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ABSTRACT

Tropical tuna purse-seine fisheries spatially co-occur

with various megafauna species, such as whale sharks,

dolphins and baleen whales in all oceans of the world.

Here, we analyzed a 10-year (2002–2011) dataset from

logbooks of European tropical tuna purse-seine vessels

operating in the tropical Eastern Atlantic and Western

Indian Oceans, with the aim of identifying the prin-

ciple environmental variables under which such

co-occurrence appear. We applied a Delta-model

approach using Generalized Additive Models (GAM)

and Boosted Regression Trees (BRT) models, account-

ing for spatial autocorrelation using a contiguity

matrix based on a residuals autocovariate (RAC)

approach. The variables that contributed most in the

models were chlorophyll-a concentration in the

Atlantic Ocean, as well as depth and monsoon in

the Indian Ocean. High co-occurrence between whale

sharks, baleen whales and tuna purse-seine fisheries

were mostly observed in productive areas during par-

ticular seasons. In light of the lack of a full coverage

scientific observer on board program, the large,

long-term dataset obtained from logbooks of tuna

purse-seine vessels is highly important for identifying

seasonal and spatial co-occurrence between the distri-

bution of fisheries and megafauna, and the underlying

environmental variables. This study can help to design

conservation management measures for megafauna

species within the framework of spatial fishery man-

agement strategies.

Key words: cetaceans, Eastern Atlantic Ocean, gen-

eralized additive models-boosted regression trees, mar-

ine conservation, purse-seine fishery, residual

autocovariate, Western Indian Ocean, whale sharks

INTRODUCTION

In the open ocean, the tropical tuna purse-seine fishery

co-occurs with several megafauna species, including

sharks and cetaceans, which are often emblematic spe-

cies very vulnerable to natural and anthropogenic

impacts. Some of these species, such as whale sharks

(Rhincodon typus), baleen whales or dolphins, may

serve as sighting cues by purse-seine fishermen for the

presence of tuna schools at the surface of the sea and/

or may be caught accidentally when fishing for the tar-

geted species (Romanov, 2002; Dagorn et al., 2013;

Capietto et al., 2014). Considering the decline of their

populations and the multiple threats they have to face,

whale sharks and all cetacean species which co-occur

with purse-seine fisheries have been listed by the Inter-

national Union for Conservation of Nature (IUCN;

http://www.redlist.org).

The whale shark is the world’s largest chon-

drichthyan (Rowat and Brooks, 2012) and occurs

across all warm temperate seas. Whale sharks spend

most of their time near the surface to feed on pelagic

invertebrates (e.g., krill, shrimp eggs and copepods) or

small forage fish (Rowat and Brooks, 2012). While

feeding near the surface, whale sharks typically swim

slowly and often aggregate large numbers of juvenile

tunas and other bony fishes (Gaertner and Medina-

Gaertner, 1999). For this reason, whale sharks are con-

sidered as a ‘living’ Fish Aggregation Device (FAD) by

fishers. In the Eastern Atlantic and the Western

Indian Oceans, whale sharks co-occurrence with the
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†Present address: Instituto Espa~nol de Oceanograf�ıa, Centro

Oceanogr�afico de Murcia, C/Varadero 1, 30740 San Pedro 
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purse-seine fishery is relatively low (1.5% of the total

number of fishing sets are associated to whale sharks)

and takes place in specific areas and periods: the waters

off Gabon in the Atlantic Ocean from April to

September and in the Mozambique Channel in the

Indian Ocean between April and May (Sequeira et al.,

2012; Capietto et al., 2014).

In the case of dolphins, schools of large yellowfin

tuna (Thunnus albacares) are known to associate with

the pantropical spotted dolphin (Stenella attenuata)

and the spinner dolphin (Stenella longirostris) in the

Eastern tropical Pacific Ocean, probably to reduce the

risk of predation (Perrin, 1968; Hall, 1998; Scott et al.,

2012). In this ocean, purse-seine vessels chased then

encircled dolphin groups to catch associated tuna

schools (Hall, 1998). While the tuna-dolphin associa-

tion has been observed in the Atlantic and Indian

Oceans (Levenez et al., 1979; Ballance and Pitman,

1998), few dolphin-associated sets have been detected

(0.05%, Escalle et al., 2015). Indeed, in these oceans,

most of the co-occurrence between purse-seine fishing

operations and cetaceans (3% of all fishing sets)

involved baleen whales (Bryde’s whale Balaenoptera

edeni, fin whale Balaenoptera physalus, sei whale Balae-

noptera borealis and humpback whales Megaptera

novaeangliae) and occurred mostly east of the Sey-

chelles from December to March and in the Mozam-

bique Channel from December to May in the Indian

Ocean, and off Gabon from April to September in the

Atlantic Ocean (Escalle et al., 2015). It is assumed

that tunas and baleen whales may form foraging associ-

ations to feed on the same prey (Romanov, 2002),

such as small pelagic fishes.

At the ocean basin scale, various environmental

variables such as water temperature, primary produc-

tion, currents and eddies may directly influence the

distribution of large marine species or indirectly affect

them through influences on the distribution of their

prey (Ready et al., 2010; Forney et al., 2012; Sequeira

et al., 2012; Monsarrat et al., 2015). For example, as

filter feeders, whale sharks can be attracted to high

productivity events which result in increased zoo-

plankton concentration (Heyman et al., 2001). Simi-

larly, the large-scale spatial distribution of cetaceans is

considered to be principally influenced by water tem-

perature but also locally by the distribution of prey spe-

cies (Ballance and Pitman, 1998; Mannocci et al.,

2014). In particular, baleen whales are assumed to

require high densities of prey to fulfill their high meta-

bolic requirements (Piatt and Methven, 1992).

In the Atlantic and Indian Oceans, the European

tropical tuna purse-seine fleet covers a large area of the

pelagic ocean. Cetaceans and whale sharks sightings

are reported in logbooks as potential sightings cues for

tuna schools. Here a long-term dataset of logbooks was

used to investigate the co-occurrence of whale sharks

or cetaceans and fishing operation in relation to local

environmental conditions. However, sightings are

dependent on the intensity of the fishing effort, which

itself undergoes seasonal variation across the fishing

areas. For this reason, an ecological study of the distri-

bution of these megafauna species is beyond the scope

of this study. The aim of this work was to identify

environmental variables that may be linked to the

spatio-temporal co-occurrence between the tuna

purse-seine fishery and whale-shark or cetaceans across

seasons in the tropical Eastern Atlantic and Western

Indian Oceans. Deeper knowledge of the spatio-

temporal patterns of fishery/megafauna co-occurrence

could allow for the further development of spatial fish-

ery management strategies. Detailed maps could pro-

vide an essential tool for identifying areas where the

co-occurrence is high and could contribute to the con-

servation management of these species within an

ecosystem-based fishery management approach.

MATERIAL ANDMETHODS

Studied regions and seasons

The regions analyzed represent the main fishing

grounds of European (French and Spanish) purse-seine

vessels operating in the Eastern tropical Atlantic

Ocean and the Western tropical Indian Ocean (see

Appendix A in Data S1, for a map of seasonal varia-

tions in sighting effort). These regions are influenced

by different factors. The Eastern Atlantic Ocean circu-

lation is influenced by the Benguela and Canary Cur-

rents that generate seasonal upwellings along the coast

from South Africa to Gabon between July and

September (Hardman-Mountford et al., 2003) and

from Mauritania to Senegal between November

and May (Benazzouz et al., 2014). The Congo River

also has a major influence on environmental condi-

tions in the area throughout the year and especially

during the wet season (April to September), with sig-

nificant input of freshwater and dissolved organic mat-

ter boosting primary production (Hardman-Mountford

et al., 2003). In the Western Indian Ocean, water cir-

culation is driven by monsoonal atmospheric circula-

tion and reflects complex interactions of the

seasonally alternating Somali Current with the South

Equatorial Counter Current and the South Equatorial

Current (Schott et al., 2009). Several areas with

specific circulation can be identified: (i) the northern

part of the region where monsoon-generated sea-

sonal Somalian-Arabian upwelling drastically affects

2



productivity, (ii) the Seychelles-Chagos thermocline

ridge (55°E–65°E; 5°S–12°S) features a productive

open-ocean upwelling area during the North-East

monsoon (Hermes and Reason, 2008), and (iii) the

Mozambique Channel which has a complex circula-

tion influenced by mesoscale eddies (Schott et al.,

2009).

In this context of a high difference in hydro-cli-

matic conditions between both oceans, the year was

divided into four seasons for each ocean differently. In

the Atlantic Ocean, the seasons were defined as four

quarters starting in January (labeled 1–4). In the

Indian Ocean, the seasons reflected monsoon [North-

East (NE) from December to March and South-West

(SW) from June to September] and inter-monsoon

[South-West (ISW) in April–May and North-East

(INE) in October–November] periods (Capietto et al.,

2014; Escalle et al., 2015).

Fishery logbooks

The sightings and effort data were obtained from log-

book records from all European tropical tuna purse-

seine vessels. In both oceans, the activities of the fleets

have been monitored by the Institut de Recherche

pour le D�eveloppement (IRD) and the Instituto

Espag~nol de Oceanograf�ıa (IEO), for French and Span-

ish vessels, respectively (average of 35 and 59 vessels

per year over the 2002–2011 period).

We considered a 10-year time series (2002–2011)

of purse-seine activities, to match the available envi-

ronmental dataset (see below). An ‘activity’ was

defined as a record reported by vessel captains,

which is (i) made for each fishing set, or (ii) in cases

when no fishing set occurred during 1 day the main

activity of the day (e.g., search for tuna or transit

between fishing areas) is recorded with geographic

position at noon [~1.2–2.2° (180–240 km) traveled

by vessel per day1]. In this way, most of the activi-

ties are fishing sets and more than one activity

per day can be recorded. Each record of activity

included time, geographic position (only at the

beginning of a fishing set), information on associa-

tions between tuna schools and baleen whales, dol-

phins, whale sharks, a flock of birds, or floating

objects (natural log or FAD). For each fishing set,

estimated weight and catch composition of targeted

tuna species were also reported. Whale shark or

cetacean (baleen whales or dolphins) sightings (up

to 5 nautical miles) are defined as the presence of

individuals (the number of individuals was not

recorded) during any vessel activity (i.e., fishing set,

search for tuna or transit). Separate models for dol-

phins could not be fit considering the relatively low

number of sightings (59 and 89). Here, we thus

define megafauna and purse seine fishery co-occur-

rence as any sighting recorded in logbooks, as we

assumed that captains mainly recorded sightings

indicating the presence of tuna schools or made dur-

ing a fishing set. In contrast, we define an associa-

tion as the assemblage of a tuna school with a

megafauna species (a group or one individual) that

can be formed for ecological consideration (e.g. for-

aging associations). Activity and sighting data were

then aggregated into 1° squares (~12 300 km2 at the

equator) in R 3.0.2. (R Development Core Team,

2014).

Environmental variables

With the aim of characterizing (i) the epipelagic envi-

ronment, and tentatively (ii) the distribution of whale

sharks and cetaceans’ main prey (macroplankton,

micronekton, fish), two physical variables: Sea Surface

Temperature (SST) and Eddy Kinetic Energy (EKE),

one biological variable: chlorophyll-a concentration

(CHL), and three bathymetric variables: depth

(Depth), slope (Slope) and distance to land (Land-

Dist) were considered (Table 1). While we had access

to different data sources [e.g., MODIS2 (2002–2011)

and AVHRR3 (1981–2011) for SST, and MODIS

(2002–2011) and SeaWIFS4 (1997–2007) for CHL],

only a single sensor time series was selected for each

variable to avoid instrument-specific biases in the data,

in our case MODIS for both SST and CHL. The

appropriate environmental dataset was selected for

each variable to cover the largest period possible and

to provide an appropriate spatial resolution (at least 1�

resolution) (see Table 1). All environmental data

were aggregated (i.e., averaged) at a 1° 9 1° resolu-

tion to reduce missing values induced by cloud cover

and to provide the equivalent spatial resolution to that

of the fishery activity data.

In addition to environmental variables, a seasonal

effect was introduced in the models (see below) as a

categorical variable, to account for the spatio-temporal

1Approximate maximum distance when considering a purse

seiners cruising (transiting or searching for tuna school)

speed of 10–13 knots (18–24 km h�1), a crew watch of

~10 h a day (daylight), and 1° at the equator (111 km).

2MODIS – Moderate Resolution Imaging Spectroradiometer

(http://oceancolor.gsfc.nasa.gov).
3AVHRR – Advanced Very High Resolution Radiometer

(http://www.nodc.noaa.gov/sog/pathfinder4 km/).
4SeaWIFS – Sea-viewing Wide Field-of-view Sensor (http://

oceancolor.gsfc.nasa.gov/).

3



co-occurrence between fisheries and species. Seasons

are known to highly influence the spatial distribution

of whale sharks and cetaceans (Robineau, 1991;

Sequeira et al., 2012; Capietto et al., 2014; Escalle

et al., 2015) and a preliminary analysis (Kruskal–

Wallis tests) revealed a non-random distribution of

whale shark and cetacean sightings between the differ-

ent seasons. Activities, sightings and environmental

variables were thus averaged per 1° square and season

(quarters or monsoon periods, over the whole 2002–

2011 period). While an exploratory analysis also found

annual variability in the time-series, our interest was to

describe average trends in oceanographic features and

produce seasonally predictive maps. Therefore, we

focused our analysis on the seasonal effect, which also

increased computational efficiency. Thus, the candidate

explanatory variables were SST, EKE, CHL, Depth,

Slope, LandDist and Seasons, and the response variable

was the presence/absence per 1° square for the binomial

model and the number of sightings per 1° square for the

count model (see next section). Correlation between

environmental explanatory variables was assessed using

a draftsman’s plot and the r Pearson’s correlation index.

Variables were not highly correlated (r < 0.6), and

were thus all considered in further analyzes.

Model approach

In both oceans, our study aimed to develop two sepa-

rate models of the count of whale sharks or cetaceans

co-occurrence with the purse-seine fishery in relation

to environmental variables and seasons. Whale shark

and cetacean sightings are rare events compared to the

number of purse-seine fishing activities (Table 2). As

a consequence, exploratory analysis highlighted some

specific features inherent in the dataset which,

together, directed our modelling strategy: (i) a large

proportion of zeros, (ii) a non-linear relationship

between the response variable and explanatory vari-

ables, (iii) spatial autocorrelation and (iv) high vari-

ability in the intensity of fishing effort with areas and

seasons. Various statistical approaches can handle one

or more of these data features [e.g., Zuur et al., 2012

for zero-inflated data; Lin and Zhang, 1999 for Gener-

alized Additive Mixed Model (GAMM)], but none

can do so simultaneously and/or provided poor

accuracy when applied to our dataset.

As a result, we used a Delta-model approach (Lo

et al., 1992) to deal with high numbers of zero sight-

ings, which includes two stages: (i) modelling pres-

ence/absence in order to obtain the envelope of the

predicted probability of presence of the species studied

Table 1. Predictor variables used for modelling whale shark and cetacean co-occurrence with purse-seine fisheries in the Atlan-

tic and Indian Oceans.

Variables Abbreviation

Resolution

Sensor InformationSpatial Temporal

Sea Surface

Temperature (°C)

SST 4 km 8 days MODIS-Aqua* SST and CHL were extracted from

satellite data, covering the period

2002–2011.Chlorophyll-a

concentration (mg.m�3)

CHL 4 km 8 days MODIS-Aqua*

Eddy Kinetic

Energy (m2.s2)

EKE 0.33° 7 days w-aviso 3 (MSLA†) EKE corresponds to the Sea Level

Anomaly intensity, for the 2002–

2011 period.

EKE=1/2x(U2+V2)

Distance to land (km) LandDist 0.5° – AquaMaps dataset

(Kaschner et al.,

2008)

Distance to the nearest shoreline.

Depth (m) Depth 0.02° – NOAA-NGDC

ETOPO1 Global

Relief Model

(Amante and

Eakins, 2009)

Extracted from this 1 arc-minute

global relief model of Earth’s surface,

which integrates land topography

and ocean bathymetry, for each

exact location of an activity.

Slope (%) Slope – Calculated from the depth with the

slope function of the ‘raster’ package

(Hijmans et al., 2014) in R 3.0.2.

*MODIS - Moderate Resolution Imaging Spectroradiometer http://oceancolor.gsfc.nasa.gov/.
†MSLA - Maps of Sea Level Anomalies & geostrophic velocity anomalies http://www.aviso.altimetry.fr/en/data/products/sea-sur-

face-height-products/global/msla.html.
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(see Monsarrat et al., 2015 as an example) and (ii)

modelling the number of sightings (i.e., count data) of

the studied species by the purse-seine fishery, only in

areas where species were predicted to be present. For

both stages, the candidate explanatory variables

included all environmental variables, the season, and

all possible interaction terms.

To deal with non-linear and non-monotonic rela-

tionships between response and explanatory variables,

we used two statistical methods in both previous steps:

Generalized Additive Models (GAM; Hastie and Tib-

shirani, 1986), and Boosted Regression Trees (BRT,

Elith et al., 2008). GAMs have previously been used

on complex species distribution patterns (Guisan

et al., 2002), e.g., whale sharks, cetaceans (Afonso

et al., 2014; Mannocci et al., 2014) using the ‘mgcv’

package in R (Wood, 2013). In GAM models, we used

the default thin plate regression splines as the smooth-

ing function (Wood, 2003), “ti” parameter was used

for interactions terms, and we limited the smoothing

to 4 degrees of freedom for each spline to avoid overfit-

ting. BRT combines regression trees and boosting

methods to fit complex non-linear relationships

between predictors and the response variable, auto-

matically handling interactions between predictors

(Elith et al., 2008). The ‘train’ function from the R

package ‘caret (Kuhn, 2008) uses a resampling method

to evaluate the effect of model tuning parameters on

performance and to select the ‘optimal’ model. To

keep the model simpler and easier to interpret, we

chose to build the model with a tree complexity of 2

and a learning rate of 0.01; the optimal number of

boosting trees was assessed with the ‘gbm.step’ func-

tion from the ‘dismo’ package (Hijmans et al., 2014).

To compare with the GAM, results from BRT were

expressed in percent (using the total percentage of

deviance explained by the model) as the relative influ-

ence of each variable to the model.

To account for the spatial autocorrelation in the

data, we implemented the residuals autocovariate

(RAC) approach (Crase et al., 2012) during both

stages of the Delta-model, for both GAM and BRT.

Here the spatial autocorrelation was included by add-

ing another term to the model (the autocovariate),

which represents the influence of neighbor observa-

tions on the response variable at a particular location

(1° square). For each model, the RAC approach was

implemented as follows: first, the model (GAM or

BRT in our case) was computed with a variables back-

ward stepwise selection procedure based on the infor-

mation theory criteria (‘AIC’) and this procedure and

the principle of parsimony were used to determine the

number of interaction terms. Second, residuals from

the selected model were calculated for each grid cell

Table 2. Main statistics of French and Spanish logbook datasets used in the binomial and count models of whale sharks and

cetaceans (baleen whales and dolphins) in the Atlantic and Indian Oceans.

Atlantic Ocean Indian Ocean

2002–2011 Period

Number of fishing activities* (fishing sets and search/transit) 116 386 (60 520 and 55 866) 159 091 (92 272 and 66 819)

Number of whale shark sightings 674 455

Number of cetacean sightings 1128 (1067 and 61)† 1275 (1183 and 92)†

Binomial model

Number of fishing activities*,‡ 112 867 158 828

Number of whale shark sightings 674 454

Number of grids with whale sharks present§ 163 146

Number of cetacean sightings 1113 (1056 and 57)† 1275 (1183 and 92)†

Number of grids with cetaceans present§ 347 (322 and 39)† 427 (397 and 81)†

Whale shark count model

Number of fishing activities* 57 689 124 443

Number of whale shark sightings 611 440

Cetacean count model

Number of fishing activities* 96 442 129 205

Number of cetacean sightings 1113 (1056 and 57)† 1196 (1122 and 74)†

*Activities include all fishing sets, as well as the search for tuna school or transit between fishing areas.
†The numbers in brackets are the details for baleen whales and dolphins, respectively.
‡Reduced dataset following the removal of missing values in environmental data due to cloud coverage, implemented in the

models.
§One or more sightings per 1°9 1° grid cell.
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and were used to compute the autocovariate by a focal

calculation. This allowed cells from a selected neigh-

bor to have a weight of 1 and all other cells a weight of

0. Finally, the residuals autocovariate was considered

as an explanatory variable in the previous model

(Crase et al., 2012). Spatial autocorrelation was tested

for each model by calculation of Moran’s index and the

Moran statistical test (R package ‘spdep’, see Bivan,

2010), which indicates a correlation between observa-

tions depending on the distance between them.

The GAM and BRT binomial RAC models based

on the presence/absence of whale sharks and cetaceans

were performed separately for each ocean. A binomial

distribution (logit function) was applied to deal with

binary data and to eliminate the possibility of negative

fitted values (Zuur, 2009). Effort (number of activities)

could not be accounted for in the binomial models,

but only in the models of count data (see below),

because its addition in the form of an offset term was

not appropriate, and including it in the weight term

strongly decreased the model performance and predic-

tion. Validation of the binomial models was conducted

through an internal 5-fold cross-validation in which

the relationship between occurrence data and the

environmental variables was modeled using a training

dataset (created by a random selection of 75% of the

data) and the quality of predictions was then assessed

using a validation dataset (created by a random selec-

tion of 25% of the data), as advised by Fielding and

Bell (1997). This calibration-validation procedure was

repeated five times for each method and averaged the

resulting measures of model performance. During the

model validation process, a confusion matrix that

records the number of true/false positive/negative cases

predicted by the model was generated. From this

matrix, all the performance statistics were derived

(e.g., area under the curve, specificity and sensitivity

(Fielding and Bell, 1997), see Appendices B–E in Data

S1 for definition and value derived from the models).

Model validation was performed using the ‘Pres-

enceAbsence’ package (Freeman, 2012). With the aim

of calculating the envelope of the presence of whale

shark or cetaceans, the conversion of the predicted

probability of presence into a binary presence/absence

response was done for a value above a threshold

derived from the cross-validation (see Appendices B–E

in Data S1).

Once the envelope of presence was obtained, differ-

ent distributions were tested to model the number of

sightings in areas where the species/group was pre-

dicted to be present (negative-binomial, quasi Poisson

and Poisson). To account for the non-constant sight-

ing effort between 1° square, the number of vessel

activities was implemented as an offset in the count

model (Kotze et al., 2012). For whale shark and ceta-

ceans, separately, the best model between classic

GAM and BRT, and GAM and BRT RAC models

was then selected based on the above-mentioned pre-

diction performance of binomial models, as well as

residuals analysis, a plot of predicted versus observed

values, and deviance explained for both binomial and

count models (see Appendices B–E in Data S1). The

quasi-Poisson GAM and the Poisson BRT were the

distributions that provided the most accurate results

for our datasets. Note that an averaging ensemble

approach (Ara�ujo and New, 2007), based on the com-

bined predictions of the GAM and BRT, was also

tested. However, in each case, only one model (i.e.,

GAM or BRT) provided the best performances,

whereas averaging the GAM and BRT predictions

weakened them. For this reason, the averaging

approach was not adopted. Predictions by ocean per

season from GAM and BRT models were projected

onto a 1° 9 1° grid, limited to areas with reported

fishing activities by the European purse-seine fleet.

RESULTS

Between 2002 and 2011, totals of 112 867 and

158 8281 fishery activities (110 452 and 132 682 fish-

ing days) were recorded in the Atlantic and Indian

Oceans, respectively5 (see Table 2 for original statis-

tics of logbook data), and over 1093 and 1194 1�

square grid cells were sampled. From this selected data-

sets, 674 and 454 whale shark sightings; and 1113 and

1275 cetacean sightings were recorded in the Atlantic

and Indian Oceans, respectively (Table 2). For whale

sharks, the best binomial models were BRT RAC in

the Atlantic Ocean with all explanatory variables

retained, and GAM RAC in the Indian Ocean with

only Depth, EKE, CHL, Season and the interaction

between CHL and EKE (Table 3, Appendices B and C

in Data S1). For cetaceans, the best binomial models

were GAM RAC in the Atlantic, with all explanatory

variables significant, and BRT RAC in the Indian

Ocean with all explanatory variables and the interac-

tion between Depth and Slope retained (Table 3,

Appendices D and E in Data S1).

For whale sharks and for cetaceans, the best model

to fit the number of sightings data was the BRT pois-

son RAC model (see Appendices B–E in Data S1 for

details). The percentage of deviance explained, for

5After the removal of 3.02% and 0.17% of activities as a

result of missing values in the environmental dataset due to

the cloud cover.
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each group of megafauna, ranged from 9.9% to 32.5%

(Table 3, Appendices B–E in Data S1) when the sea-

son and environmental variables were considered

(68.2–83.0% when the deviance from the autocovari-

ate term is also considered). Pearson’s correlation

index between observed and predicted values was

always higher than 0.54 (Table 3, Appendices B–E in

Data S1). An absence (whale shark in the Atlantic

Ocean and cetaceans in the Indian Ocean) or weak

(for whale shark in the Indian Ocean and cetaceans in

the Atlantic Ocean; P-value <0.05 but Moran’s index

of autocorrelation <0.02; see Appendices C and D in

Data S1) spatial autocorrelation was detected, high-

lighting that it was accurately handled by the RAC

method.

For whale sharks in the Atlantic Ocean, the model

explained 23.3% of the total deviance (83.0% with

the autocovariate term), and the most significant vari-

ables were CHL, LandDist and Slope (5.5%, 5.1% and

5.1% of relative influence, respectively; Table 3). In

the Indian Ocean, 9.9% of deviance was explained by

environmental and season variables (70.1% with the

autocovariate term, Table 3), with the most signifi-

cant variables being Season, Depth, EKE and SST

(3.2%, 3.0%, 2.0% and 1.1% of the total deviance,

respectively; Table 3).

For cetaceans in the Atlantic Ocean, the total

deviance explained was 21.5% (a total of 72.1% with

the autocovariate term). SST (7.6%), CHL (6.6%),

Slope (3.7%) and Depth (1.9%) were the most signifi-

cant variables (Table 3). In the Indian Ocean, 32.5%

of the deviance of the model was explained by season

and environmental variables (68.2% due to the auto-

covariate term). In this model, depth accounted for

the vast majority of the relative influence of each vari-

able (21.2%). Nonetheless, season (4.3%), slope

(3.1%) and SST (3.0%) still represented a significant

influence in the model.

Table 3. Binomial and count models used for whale sharks and cetaceans in the Atlantic (AO) and Indian Oceans (IO). Num-

bers in brackets indicate the relative contribution of each explanatory variable (for BRT only).

Explanatory variables % De R2 Pearson r Moran’s I

Moran

P-value

Whale shark AO

BRT binomial RAC CHL (5.4), SST (4.4), LandDist (2.4), Depth

(1.6), EKE (1.4), Season (1.0), Slope (0.2),

Autocovariate (19.0)

35.5 (16.5) 0.51 0.06 <2.2e�16

BRT poisson RAC CHL (5.5), LandDist (5.1), Slope (5.1), SST

(3.5), Depth (3.5), Season (0.4), EKE (0.1),

Autocovariate (59.7)

83.0 (23.3) 0.94 0.02 0.06

Whale shark IO

GAM binomial RAC Depth, EKE, CHL, Season, Autocovariate, ti

(CHL, EKE)

12.3 0.06 0.26 0.12 <2.2e�16

BRT poisson RAC Season (3.2), Depth (3.0), EKE (2.0), SST

(1.1), CHL (0.5), Slope (0.1),

Autocovariate (60.2)

70.1 (9.9) 0.54 0.03 0.10e�03

Cetacean AO

GAM binomial RAC Depth, SST, CHL, EKE, Slope, LandDist,

Season, Autocovariate, ti(Depth, Slope)

21.1 0.16 0.41 0.15 1.2e�10

BRT poisson RAC SST (7.6), CHL (6.6), Slope (3.7), Depth

(1.9), Season (0.6), EKE (0.6), LandDist

(0.5), Autocovariate (50.6)

72.1 (21.5) 0.92 0.02 0.10e�02

Cetacean IO

BRT binomial RAC CHL (5.5), SST (3.2), EKE (2.1), LandDist

(3.8), Depth (1.8), Slope (0.5), Season

(0.2), Autocovariate (15.0)

30.2 (15.2) 0.53 0.15 2.0e�16

BRT poisson RAC Depth (21.2), Season (4.3), Slope (3.0), SST

(3.0), CHL (0.8), EKE (0.5), LandDist (0.3),

Autocovariate (35.7)

68.2 (32.5) 0.77 0.04 0.28

% De = total percentage of the deviance explained by each model (in brackets are the percentages of deviance explained by

environmental and season variables); R2
= pseudo coefficient of determination; r = Pearson’s correlation index between

observed and predicted values; I = Moran’s index maximum absolute value for each model and associated P-value.
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Results showed several hotspots of whale shark and

purse-seine fishery co-occurrence (Fig. 1a), which

highly varied with seasons (Fig. 2): (i) in the Atlantic

Ocean, in the eastern part of the Gulf of Guinea, espe-

cially along the coast from Gabon to Angola during

July–September, (ii) in the Indian Ocean, around the

Seychelles during the NE monsoon, (iii) in the

Mozambique Channel during ISW monsoon, and (iv)

in the area north of the Seychelles and off Somalia

EEZ (around 5°N–55°E) during the SW monsoon

period.

For cetaceans, the predicted number of sightings

showed wider dispersal, especially in the Indian Ocean

(Fig. 1b), and high variations after seasonal and mon-

soonal patterns were also detected (Fig. 3). In the

Atlantic Ocean, cetacean/fishery co-occurrence varied

from (i) the north of the Gulf of Guinea, above the

equator, from 20°W to 5°E during season 1 and 4, (ii)

north-east of the Gulf of Guinea, especially in the

waters off Gabon during season 2 and 3, and (iii) in

the waters off Mauritania to Senegal during season 2

(Fig. 3). In the Indian Ocean, prediction of cetacean

sightings by the purse seine fishery ranged from (i)

around the Seychelles (10°S–0°N and 50°E–75°E)

during the NE monsoon, (ii) the north of the

Mozambique Channel during the ISW monsoon and

(iii) an area around and to the north of the Seychelles

(10°S–8°N and 40°E–65°E) during the SW and the

INE monsoon periods (Fig. 3).

DISCUSSION

Using a long-term tropical tuna purse-seine logbook

dataset, we investigated links between the co-occur-

rence of purse-seine fisheries with whale sharks and

with cetaceans in relation to environmental variables

in the tropical Eastern Atlantic and Western Indian

Oceans. By implementing quantitative models, which

included environmental variables, our study is comple-

mentary to previous works that roughly identified spa-

tio-temporal variations of co-occurrence of fisheries

and megafauna (Capietto et al., 2014; Escalle et al.,

2015). By incorporating a spatial correlation contigu-

ity matrix as an explanatory variable in GAM and

BRT using the residuals autocovariate approach, we

accounted for the autocorrelated nature of the data.

This methodology, which was recently developed by

Crase et al., 2012, showed good predictive results for

both megafauna groups studied. In particular, it allows

the spatial correlation, present in our dataset, to be

Figure 1. Prediction of co-occurrence

between (a) whale sharks and (b) ceta-

ceans and purse-seine fisheries in the

tropical Eastern Atlantic and Western

Indian Oceans, derived from Boosted

Regression Trees (BRT) Poisson residuals

autocovariate (RAC) models. Maximum

values of (a) 60 and 12 whale sharks, and

(b) 80 and 20 cetaceans, co-occurrence

with the purse seine fishery per 1° square,

in the Atlantic and Indian Oceans,

respectively.
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dealt with and can be applied to rare species from fish-

eries-dependent data (i.e., containing large propor-

tions of zeros with varying intensity in the

observational effort), which cover large spatial scales.

It should be stressed that the relatively low contribu-

tion of each environmental explanatory variable to

the total deviance of the model (<1% to 21.2%) is

similar or higher than those reported in other model-

ing studies on the distribution of marine megafauna

(e.g., Forney et al., 2012; Mannocci et al., 2014 for

cetaceans, and Afonso et al., 2014 for whale sharks). It

should be mentioned that the logbook dataset used

here contains inherent limitations, such as under-

reporting or missed sightings by captains (e.g., when

megafauna species are not associated with a tuna

school). While captains recorded sightings of either

baleen whales or dolphins, we used the same model for

a broad group of cetacean species (both baleen whales

and dolphins, which was not discussed further as a

result of the low number of dolphin sightings), each

with a different ecology and biology. Furthermore, sci-

entific observer data were not used in complement to

logbook data as (i) many sightings would have been

counted twice, (ii) it was not considered appropriate

to have data from two different sources covering the

same fishing trips (i.e., when observers are onboard,

captains still fill logbooks) and (iii) scientific observers

data have relatively low and irregular coverage rate (in

time and space). Also, while in the Pacific Ocean it

has been shown that the tuna-dolphin association is

promoted by a shallow mixed layer and hypoxic oxy-

gen minimum zone (Scott et al., 2012), these variables

were not included here as the tuna–dolphin associa-

tion is encountered less frequently.

Whale sharks

The chlorophyll-a concentration explained a relevant

portion of the deviance of the whale shark model in

the Atlantic Ocean. Areas with high whale shark and

fishery co-occurrence (i.e., the waters off Gabon to

Angola, Figures 1a and 2) matched areas with high

chlorophyll-a concentrations6 (Fig. 4a, Appendix F in

Data S1), especially from April to September. This

might reflect a larger regional phenomenon occurring

Figure 2. Seasonal distribution of the predicted co-occurrence between whale sharks and purse-seine fisheries in the tropical

Eastern Atlantic and Western Indian Oceans, derived from Boosted Regression Trees (BRT) Poisson residuals autocovariate

(RAC) models. (a) season 1 (Atlantic Ocean) and NE monsoon (Indian Ocean), (b) season 2 and ISW monsoon, (c) season 3

and SW monsoon, and (d) season 4 and INE monsoon. Maximum values for the legend scale vary depending on the ocean and

the season (12, 75 or 20 whale sharks/purse-seine fisheries co-occurrence per 1° square).

6Very high chlorophyll-a concentration is also detected

year-round in the latitudinal band from 24–27°S (Fig. 4a).

This represents the Benguela Current area, with high

primary production, but very low overlap with purse-seine

fishing activities.
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in the Gulf of Guinea during this period linked to the

principal rainy season in this area. A major discharge

of fresh water, dissolved organic matter and floating

objects from rivers into the oceanic system (specifically

the Congo River) occurs during this period and peaks

from April to June, with the emergence of a coastal

upwelling system (Van Bennekom and Berger, 1984).

Such a productive area may explain the presence of

whale sharks and tunas, by supporting high densities of

prey. In the Western Indian Ocean, an opposite result

was obtained. The concentration of chlorophyll-a was

not a significant environmental variable in the model

(Table 3). One explanation for this result could be

that, in this ocean, values of chlorophyll-a concentra-

tion are lower than in the Atlantic (average of

0.5 � 1.4 and 0.2 � 0.4 mg m�3 in the Atlantic and

Indian Oceans, respectively; Appendix F in Data S1).

This might be because of very high concentrations of

chlorophyll-a recorded in the Atlantic Ocean in areas

influenced by the Congo River discharge. While sea-

sonal peaks in productivity in the Indian Ocean, such

as in the Somalia-Arabian upwelling, are higher than

permanent upwellings in the Eastern Atlantic Ocean

(McCreary et al., 2013), they do not feature in our

model, as few sightings were recorded directly in this

area. However, in the Indian Ocean two small regions

showing high whale sharks and fishery co-occurrence

were also in very productive waters, as a result of the

development of a seasonal upwelling (i) in the Sey-

chelles–Chagos thermocline ridge during the NE mon-

soon (Hermes and Reason, 2008), and (ii) on the

periphery of the Somalian–Arabian upwelling during

the NE monsoon. Thus, it can be concluded that in

both oceans, whale sharks occurred in highly produc-

tive environments. Such spatial co-occurrence was

expected considering that the whale shark is a filter

feeder specifically adapted to feed on prey in high den-

sities (Rowat and Brooks, 2012).

Eddy kinetic energy showed the exact inverse of

chlorophyll-a, explaining a significant part of the

model deviance in the Indian Ocean but not in the

Atlantic Ocean. This may be a result of the high val-

ues of this parameter in the Mozambique Channel

(Appendix F in Data S1), related to the presence of

mesoscale eddies (Tew-Kai and Marsac, 2010). It is

known that the edge of eddies provides high biological

production that supports large aggregations of

micronekton, which in turn attracts top predators,

such as seabirds and tunas (Tew-Kai and Eand Marsac,

Figure 3. Seasonal distribution of the predicted co-occurrence between cetaceans and purse-seine fisheries in the tropical East-

ern Atlantic and Western Indian Oceans, derived from Boosted Regression Trees (BRT) Poisson residuals autocovariate (RAC)

models. (a) season 1 (Atlantic Ocean) and NE monsoon (Indian Ocean), (b) season 2 and ISW monsoon, (c) season 3 and SW

monsoon (maximum value of 60 cetaceans/purse-seine fisheries co-occurrence per 1° square in the Atlantic Ocean), and (d) sea-

son 4 and INE monsoon.

2010).
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While, in both oceans SST also played a significant

role in the models, the range of observed temperature

varied in each ocean. In the Indian Ocean, whale

shark sightings mostly occurred between 27.5 and

29.5°C (Fig. 5b) as previously described by Sequeira

et al. (2012), whereas in the Atlantic Ocean, most

whale shark sightings were recorded between 22.6 and

26.5°C (Fig. 5a). In the waters off Gabon to Angola,

SST was the lowest during season 2 and 3, linked to

the Congo River discharge (Van Bennekom and Ber-

ger, 1984) and corresponding to the peak in the pres-

ence of whale sharks. In general, whale sharks are

considered to occur mostly in warm temperatures

(Rowat and Brooks, 2012; Sequeira et al., 2012), but

here their highest co-occurrence with the purse-seine

fishery was observed during periods when the SST val-

ues were lower than their reported preferred tempera-

ture range. This pattern may indicate that individual

(a) (b)

Figure 4. Chlorophyll-a concentration

and latitudinal and seasonal locations of

whale shark (red dots) and cetacean

(white dots) sightings from 2002 to 2011,

for (a) the Eastern tropical Atlantic

Ocean and (b) the Western tropical

Indian Ocean. Grey dots represent purse-

seiner activities. Background colors repre-

sent the seasonality of chlorophyll-a con-

centration averaged over the envelope of

longitudes of purse-seine activities (see

Fig. 1).

(a) (b)

Figure 5. Sea Surface Temperature and

latitudinal and seasonal locations of

whale shark (blue dots) and cetacean

(white dots) sightings from 2002 to 2011,

for (a) the Eastern tropical Atlantic

Ocean and (b) the Western tropical

Indian Ocean. Grey dots represent purse-

seiner activities. The background colors

represent the seasonality of Sea Surface

Temperature averaged over the envelope

of longitudes of purse-seine activities (see

Fig. 1).
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whale sharks could have a feeding advantage by being

present in very productive areas rather than restricting

their movements to warmer but less productive areas.

Cetaceans

In both oceans, cetacean sightings recorded by purse-

seine captains were mainly of large baleen whales

(94%), which include four species: Bryde’s whale, fin

whale, sei whale and humpback whale (based on

observation from scientific observers). The number of

dolphin sightings was too low to be further discussed.

In the Indian Ocean, depth explained a large part

of the deviance in the model (21.2%). For instance,

areas with higher predicted co-occurrence (e.g.,

around the Seychelles or the north of the Mozambique

Channel) were part of the continental margin, in a

depth range between 500 and 3000 m. In the Atlantic

Ocean, cetaceans and fishery co-occurrence were also

slightly linked to depth (e.g., the waters off Gabon to

Angola and Mauritania to Senegal). Consequently,

such environments may provide conditions that are

suitable for both cetaceans and tuna, as was observed

for whale sharks. Oceanic waters may be the preferred

habitat for both species groups, and shallower areas

may have the advantage of receiving terrestrial inputs,

which boost productivity. Consequently, areas close to

continental shelves, where coastal and oceanic habi-

tats converge, may contain high densities of prey for

both species groups.

In areas and seasons that showed high cetacean

co-occurrence with tuna purse-seiners in the Atlan-

tic Ocean, chlorophyll-a concentrations were also

very high (Figures 3 and 4a; Appendix F in Data

S1). Similarly to whale sharks, this variable was not

significant at the scale of the entire Indian Ocean

(Fig. 4b), but areas with high fishery/cetacean co-

occurrence also arise in productive areas. For SST,

results were again similar to the whale sharks mod-

els. In the Atlantic Ocean the co-occurrence of

cetaceans and the purse-seine fishery primarily pre-

dicted across a range of moderate SST values (22.0–

27.0°C), whereas in the Indian Ocean, it was by

SSTs between 28.0–29.0°C (Figures 3 and 5;

Appendix F in Data S1).

Similarly to the whale shark models, the season was

the second most important variable in the Indian

Ocean, whereas it was of marginal relevance in the

Atlantic Ocean. Cetaceans/fishery co-occurrence was

highly prevalent during two specific seasons in the

Atlantic, whereas in the Indian Ocean, patterns of co-

occurrence (Fig. 3) showed a closer reflection of the

seasonal changes in purse-seine fishing grounds

(Appendix A in Data S1) throughout the year. The

inter-ocean difference in seasonal influence may thus

be explained by different spatio-temporal fishing pat-

terns. It is worth mentioning that cetaceans probably

have a larger spatial distribution across the Atlantic

and Indian Oceans than represented here, but our

study was based on the co-occurrence with the surface

tuna fisheries, and results are thus limited by their spa-

tial extent.

Previous studies performed in waters along the

coastline from Gabon to Angola found that Bryde’s,

humpback (the two most abundant cetacean species),

fin and sei whales were present in this area from April

to September (Weir, 2007; de Boer, 2010). Bryde’s

whales inhabit Gabonese waters from May to July,

before migrating to South Africa (Weir, 2007; de Boer,

2010). Also, its foraging behavior on schools of small

pelagic fish, such as Sardinella spp., close to the surface

has been observed in Gabon (de Boer, 2010). Hump-

back whales are also present from May to October, but

primarily in shallow waters (<200 m) as they use the

area as calving and mating grounds during winter, after

feeding in the Southern Ocean (Weir, 2007; de Boer,

2010). The two other species of baleen whales, fin and

sei whales, are also believed to undertake similar sea-

sonal migrations between winter breeding grounds and

a summer feeding area in the Antarctic (Weir, 2007).

However, sei whale was considered the only species

performing these seasonal migration and also feeding

in winter in Gabonese waters (Budker and Collignon,

1952). All four baleen whale species also occur in the

Indian Ocean and have been reported in the Sey-

chelles and the Mozambique Channel (Robineau,

1991; Mannocci et al., 2014).

Baleen whales and surface tuna schools may form

foraging associations to feed on the same prey species

(Romanov, 2002), a behaviour sometimes used by

purse-seine fishers to improve their fishing success.

This strategy may thus explain the high co-occurrence

between baleen whales and purse-seine fisheries

observed in areas that support high densities of prey

common to both baleen whales and tunas. Tunas in

surface aggregations feed primarily on epipelagic fishes,

crustaceans and small cephalopods, such as the ocea-

nic light fish (Vinciguerria nimbaria) or the bigeye cigar-

fish (Cubiceps pauciradiatus) (Romanov, 2002; Potier

et al., 2004) and Bryde’s whale, as mentioned above,

also forage on pelagic schooling fish (de Boer, 2010).

Areas of high abundance of bigeye cigarfish in the

Western Indian Ocean shown by Potier et al. (2008)

clearly overlap baleen whales hotspots identified in

the present study. Additionally, similar distributions

between whale-associated sets and bigeye cigarfish

abundance estimated during trawl surveys have been
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found during the NE and IWS monsoon periods along

the Seychelles–Chagos thermocline ridge (Romanov,

unpublished data). This confirms the high co-occur-

rence of baleen whales and the tuna fishery in this pro-

ductive environment and further reinforces previous

assumptions of baleen whales and tuna feeding associa-

tions on shared prey species.

CONCLUSION

As a result of the immensity of the open ocean envi-

ronment, conducting large-scale scientific observation

programs on all fishing vessels (i.e., 100% coverage)

dedicated to the study of the co-occurrence between

fisheries and megafauna species remains difficult. Fish-

eries-related data have inherent limitations, such as

non-reporting or underreporting of interactions, and

imprecise species identification. The use of a long-term

dataset obtained from commercial fisheries, such as

the logbooks from tropical tuna purse-seine vessels, is

however of major interest for identifying seasons and

regions of co-occurrence between fisheries and mega-

fauna, and to explore the environmental conditions

linked to this co-occurrence.

In summary, by implementing quantitative models

including environmental variables, our study high-

lighted that high co-occurrence of both whale sharks

and cetaceans with purse-seine fisheries were in pro-

ductive areas during particular seasons. Other environ-

mental variables, reflecting the continental shelves

(depth, slope and distance to land) or eddy kinetic

energy, also highlighted the link with productive envi-

ronments. Whale sharks and cetaceans co-occurrence

with the fishery were also associated with SST, with

both groups detected in lower SST ranges in the

Atlantic Ocean than in the Indian Ocean. Finally, our

results suggest that seasonal variability could have dif-

ferent effects in the Atlantic or the Indian Oceans on

the distribution of megafauna/fishery co-occurrence,

with greater seasonal effects in our models in the

Indian Ocean. The identification of areas and seasons

linked to a particular environmental condition with

high co-occurrence of purse-seine fisheries and both

whale sharks and cetaceans, described here, could

facilitate conservation management measures for these

species, such as the ban of intentional encirclements

in these specific areas and seasons.
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sighting effort (Appendix A), model calibration per

megafauna group and ocean (Appendix B, C, D and

E), and yearly and seasonal distribution of the environ-

mental variables used in our study (Appendix F).
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Appendix B. Whale sharks in the Atlantic Ocean 

 

Table B.1. GAM and BRT binomial models (presence/absence). Number in brackets indicate the percentage 

of the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance1 

R2 Correlation
2 

Moran  

p value 

Moran’s I3 

GAM binomial SST, CHL, EKE, LandDist, Season, 

ti(EKE, LandDist) 

22.4 0.14 0.38 < 2.2e-16 0.14 

GAM binomial 

RAC 

SST, CHL, EKE, LandDist, Season, 

Autocovariate, ti(EKE, LandDist) 

29.0 0.18 0.43 < 2.2e-16 0.09 

BRT binomial CHL (8.4), SST (6.9), LandDist (5.0), 

Depth (2.7), EKE (2.7), Slope (2.6), 

Season (1.3) 

29.3  0.49 < 2.2e-16 0.12 

BRT binomial 

RAC* 

CHL (5.4), SST (4.4), LandDist (2.4), 

Depth (1.6), EKE (1.4), Season (1.0), 

Slope (0.2), Autocovariate (19.0)  

35.5  0.51 < 2.2e-16 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Correlograms of a) GAM binomial RAC and b) BRT binomial RAC models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 % Deviance explained by each model.  

2
 Pearson correlation index between observed and predicted values. 

3
 Moran’s index maximum absolute value for each model. 

a) b) 
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Cross validation 

 

Binomial model performance was assessed using the area under the receiver-operating 

characteristic curve (AUC), and using specificity, sensitivity, and kappa derived from the 

confusion matrix. AUC allows occupied and unoccupied sites to be correctly distinguished. 

Specificity and sensitivity are the correctly classified proportion of true negatives and true 

positives respectively. They measure the model’s ability to predict the presence or absence of 

a species according to the real occurrence of the species at a given location. Kappa measures 

the proportion of correctly classified locations, which is then compare to a threshold derived 

from the cross validation to convert these values into presence/absence predictions.  

 

 

Table B.2. Cross Validation parameters from GAM and 

BRT binomial RAC models. 

 GAM binomial 

RAC* 

BRT binomial 

RAC 

Threshold 0.14 0.04 

AUC 0.53 0.53 

Kappa 0.02 0.01 

Sensitivity 0.56 0.71 

Specificity 0.50 0.35 
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Table B.3. Statistics of observed and predicted values, and residuals of the binomial models 

(presence/ absence). 

 Observed 

 

GAM 

Binomial  

 

GAM 

Binomial  

RAC 

BRT 

Binomial  

 

BRT 

Binomial  

RAC* 

Observed or predicted values      

Mean 0.06 0.06 0.06 0.06 0.06 

Median 0 0.02 0.02 0.03 0.02 

Min 0 0 0 0 0 

Max 1 1 1 0.65 0.83 

Standard deviation 0.24 0.09 0.11 0.09 0.10 

Residuals      

Mean  1.82e-15 -1.88e-15 -5.54e-04 -2.82e-04 

Median  -0.2e-02 -0.02 -0.02 -0.02 

Standard deviation   0.22 0.21 0.21 0.20 

Abs (residuals)      

Mean  0.10 0.09 0.09 0.09 

Median  0.02 0.02 0.03 0.02 

Standard deviation   0.20 0.19 0.19 0.18 

(Residuals)2      

Mean  0.05 0.05 0.04 0.04 

Median  5.80e-04 4.06e-04 8.35e-04 4.41e-04 

Standard deviation   0.17 0.16 0.19 0.15 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2. Graph of the predicted and observed values and histogram the absolute value 

of the residuals for a) b) GAM binomial RAC and c) d) BRT binomial RAC models. 

a) b) 

c) d) 
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Figure B.3. Envelope of presence/absence from a) GAM binomial RAC and b) BRT binomial 

RAC models. 

 

Table B.4. Count models (GAM quasi-poisson and BRT poisson). Number in brackets indicate the 

percentage of the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance 

R2 Correlation Moran  

p value 

Moran’s I 

GAM quasi-poisson SST, CHL, EKE, Depth, Slope, 

LandDist, Season 

 

67.5 

 

0.64 

 

0.49 

< 2.2e-16 0.15 

GAM quasi-poisson 

RAC 

SST, CHL, EKE, Depth, Slope, 

LandDist, Season, Autocovariate 

81.0 0.75 0.54 7.5e-14 0.05 

       

BRT poisson SST (22.1), CHL (14.9), LandDist 

(11.2), Depth (10.6), Slope (9.3), 

Season (1.3), EKE (1.2)  

70.6  0.87 < 2.2e-16 0.15 

BRT poisson RAC* CHL (5.5), LandDist (5.1), Slope (5.1), 

SST (3.5), Depth (3.5), Season (0.4), 

EKE (0.1), Autocovariate (59.7%) 

83.0  0.94 0.06 0.02 

  

 

 

 

 

 

 

 

 

 

 

 

Figure B.4. Correlograms of a) GAM quasi-poisson RAC and b) BRT poisson RAC models. 

a) b) 

a) b) 
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Table B.5. Statistics of observed and predicted values, and residuals of the count models.  

 Observed 

 

GAM quasi-

poisson 

GAM quasi-

poisson RAC 

BRT 

poisson 

BRT 

poisson 

RAC* 

Observed or predicted values      

Mean 0.36 0.81 0.89 0.38 0.39 

Median 0 0.08 0.14 0.05 0.04 

Min 0 0 0 0 0 

Max 49 53 59.7 60.8 59.9 

Standard deviation 2.58 3.03 3.13 2.41 2.67 

Residuals      

Mean  -0.44 -0.53 -0.02 -0.02 

Median  -0.06 -0.10 -0.04 -0.03 

Standard deviation   2.86 2.78 1.28 0.89 

Abs (residuals)      

Mean  0.82 0.86 0.34 0.25 

Median  0.09 0.14 0.05 0.04 

Standard deviation   2.78 2.70 1.23 0.85 

(Residuals)2      

Mean  8.38 8.02 1.63 0.79 

Median  0.01 0.02 0.3e-02 0.1 e-02 

Standard deviation   88.3 84.7 15.6 8.32 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure B.5. Graph of the predicted and observed values and histogram the absolute value of 

the residuals for a) b) GAM quasi-poisson RAC c) d) BRT poisson RAC models. 

a) b) 

c) d) 
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Appendix C. Whale sharks in the Indian Ocean 

 

Table C.1. GAM and BRT binomial models (presence/absence). Number in brackets indicate the percentage 

of the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance1 

R2 Correlation2 Moran  

p value 
Moran’s I3 

GAM binomial Depth, EKE, CHL, Season, ti(CHL, EKE) 10.4 0.05 0.24 < 2.2e-16 0.12 

GAM binomial 

RAC* 

Depth, EKE, CHL, Season, Autocovariate, 

ti(CHL, EKE)  

12.3 0.06 0.26 < 2.2e-16 0.12 

BRT binomial  EKE (5.8), CHL (5.2), Depth (3.1), Season 

(2.8), LandDist (2.5), SST (2.3), Slope 

(1.1) 

22.9  0.20 < 2.2e-16 0.01 

BRT binomial 

RAC 

EKE (5.0), CHL (4.7), Season (2.8), Depth 

(2.0), LandDist (2.0), SST (1.8), Slope 

(0.7), Autocovariate (5.2) 

24.2  0.23 < 2.2e-16 0.08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure C.1. Correlograms of a) GAM binomial RAC and b) BRT binomial RAC models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 % Deviance explained by each model. 

2
 Pearson correlation index between observed and predicted values. 

3
 Moran’s index maximum absolute value for each model. 

a) b) 
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Cross validation 

 

Binomial model performance was assessed using the area under the receiver-operating 

characteristic curve (AUC), and using specificity, sensitivity, and kappa derived from the 

confusion matrix. AUC allows occupied and unoccupied sites to be correctly distinguished. 

Specificity and sensitivity are the correctly classified proportion of true negatives and true 

positives respectively. They measure the model’s ability to predict the presence or absence of 

a species according to the real occurrence of the species at a given location. Kappa measures 

the proportion of correctly classified locations, which is then compare to a threshold derived 

from the cross validation to convert these values into presence/absence predictions.  

 

 

Table. C.2 Cross Validation parameters from GAM and 

BRT binomial RAC models. 

 GAM binomial 

RAC* 

BRT binomial 

RAC 

Threshold 0.05 0.13 

AUC 0.54 0.03 

Kappa 0.01 0.32 

Sensitivity 0.60 0.32 

Specificity 0.46 0.74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23



Table C.3. Statistics of observed and predicted values, and residuals of the binomial models 

(presence/ absence). 

 Observed 

 

GAM 

binomial  

 

GAM 

binomial  

RAC* 

BRT 

binomial  

 

BRT 

binomial  

RAC 

Observed or predicted values      

Mean 0.05 0.05 0.05 0.06 0.06 

Median 0 0.03 0.03 0.03 0.03 

Min 0 0 0 0 0 

Max 1 0.34 0.57 0.53 0.65 

Standard deviation 0.21 0.04 0.05 0.07 0.08 

Residuals      

Mean  1.26e-15 3.74e-16 -0.01 -0.01 

Median  -0.03 -0.03 -0.03 -0.03 

Standard deviation   0.20 0.21 0.21 0.21 

Abs (residuals)      

Mean  0.08 0.08 0.09 0.09 

Median  0.03 0.03 0.03 0.03 

Standard deviation   0.18 0.18 0.19 0.18 

(Residuals)2      

Mean  0.04 0.04 0.04 0.04 

Median  9.58e-04 8.30e-04 9.90e-04 9.75e-04 

Standard deviation   0.17 0.17 0.16 0.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2. Graph of the predicted and observed values and histogram the absolute value of 

the residuals for a) b) GAM binomial RAC c) d) BRT binomial RAC models. 

a) b) 

c) d) 
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Figure C.3. Envelope of presence absence from a) GAM binomial RAC and b) BRT binomial 

RAC models. 

Table C.4. Count models (GAM quasi-poisson and BRT poisson). Number in brackets indicate the 

percentage of the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance 

R2 Correlation Moran  

p value 

Moran’s I  

GAM quasi-poisson SST, CHL, EKE, Depth, Season 43.7 0.43 0.35 0.02 0.07 

GAM quasi-poisson 

RAC 

SST, CHL, EKE, Depth, Season, 

Autocovariate 

59.7 0.68 0.56 0.14 0.02 

       

BRT poisson Season (22.8), Depth (18.6), EKE 

(11.7), SST (7.3), CHL (5.8), 

Slope (1.1) 

 

67.4  0.31 0.20e-03 0.05 

BRT poisson RAC* Season (3.2), Depth (3.0), EKE 

(2.0), SST (1.1), CHL (0.5), Slope 

(0.1), Autocovariate (60.2) 

 

70.1  0.54 0.01e-02 0.03 

 

 

 

 

 

 

 

 

 

 

Figure C.4. Correlograms of a) GAM quasi-poisson RAC and b) BRT poisson RAC models. 

a) b) 

a) b) 
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Table C.5. Statistics of observed and predicted values, and residuals of the count models.  

 Observed 

 

GAM quasi-

poisson 

GAM quasi-

poisson RAC 

BRT 

poisson 

BRT poisson 

RAC* 

Observed or predicted values      

Mean 0.21 0.89 0.66 0.23 0.20 

Median 0 0.37 0.28 0.05 0.04 

Min 0 0 0 0 0 

Max 36 23.0 31.2 3.9 10.2 

Standard deviation 1.55 1.71 1.72 0.46 0.633 

Residuals      

Mean  -0.64 -0.45 -0.02 0.01 

Median  -0.34 -0.26 -0.03 -0.03 

Standard deviation   1.86 1.55 1.47 1.32 

Abs (residuals)      

Mean  0.87 0.66 0.36 0.30 

Median  0.39 0.29 0.05 0.04 

Standard deviation   1.76 1.47 1.43 1.28 

(Residuals)2      

Mean  3.87 2.59 2.17 1.74 

Median  0.15 0.08 0.20e-02 0.10e-02 

Standard deviation   24.90 27.99 32.70 24.30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.5. Graph of the predicted and observed values and histogram the absolute value of 

the residuals for a) b) GAM quasi-poisson RAC c) d) BRT poisson RAC models. 

a) b) 

c) d) 
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Appendix D. Cetaceans in the Atlantic Ocean 

 

Table D.1. GAM and BRT binomial models (presence/absence). Number in brackets indicate the 

percentage of the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance1 

R2 Correlation2 Moran  

p value 

Moran’s I3 

GAM binomial Depth, SST, CHL, EKE, Slope, 

LandDist, Season, ti(Depth,Slope) 

15.6 0.12 0.35 < 2.2e-16 0.18 

GAM binomial 

RAC* 

Depth, SST, CHL, EKE, Slope, 

LandDist, Season, Autocovariate, 

ti(Depth,Slope) 

21.1 0.16 0.41 1.2e-10 0.15 

BRT binomial LandDist (6.3), EKE (4.6), Slope 

(4.0), Depth (3.0), SST (2.4), CHL 

(2.3), Season (0.3) 

23.0  0.46 < 2.2e-16 0.16 

BRT binomial 

RAC 

LandDist (4.7), CHL (3.2), EKE (3.1), 

SST (2.5), Slope (1.8), Depth (1.5), 

Season (0.1), Autocovariate (11.3) 

28.1  0.50 < 2.2e-16 0.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. Correlograms of a) GAM binomial RAC and b) BRT binomial RAC models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 % Deviance explained by each model.  

2
 Pearson correlation index between observed and predicted values. 

3
 Moran’s index maximum absolute value for each model. 

a) b) 
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Cross validation 

 

Binomial model performance was assessed using the area under the receiver-operating 

characteristic curve (AUC), and using specificity, sensitivity, and kappa derived from the 

confusion matrix. AUC allows occupied and unoccupied sites to be correctly distinguished. 

Specificity and sensitivity are the correctly classified proportion of true negatives and true 

positives respectively. They measure the model’s ability to predict the presence or absence of 

a species according to the real occurrence of the species at a given location. Kappa measures 

the proportion of correctly classified locations, which is then compare to a threshold derived 

from the cross validation to convert these values into presence/absence predictions.  

 

 

Table. D.2 Cross Validation parameters from GAM and 

BRT binomial RAC models. 

 GAM binomial 

RAC* 

BRT binomial 

RAC 

Threshold 0.10 0.15 

AUC 0.54 0.54 

Kappa 0.04 0.06 

Sensitivity 0.65 0.58 

Specificity 0.44 0.53 
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Table D.3. Statistics of observed and predicted values, and residuals of the binomial models 

(presence/ absence) 

 Observed 

 

GAM 

binomial  

GAM 

binomial  

RAC* 

BRT 

binomial  

 

BRT 

binomial  

RAC 

Observed or predicted values      

Mean 0.13 0.13 0.13 0.13 0.13 

Median 0 0.09 0.07 0.08 0.07 

Min 0 0 0 0 0 

Max 1 0.85 0.92 0.79 0.86 

Standard deviation 0.33 0.11 0.14 0.12 0.14 

Residuals      

Mean  2.21e-15 -6.97e-16 -6.79e-04 -4.87e-04 

Median  -0.01 -0.01 -0.06 -0.04 

Standard deviation   0.31 0.30 0.30 0.29 

Abs (residuals)      

Mean  0.19 0.18 0.18 0.17 

Median  0.01 0.08 0.09 0.07 

Standard deviation   0.21 0.24 0.23 0.23 

(Residuals)2      

Mean  0.10 0.09 0.09 0.08 

Median  0.01 0.01 0.01 0.40e-02 

Standard deviation   0.21 0.20 0.19 0.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2. Graph of the predicted and observed values and histogram the absolute value of 

the residuals for a) b) GAM binomial RAC and c) d) BRT binomial RAC models. 

 

a) b) 

c) d) 
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Figure D.3. Envelope of presence absence from a) GAM binomial RAC and b) BRT binomial 

RAC models. 

 

Table D.4. Count models (GAM quasi-poisson and BRT poisson). Number in brackets indicate the percentage of 

the total deviance explained by each explanatory variables. 

 Explanatory variables % 

Deviance 

R2 Correlation Moran  

p value 

Moran’s I 

 

GAM quasi-poisson SST, CHL, EKE, Depth, Season, Slope 53.3 0.58 0.45 <2.2e-16 0.12 

GAM quasi-poisson 

RAC 

SST, CHL, EKE, Depth, Season, Slope, 

Autocovariate 

65.5 0.78 0.58 0.11 0.06 

       

BRT poisson SST (27.0), Slope (12.5), CHL (12.0), 

Depth (10.1), LandDist (2.8), Season 

(2.7), EKE (1.5) 

68.7  0.91 <2.2e-16 0.09 

BRT poisson RAC* SST (7.6), CHL (6.6), Slope (3.7), 

Depth(1.9), Season (0.6), EKE (0.6), 

LandDist (0.5), Autocovariate (50.6)  

72.1  0.92 0.10e-02 -0.02 

 

 

 

 

 

 

 

 

 

 

Figure D.4. Correlograms of a) GAM quasi-poisson RAC and b) BRT poisson RAC models. 

 

a) b) 

a) b) 
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Table D.5. Statistics of observed and predicted values, and residuals of the count models.  

 Observed 

 

GAM quasi-

poisson 

GAM quasi-

poisson RAC 

BRT 

poisson 

BRT poisson 

RAC* 

Observed or predicted values      

Mean 0.72 1.93 2.25 0.72 0.72 

Median 0 0.82 1.15 0.22 0.21 

Min 0 0.01 0.04 0 0 

Max 81 49.8 66.0 71.1 72.9 

Standard deviation 3.42 3.42 3.69 2.82 2.84 

Residuals      

Mean  -1.20 -1.53 0.01 0.01 

Median  -0.65 -0.92 -0.11 -0.12 

Standard deviation   3.61 3.30 1.44 1.42 

Abs (residuals)      

Mean  1.93 2.08 0.62 0.58 

Median  0.85 1.13 0.22 0.21 

Standard deviation   3.28 2.98 1.30 1.29 

(Residuals)2      

Mean  14.45 13.20 2.07 2.00 

Median  0.72 1.27 0.05 0.04 

Standard deviation   93.5 57.39 14.22 17.03 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure D.5. Graph of the predicted and observed values and histogram the absolute value of 

the residuals for a) b) GAM quasi-poisson RAC c) d) BRT poisson RAC models. 

 

a) b) 

c) d) 
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