S. Akira, TLR signaling, Curr. Top. Microbiol. Immunol, vol.311, pp.1-16, 2006.

F. Bai, K. Kong, J. Dai, F. Qian, L. Zhang et al., A paradoxical role for neutrophils in the pathogenesis of West Nile virus, J. Infect. Dis, vol.202, pp.1804-1812, 2010.

C. A. Benedict, Viruses and the TNF-related cytokines, an evolving battle, Cytokine Growth Factor Rev, vol.14, pp.349-357, 2003.

D. Ben-nathan, I. Huitinga, S. Lustig, N. Van-rooijen, and D. Kobiler, West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice, Arch Virol, vol.141, pp.459-469, 1996.

H. Bielefeldt-ohmann, A. Bosco-lauth, A. E. Hartwig, M. J. Uddin, J. Barcelon et al., Characterization of non-lethal West Nile Virus (WNV) infection in horses: subclinical pathology and innate immune response, Microb. Pathog, vol.103, pp.71-79, 2017.

L. Briant, P. Desprès, V. Choumet, and D. Missé, Role of skin immune cells on the host susceptibility to mosquito-borne viruses, Virology, vol.464, pp.26-32, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01054562

M. A. Brinton, Replication cycle and molecular biology of the West Nile virus, Viruses, vol.6, pp.13-53, 2013.

M. A. Bryan, D. Giordano, K. E. Draves, R. Green, M. Gale et al., A. Splenic macrophages are required for protective innate immunity against West Nile virus, PLoS ONE, vol.6, p.191690, 2018.
URL : https://hal.archives-ouvertes.fr/in2p3-01108646

G. L. Campbell, A. A. Marfin, R. S. Lanciotti, and D. J. Gubler, West Nile virus, Lancet Infect. Dis, vol.2, pp.519-529, 2002.

C. Chancey, A. Grinev, E. Volkova, and M. Rios, The global ecology and epidemiology of West Nile virus, BioMed. Res. Int, p.376230, 2015.

M. C. Cheeran, S. Hu, W. S. Sheng, A. Rashid, P. K. Peterson et al., Differential responses of human brain cells to West Nile virus infection, J. Neurovirol, vol.11, pp.512-524, 2005.

H. Cho, B. Shrestha, G. C. Sen, and M. S. Diamond, A role for Ifit2 in restricting West Nile virus infection in the brain, J. Virol, vol.87, pp.8363-8371, 2013.

V. Choumet, T. Attout, L. Chartier, H. Khun, J. Sautereau et al., Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice, PLoS ONE, vol.7, p.50464, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00771516

M. J. Conway, B. Londono-renteria, A. Troupin, A. M. Watson, W. B. Klimstra et al., Aedes aegypti D7 saliva protein inhibits dengue virus infection, PLoS Negl. Trop. Dis, vol.10, p.4941, 2016.
DOI : 10.1371/journal.pntd.0004941

URL : https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004941&type=printable

S. Daffis, M. A. Samuel, B. C. Keller, M. Gale, and M. S. Diamond, , 2007.

, Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and-independent mechanisms, PLoS Pathog, vol.3, p.106

S. Daffis, M. A. Samuel, M. S. Suthar, M. Gale, and M. S. Diamond, , 2008.

, Toll-like receptor 3 has a protective role against West Nile virus infection, J. Virol, vol.82, pp.10349-10358

S. Daffis, K. J. Szretter, J. Schriewer, J. Li, S. Youn et al., 2'O methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature, vol.468, pp.452-456, 2010.

S. David, A. , and A. M. , Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen, Infect. Dis. Lond. Engl, vol.48, pp.571-586, 2016.

P. Del-giudice, I. Schuffenecker, H. Zeller, M. Grelier, F. Vandenbos et al., Skin manifestations of West Nile virus infection, Dermatol. Basel Switz, vol.211, pp.348-350, 2005.

M. S. Diamond and M. Farzan, The broad-spectrum antiviral functions of IFIT and IFITM proteins, Nat. Rev. Immunol, vol.13, pp.46-57, 2013.

E. Donetti, L. Cornaghi, F. Arnaboldi, F. Ricceri, L. Pescitelli et al., Epidermal barrier reaction to an in vitro psoriatic microenvironment, Exp. Cell Res, vol.360, pp.180-188, 2017.

F. Douam, Y. E. Soto-albrecht, G. Hrebikova, E. Sadimin, C. Davidson et al., Type III interferon-mediated signaling is critical for controlling live attenuated yellow fever virus infection in vivo, vol.8, pp.819-836, 2017.

P. Duangkhae, G. Erdos, K. D. Ryman, S. C. Watkins, L. D. Falo et al., Interplay between keratinocytes and myeloid cells drives dengue virus spread in human skin, J. Invest. Dermatol, vol.138, pp.618-626, 2018.

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille, and A. B. Failloux, Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection, PLoS ONE, vol.4, p.5895, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00395262

B. L. Fredericksen and M. Gale, West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and-independent pathways without antagonizing host defense signaling, J. Virol, vol.80, pp.2913-2923, 2006.

B. L. Fredericksen, B. C. Keller, J. Fornek, M. G. Katze, and M. Gale, Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1, J. Virol, vol.82, pp.609-616, 2008.

B. L. Fredericksen, M. Smith, M. G. Katze, P. Y. Shi, and M. Gale, The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway, J. Virol, vol.78, pp.7737-7747, 2004.

M. Garcia, M. Wehbe, N. Lévêque, and C. Bodet, Skin innate immune response to flaviviral infection, Eur. Cytokine Netw, vol.28, pp.41-51, 2017.

D. Garcia-tapia, D. E. Hassett, W. J. Mitchell, G. C. Johnson, and S. B. Kleiboeker, West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection, J. Neurovirol, vol.13, pp.130-138, 2007.

R. Hamel, O. Dejarnac, S. Wichit, P. Ekchariyawat, A. Neyret et al., Biology of zika virus infection in human skin cells, J. Virol, vol.89, pp.8880-8896, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01228435

K. W. Hoffman, D. Sachs, S. V. Bardina, D. Michlmayr, C. A. Rodriguez et al., Differences in early cytokine production are associated with development of a greater number of symptoms following west nile virus infection, J. Infect. Dis, vol.214, pp.634-643, 2016.

D. J. Hui, F. Terenzi, W. C. Merrick, and G. C. Sen, Mouse p56 blocks a distinct function of eukaryotic initiation factor 3 in translation initiation, J. Biol. Chem, vol.280, pp.3433-3440, 2005.

A. Isaacs and M. A. Westwood, Duration of protective action of interferon against infection with West Nile virus, Nature, vol.184, pp.1232-1233, 1959.

D. Jiang, J. M. Weidner, M. Qing, X. Pan, H. Guo et al., Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections, J. Virol, vol.84, pp.8332-8341, 2010.

A. Kajaste-rudnitski, T. Mashimo, M. P. Frenkiel, J. L. Guénet, M. Lucas et al., The 2' ,5'-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells, J. Biol. Chem, vol.281, pp.4624-4637, 2006.

B. N. Kalali, G. Köllisch, J. Mages, T. Müller, S. Bauer et al., Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling, J. Immunol, vol.181, pp.2694-2704, 2008.
DOI : 10.4049/jimmunol.181.4.2694

URL : http://www.jimmunol.org/content/181/4/2694.full.pdf

H. Kato, O. Takeuchi, S. Sato, M. Yoneyama, M. Yamamoto et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, vol.441, pp.101-105, 2006.

R. S. Klein, E. Lin, B. Zhang, A. D. Luster, J. Tollett et al., Neuronal CXCL10 directs CD8+ Tcell recruitment and control of West Nile virus encephalitis, J. Virol, vol.79, pp.11457-11466, 2005.

L. D. Kramer, L. M. Styer, and G. D. Ebel, A global perspective on the epidemiology of West Nile virus, Annu. Rev. Entomol, vol.53, pp.61-81, 2008.

M. Kumar, K. Roe, P. V. Nerurkar, B. Orillo, K. S. Thompson et al., Reduced immune cell infiltration and increased pro-inflammatory mediators in the brain of Type 2 diabetic mouse model infected with West Nile virus, J. Neuroinflammation, vol.11, p.80, 2014.

R. S. Lanciotti, J. T. Roehrig, V. Deubel, J. Smith, M. Parker et al., Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States, Science, vol.286, pp.2333-2337, 1999.

H. M. Lazear, B. P. Daniels, A. K. Pinto, A. C. Huang, S. C. Vick et al., Interferon-? restricts West Nile virus neuroinvasion by tightening the blood-brain barrier, Sci. Transl. Med, vol.7, pp.284-59, 2015.

H. M. Lazear and M. S. Diamond, New insights into innate immune restriction of West Nile virus infection, Curr. Opin. Virol, vol.11, pp.1-6, 2015.

H. M. Lazear, A. K. Pinto, M. R. Vogt, M. Gale, and M. S. Diamond, Beta interferon controls West Nile virus infection and pathogenesis in mice, J. Virol, vol.85, pp.7186-7194, 2011.

M. C. Lebre, A. M. Van-der-aar, L. Van-baarsen, T. M. Van-capel, J. H. Schuitemaker et al., Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9, J. Invest. Dermatol, vol.127, pp.331-341, 2007.

J. K. Lim, A. Lisco, D. H. Mcdermott, L. Huynh, J. M. Ward et al., Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man, PLoS Pathog, vol.5, p.1000321, 2009.

P. Y. Lim, M. J. Behr, C. M. Chadwick, P. Y. Shi, and K. A. Bernard, Keratinocytes are cell targets of West Nile virus in vivo, J. Virol, vol.85, pp.5197-5201, 2011.

N. P. Lindsey, J. E. Staples, J. A. Lehman, and M. Fischer, Medical risk factors for severe West Nile Virus disease, Am. J. Trop. Med. Hyg, vol.87, pp.179-184, 2008.

D. Ma, D. Jiang, M. Qing, J. M. Weidner, X. Qu et al., Antiviral effect of interferon lambda against West Nile virus, Antiviral Res, vol.83, pp.53-60, 2009.

T. Mashimo, M. Lucas, D. Simon-chazottes, M. P. Frenkiel, X. Montagutelli et al., A nonsense mutation in the gene encoding 2'5'-oligoadenylate synthetase/L1 isoform is associated with West Nile virus susceptibility in laboratory mice, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.11311-11316, 2002.

M. K. Mccracken, R. C. Christofferson, B. J. Grasperge, E. Calvo, D. M. Chisenhall et al., Aedes aegypti salivary protein "aegyptin" coinoculation modulates dengue virus infection in the vertebrate host, Virology, vol.468, issue.470, pp.133-139, 2014.

L. A. Moser, P. Lim, L. M. Styer, L. D. Kramer, and K. A. Bernard, Parameters of mosquito-enhanced West Nile virus infection, J. Virol, vol.90, pp.292-299, 2016.

F. Qian, X. Wang, L. Zhang, A. Lin, H. Zhao et al., Impaired interferon signaling in dendritic cells from older donors infected in vitro with West Nile virus, J. Infect. Dis, vol.203, pp.1415-1424, 2011.

E. D. Quick, J. S. Leser, P. Clarke, and K. L. Tyler, Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection, J. Virol, vol.88, pp.13005-13014, 2014.

J. M. Ribeiro, Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex), Med. Vet. Entomol, vol.14, pp.142-148, 2000.

M. A. Samuel and M. S. Diamond, Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival, J. Virol, vol.79, pp.13350-13361, 2005.

M. Sato, H. Suemori, N. Hata, M. Asagiri, K. Ogasawara et al., Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction, Immunity, vol.13, pp.539-548, 2000.

B. S. Schneider and S. Higgs, The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response, Trans. R. Soc. Trop. Med. Hyg, vol.102, pp.400-408, 2008.

J. J. Sejvar, West Nile Virus Infection, 2016.

J. G. Shipley, R. Vandergaast, L. Deng, R. A. Mariuzza, and B. L. Fredericksen, Identification of multiple RIG-I-specific pathogen associated molecular patterns within the West Nile virus genome and antigenome, Virology, vol.432, pp.232-238, 2012.

B. Shrestha, B. Zhang, W. E. Purtha, R. S. Klein, and M. S. Diamond, Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system, J. Virol, vol.82, pp.8956-8964, 2008.

L. M. Styer, K. A. Bernard, and L. D. Kramer, Enhanced early West Nile virus infection in young chickens infected by mosquito bite: effect of viral dose, Am. J. Trop. Med. Hyg, vol.75, pp.337-345, 2006.

L. M. Styer, K. A. Kent, R. G. Albright, C. J. Bennett, L. D. Kramer et al., Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts, PLoS Pathog, vol.3, 2007.

L. M. Styer, P. Y. Lim, K. L. Louie, R. G. Albright, L. D. Kramer et al., Mosquito saliva causes enhancement of West Nile virus infection in mice, J. Virol, vol.85, pp.1517-1527, 2011.

P. Surasombatpattana, P. Ekchariyawat, R. Hamel, S. Patramool, S. Thongrungkiat et al., Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes, J. Invest. Dermatol, vol.134, pp.281-284, 2014.

P. Surasombatpattana, R. Hamel, S. Patramool, N. Luplertlop, F. Thomas et al., Dengue virus replication in infected human keratinocytes leads to activation of antiviral innate immune responses, Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis, vol.11, pp.1664-1673, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623014

K. J. Szretter, J. D. Brien, L. B. Thackray, H. W. Virgin, P. Cresswell et al., The interferon-inducible gene viperin restricts West Nile virus pathogenesis, J. Virol, vol.85, pp.11557-11566, 2011.

F. Terenzi, D. J. Hui, W. C. Merrick, and G. C. Sen, Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56, J. Biol. Chem, vol.281, pp.34064-34071, 2006.

L. H. Tobler, M. J. Cameron, M. C. Lanteri, H. E. Prince, A. Danesh et al., Interferon and interferon-induced chemokine expression is associated with control of acute viremia in West Nile virus-infected blood donors, J. Infect. Dis, vol.198, pp.979-983, 2008.

M. J. Turell, D. J. Dohm, M. R. Sardelis, M. L. Oguinn, T. G. Andreadis et al., An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus, J. Med. Entomol, vol.42, pp.57-62, 2005.

N. Wanasen, R. H. Nussenzveig, D. E. Champagne, L. Soong, and S. Higgs, Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus, Med. Vet. Entomol, vol.18, pp.191-199, 2004.

T. Wang, T. Town, L. Alexopoulou, J. F. Anderson, E. Fikrig et al., Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis, Nat. Med, vol.10, pp.1366-1373, 2004.

H. A. Wasserman, S. Singh, and D. E. Champagne, Saliva of the yellow fever mosquito, aedes aegypti, modulates murine lymphocyte function, Parasite Immunol, vol.26, pp.295-306, 2004.

T. Welte, K. Reagan, H. Fang, C. Machain-williams, X. Zheng et al., Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection, J. Gen. Virol, vol.90, pp.2660-2668, 2009.

E. G. Westaway, A. A. Khromykh, M. , and J. M. , Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes, Virology, vol.258, pp.108-117, 1999.

S. Wichit, F. Diop, R. Hamel, L. Talignani, P. Ferraris et al., Aedes Aegypti saliva enhances chikungunya virus replication in human skin fibroblasts via inhibition of the type I interferon signaling pathway, Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis, vol.55, pp.68-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02014558