance. This would include
more management and policy professionals, govern-
mental environmental resource managers and prac-
tioners from industrial sectors that interface with turtle
conservation, e.g. fisheries, port development, tourism,

petrochemicals, government agencies and legal ex -
perts. Such engagement would help identify research
needs for specific conservation problems, such as
testing gear modifications to reduce bycatch of sea
turtles (e.g. Murray 2015) or policy innovation. Includ-
ing stakeholders from a wider array of countries will
help ensure that a diversity of issues and approaches
to research and sea turtle conservation is included in
this type of assessment. It should also help avoid a
biased emphasis on sea turtle issues that are experi-
enced by certain regions or research groups that tend
to be over-represented in the published literature
(Fig. 2).

Focussing the questions

In undertaking this appraisal, it became clear that
the focus of the questions generated in the first exer-
cise was not precise enough. Any subsequent priori-
tizing exercise would need to develop more specific
and discrete questions, even if it means they are not
so easily prioritized into a ‘top 20’. The considerable
overlap among the questions became obvious as
they were reviewed, and there are clearly emerging
themes which could be more effectively highlighted
in any new exercise. Given the biases outlined above
it is likely that we should disentangle ecology from
conservation (see Sutherland et al. 2006, 2009). A fur-
ther step forward could be improving the connection
be tween the priority research questions and priority
conservation actions; moving from a qualitative to a
quantitative assessment of how the field is heading.
Finally, a concerted effort should be made to publicize
resultant prority questions and enhance their impact.
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