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We examined specimens of the macrostigma trout Salmo macrostigma, which refers to big 

black spots on the flanks, to assess whether it is an example of taxonomic inflation within the 

brown trout Salmo trutta complex. Using new specimens, publicly available data and a 

mitogenomic protocol to amplify the control and cytochrome b regions of the mitochondrial 

genome from degraded museum samples, including one syntype specimen, the present study 

shows that the macrostigma trout is not a valid species. Our results suggest the occurrence of 

a distinct evolutionary lineage of S. trutta in North Africa and Sicily. The name of the North 

African lineage is proposed for this lineage, which was found to be sister to the Atlantic 

lineage of brown trout, S. trutta.  

 

KEYWORDS 

Conservation, mtDNA, North Africa, Sicily, syntype, taxonomic status 

  

This article is protected by copyright. All rights reserved.

   
 

This article has been accepted for publication  in the Journal of Fish Biology  and 
undergone full peer review but has not been through the copyediting, typesetting, 
pagination and proofreading process, which may lead to differences between this
version and the Version of Record. Please cite this article as doi: 10.1111/jfb.13751

  



A
cc

ep
te

d 
A

rti
cl

e
1 | INTRODUCTION 

 

All biological conservation is based on taxonomy and the central unit in taxonomy is the 

species. Since the advent of Linnaean binomial taxonomy, taxonomists have been describing, 

naming and classifying species, mainly based on morphological characters. During the past 3 

decades, numbers of described species have increased in part due to the widespread use of 

advanced technologies, such as molecular phylogenetics, DNA barcoding, computed 

tomography, geographical information systems and various internet tools (Bickford et al., 

2007; Padial et al., 2010; Zachos et al., 2013). The increased availability and selective use of 

these data have led to reinterpretations of species limits based only on changes in species 

concept rather than new discoveries (e.g. cryptic species). This process is known as 

„taxonomic inflation‟ (Isaac, Mallet, & Mace, 2004; Zachos et al., 2013) and it has resulted in 

over-splitting in which numerous known subspecies are elevated to the species rank (Isaac et 

al., 2004; Zachos et al., 2013). Species elevated in this way have often been found to be 

invalid, with numerous subspecies boundaries based on discontinuities in the geographic 

distribution of phenotypic traits poorly aligning with described molecular lineages (Burbrink 

et al., 2000; Phillimore & Owens, 2006; Newman & Rissler, 2011; Prie et al., 2012; 

Deichmann et al., 2017). However, effective conservation and management rely on the proper 

definition of operational units (e.g. evolutionarily significant units, ESU; Moritz, 1994). Such 

units require that variation related to species status be appropriately assessed and considered 

before relevant taxonomic decisions are made (Mace, 2004; Sites & Marshall 2004). To gain 

support, operational conservation and management units also need congruent molecular and 

morphological patterns (Fraser & Bernatchez, 2001; Agapow et al., 2004; Sites & Marshall, 

2004). 
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In the brown trout Salmo trutta L. 1758, natural diversity is notably characterized by 

complex patterns of phenotypically distinct geographic forms and considerable life-history 

variation (Bernatchez et al., 1992; Elliott, 1994; Kottelat & Freyhof, 2007; Sanz, 2017). In 

addition to S. trutta and Salmo salar L. 1758, studies of biological variation during the last 

century have led to the description of several Salmo L. 1758 species, often having very 

restricted geographical ranges (Berrebi et al., 2013; Clavero et al., 2017; Ninua et al., 2018). 

Depending on the source, the number of Salmo species ranges from around 25 (Kottelat & 

Freyhof, 2007; IUCN, 2016) to nearly 50 (Froese & Pauly, 2018). Among these, a dozen were 

described during the past decade (Turan et al., 2009; Delling, 2010; Turan et al., 2011, 2012, 

2014), such as Salmo akairos Delling & Doadrio 2005 and Salmo viridis Doadrio, Perea, & 

Yahyaoui 2015 described from Morocco. As illustrated by the numerous references cited 

above, which are only a snapshot of the available literature, research in this area is very active 

and molecular data have already begun to show that some species are not valid [Sanz (2017) 

provides a detailed list and references]. Apart from S. salar and few other valid species [e.g. 

Salmo obtusirostris (Heckel 1851); Snoj et al., 2002], this diversity is subsumed within the 

Salmo trutta species complex (Sanz, 2017). Hence, this complex represents an interesting 

case of possible taxonomic inflation that has confounding taxonomic ramifications, hampers 

the understanding of the species‟ evolutionary history and impedes the development of 

appropriate strategies to protect natural trout diversity (Bernatchez et al., 1992; Antunes et al., 

2001; Fumagalli et al., 2002; Snoj et al., 2010; Crête-Lafrenière et al., 2012; Gratton et al., 

2013, Ninua et al., 2018). Furthermore, to our knowledge, no molecular phylogenetic study 

within this complex has included type specimens (e.g. holotype, isotype, syntype) to check 

the validity of taxa, even though these are the only objective link to the Linnean binomial 

(Mutanen et al., 2015). 
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 Considered to be distributed in southern Eurasia and North Africa (Tortonese, 1954; 

Geldiay, 1968; Geldiay & Balik, 1988; Kottelat & Freyhof, 2007), Salmo macrostigma 

(Duméril 1858) represents one interesting case study to test for taxonomic inflation within the 

Salmo genus. The term macrostigma was used by Duméril (1858) to describe a trout with big 

black spots on the flanks named Salar macrostigma, found in the Oued-el-Abaïch 40 km west 

of Collo in Algeria. According to Duméril (1858), two identical specimens, here considered 

syntypes, were brought to Paris, France, one for the collections of the National Museum of 

Natural History (MNHN) and the other for the French Zoological Society. The term 

macrostigma has subsequently been used at both the species (Salmo macrostigma) and 

subspecies (S. t. macrostigma) level to characterize other trout native to North Africa 

(Morocco: Vivier, 1948; Azeroual et al., 2000; Abba et al., 2010; Lbadaoui et al., 2011), 

Turkey (Togan et al., 1995; Bardakci et al., 2006; Kara et al., 2010) and the Middle East 

(Berg, 1949; Derzhavin, 1929; Segherloo et al., 2012). Macrostigma phenotypes have also 

been reported in Italy (including Sardinia and Sicily; Boulenger, 1901; Mola, 1928; Gandolfi 

et al., 1991; Patarnello et al., 1994; Massidda, 1995; Nonnis Marzano et al., 2003; Ciuffardi 

& Arillo, 2006; Querci et al., 2013), Albania (Rakaj & Flloko, 1995; Cullaj et al., 2005), 

Greece (Kattoulas, 1972; Karakousis & Triantaphyllidis, 1990) and Corsica, France, 

(Guyomard, 1989; Roche & Mattei, 1997; Gauthier & Berrebi, 2007). A macrostigma 

phenotype might be observed in Salmo cettii Raffinesque 1810, inhabiting Sicily 

(Schöffmann et al., 2007; Kottelat & Freyhof, 2007) and Duchi (2018) rightly reported that 

confusion still exists regarding how to distinguish S. macrostigma from S. cettii. Indeed, 

distribution of the macrostigma trout remains controversial and some authors assert that it 

should be exclusively used for Algerian populations (Zouakh, 2009; Turan et al., 2011). Thus, 

the use of macrostigma for populations beyond Algeria and evaluation of the taxonomic status 

of S. macrostigma itself within or outside the S. trutta complex required genetic comparison 
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of the Algerian macrostigma syntypes with European, Asian and other North African trout 

populations. 

 Mitochondrial DNA markers are valued for phylogenetic reconstructions using both 

museum and fresh samples because nucleic acids degrade over time and mitochondrial 

genomes (mtDNA) are available at much higher copy numbers per cell compared with single-

copy nuclear DNA (Höss, 2000; Wandeler et al., 2003) and because mtDNA has reliable 

barcoding properties across vertebrates, including fishes (Allio et al., 2017). Despite its 

uniparental inheritance, mtDNA remains an important marker in studies of the S. trutta 

complex partly because so much data are already available from previous salmonid studies 

(Bernatchez et al., 1992; Snoj et al., 2002; Verspoor et al., 2002; Sušnik et al., 2006; Crête-

Lafrenière et al., 2012) and partly because a well-supported mtDNA-based hypothesis of 

phylogenetic relationships is available (Bernatchez, 2001; Cortey et al., 2004; Vera et al., 

2010; Snoj et al., 2011; Sanz, 2017).  

In this study, traditional mtDNA marker analyses were combined with a mitogenomic 

approach used to obtain sequence data from the damaged DNA of museum samples labelled 

as S. macrostigma, including the syntype catalogued at National natural history museum, 

Paris (MNHN). The aim of the present study was to characterize: phylogenetic relationships 

of this syntype with other Salmo mtDNA lineages or species; the taxonomic status of S. 

macrostigma and whether this name refers to a distinct phylogenetic lineage; the limits of the 

geographic distribution of this lineage. 

 

2 | MATERIALS AND METHODS 

 

2.1 | Sampling 
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Fin or DNA samples were obtained for 67 specimens belonging to European, Moroccan and 

Turkish populations of S. trutta (Supporting Information Table S1). To assess the 

phylogenetic position of the macrostigma trout, a small piece of muscle from the MNHN 

syntype specimen (MNHN_IC_A_7585) and three other museum samples attributed to the 

macrostigma trout (MNHN_IC_0000_1909_C, MNHN_IC_1977_272_A and NMW_67984) 

were analysed (Supporting Information Table S1). 

 

2.2 | DNA extraction and sequencing 

 

Total genomic DNA from 67 specimens was extracted from 96% ethanol-preserved fin tissue 

following standard procedures (Sambrook, Fritsch, & Maniatis, 1989). The entire control 

region (CR) and cytochrome b (cytb) gene were amplified by PCR with the following primer 

sets, respectively: Str-DL1F (5'-GCACCGACTACACTATCATT-3') and StrDL1R (5'-

TTTATATGTTTGATTGAGA-3') designed for this study; SalmoCBF (5'-

CATAATTCCTGCCCGGACTCTAACC-3') and Salmo-CBR (5'-

TTTAACCTCCGATCTCCGGATTACA-3') corresponding to the cytb primers mentioned in 

Crête-Lafrenière et al. (2012). Direct sequencing was carried out in both directions at the 

technical facilities of the genotyping and sequencing platform of the Institute for Evolutionary 

Sciences Montpellier (ISEM).  

For the museum samples, DNA retrieval was optimized using a protocol recently 

developed by Tilak et al. (2015) to build and sequence shotgun Illumina (www.illumina.com) 

libraries from small quantities of degraded genomic DNA. First, DNA extraction with blank 

controls was performed in the ADN dégradé platform of ISEM dedicated to damaged DNA 

experiments, with the DNeasy Blood and Tissue kit (QIAGEN; www.qiagen.com) following 

the recommendations of the manufacturer, except decreasing the elution volume to 100 µl. 
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The Illumina library preparation procedure thus followed the recommendations of Tilak et al. 

(2015) for blunt-end repair, adapter ligation, adapter fill-in and indexing PCR steps. An 

equimolar mix including a library for each museum sample was handed over to GATC-

Biotech (www.eurofinsgenomics.eu) for the sequencing step on a single Illumina HiSeq2000 

lane. Mapping of short reads (≤ 100 bp) and annotation of the complete mitogenomes were 

carried out against a reference genome of S. trutta (JQ390057) using Geneious 7 (Kearse et 

al., 2012). Reads were mapped as follows: a minimum of 24 contiguous nucleotides matched 

the reference genome; a 5% maximum of mismatches per read; a minimum of 95% overlap 

similarity with the reference genome; a 3% indel maximum not exceeding a gap size of 10 

nucleotides. 

 

2.3 | Quality control of mitogenomes 

 

To evaluate the potential presence of nuclear pseudogenes in the assemblies, each annotated 

mitogenome was carefully inspected by eye to detect abnormal boundaries, frameshifts and 

premature stop codons in protein coding genes. Three other quality controls recommended by 

Botero-Castro et al. (2016) were also performed: detailed information on the origin of the 

samples used for mitogenome sequencing and the museum voucher of each sample was 

provided to ensure taxonomic identification and easier cross-referencing; a CR and cytb 

barcoding identification of the specimens through a phylogenetic tree based on the closest 

available sequences was done to avoid specimen misidentification; a phylogenetic analysis of 

the new mitogenomes in the context of closely related species was conducted to get a clear 

depiction of the evolutionary affinities of the new mitogenomes and their degree of 

divergence compared with close relatives. 
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2.4 | Phylogenetic analyses and genetic distances 

 

Mitogenomes of the four museum samples and of several GenBank S. trutta (4) and S. salar 

(2) were aligned using the Geneious aligner with default parameters. Control region and cytb 

sequences were extracted from these mitogenomes and aligned by hand using MEGA 6.06 

(Tamura et al., 2013) with newly produced and GenBank sequences obtained for additional 

specimens (Supporting Information Table S1).  

Phylogenetic analyses were performed on a dataset including 46 new sequences of the 

control region. As mtDNA lineages of S. trutta were previously identified from CR 

sequences, 71 GenBank sequences were added to identify these lineages in our dataset. 

Sequences belonged to eight main recognized lineages of S. trutta: Atlantic; Danubian; 

Adriatic; Marbled or S. (trutta) marmoratus Cuvier 1829; Mediterranean; Duero; Tigris; 

Dades (MacCrimmon & Marshall, 1968; Elliott, 1989; Bernatchez et al., 1992; Suárez et al., 

2001; Cortey et al., 2004, 2009; Vera et al., 2010; Snoj et al., 2011; Özen, 2013). Thus, a 

total of 117 CR sequences were used for phylogenetic reconstructions. Phylogenetic analyses 

were also based on a dataset including 70 new and 49 GenBank sequences of cytb (i.e. 119 

cytb sequences in total). The two datasets were concatenated in a single dataset when 

sequences for both markers were available for the same individual. This concatenated dataset 

included 89 new and GenBank sequences (Supporting Information Table S1). According to 

the cytb phylogeny from Crête-Lafrenière et al. (2012), these separated and concatenated 

datasets were completed with GenBank sequences of S. obtusirostris and Salmo ohridanus 

Steindachner 1892. Finally, the tree was rooted by designating S. salar, as an outgroup 

(Supporting Information Table S1).  

Phylogenetic reconstructions were conducted on the mitogenomic dataset as well as on 

both separate and concatenated CR and cytb datasets through the technical facilities of the 
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platform Montpellier bioinformatics biodiversity at ISEM. Phylogenetic trees were 

reconstructed using a maximum-likelihood approach (ML) in the program PhyML 3.0 

(Guindon et al., 2010) and Bayesian inference (BI) using MrBayes 3.1.2 (Ronquist & 

Huelsenbeck, 2003). Best-fitting models of sequence evolution were identified for each 

marker dataset as well as the concatenated dataset using MrModeltest 2.3 (Nylander, 2004). A 

generalized time reversible (GTR) model (Yang, 1994) with a proportion of invariable sites 

(I) and a gamma distribution (G) was selected for the concatenated dataset in ML and the 

mitogenomic dataset in both ML and BI. A mixed model was recommended for a 

concatenated BI analysis in which the CR region and cytb codon positions were separately 

partitioned: HKY (Hasegawa et al., 1985) + I + G for CR; K80 (Kimura, 1980) for the first 

codon position of cytb; GTR + I + G for the second and third positions of the cytb. Nodal 

robustness was estimated by bootstrap percentage values (BP) after 1000 pseudo-replicates 

under ML optimization. Five independent runs of five Markov chain Monte-Carlo chains 

were simultaneously carried out for 5 000 000 generations under BI optimization. Bayesian 

posterior probabilities (PP) were obtained from the 50% majority rule consensus of trees 

sampled every 100 generations after a burn-in stage of 25 000 generations. 

Intra- and interlineage genetic distances were estimated by the uncorrected p-distance 

on the separate and concatenated datasets with MEGA. 

 

3 | RESULTS 

 

New sequences were deposited in the European Nucleotide Archive under the accession 

numbers LT617521–LT617587 for cytb, LT617588–LT617629 for CR and LT617630–

LT617633 for the mitogenomes (Supporting Information Table S1). Alignments of the 

complete CR and cytb sequences were 1019 and 1140 nucleotides long with 108 and 128 
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phylogenetically informative sites, respectively. Alignment of the mitogenomes comprised 16 

683 positions with 907 phylogenetically informative sites (Supporting Information Table S2).  

 

3.1 | TREE TOPOLOGIES 

 

Phylogenetic analyses generated similar tree topologies in BI and ML (Figure 1 and 

Supporting Information Figures S1–S3 with PP and BP values). The monophyly of S. trutta 

was supported with high PP (1.00) values in the concatenated tree (Figure 1) and with high PP 

(1.00) and BP (100%) values in the mitogenome tree (Supporting Information Figure S3). In 

the other analyses, S. trutta formed a clade with S. ohridanus and S. obtusirostris (PP = 1.00; 

BP = 100%). The two latter species were always highly supported (PP = 1.00; 98% < BP < 

100%) but were included in S. trutta in the CR and cytb gene trees (Supporting Information 

Figures S1, S2).  

In the CR gene tree (Supporting Information Figure S2), the Mediterranean, Marbled, 

Danubian and Turkish mtDNA lineages were moderately to highly supported (0.93 < PP < 

0.99; 57% < BP < 95%), whereas the Atlantic, Duero, Sicilian and Moroccan specimens were 

clustered together with weak support (PP ≤ 0.80; BP ≤ 50%). In the cytb gene tree 

(Supporting Information Figure S1), the Atlantic, Mediterranean, Dades, Danubian and Duero 

lineages had moderate to high support values (PP = 1.00; 71% < BP < 95%), whereas the 

Adriatic, Marbled and Turkish lineages were spread out in the tree. In the tree obtained from 

the concatenated dataset, all mitochondrial lineages were moderately to highly supported 

(0.99 < PP < 1.00; 55% < BP < 100%). In the separate and concatenated trees, relationships 

between these lineages remained unresolved.  

 

3.2 | Genetic distances 
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Genetic distances from the separate and concatenated datasets were estimated within and 

between S. trutta lineages, S. obtusirostris, S. ohridanus and S. salar (Tables 1 and 

Supporting Information Tables S3, S4). In S. trutta, intragroup distances were as follows: 0.0 

± 0.0% to 0.6 ± 0.1% for cytb; 0.0 ± 0.0% to 0.4 ± 0.1% for CR (but distances rose to 5.4 ± 

0.5% for the group including Atlantic, North African, Sicilian and Duero specimens); 0.1 ± 

0.0% to 0.5 ± 0.1% for the concatenated dataset. The intergroup distances were as follows: 

0.6 ± 0.2% to 1.7 ± 0.3% for cytb; 0.7 ± 0.2% to 1.3 ± 0.2% for CR (but 6.2 ± 0.5% for the 

group including Atlantic, North African, Sicilian and Duero specimens with the Danubian 

lineage); 0.5 ± 0.1% to 1.6 ± 0.3% for concatenated dataset. From the concatenated dataset, 

genetic distances between S. trutta and its closest related species were: 1.7 ± 0.2% with S. 

obtusirostris (2.1 ± 0.4% and 3.9 ± 0.4% for cytb and CR, respectively), 2.6 ± 0.3% with S. 

ohridanus (2.4 ± 0.4% and 5.6 ± 0.5% for cytb and CR, respectively) and 5.7 ± 0.5% with S. 

salar (5.9 ± 0.6% and 8.0 ± 0.7% for cytb and CR, respectively). 

 

3.3 | Position of the macrostigma museum specimens 

 

It clearly appears from the concatenated dataset that the three macrostigma MNHN samples 

originating from Northern Africa (Algeria and Morocco; Supporting Information Table S1) 

form a clade with new and GenBank specimens from Morocco and Sicily (PP = 0.99; BP = 

55%) (Figure 1). This clade is closely related to the Atlantic lineage of S. trutta (PP = 1.00; 

BP = 76%; Figure 1) and not at all to the Dades lineage, endemic to Morocco (Snoj et al., 

2011). The last museum sample attributed to a macrostigma trout (NMW 67984, originating 

from Albania; Supporting Information Table S1) clustered with the S. obtusirostris specimens 
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from Bosnia and Herzegovina and Croatia in all trees (Figures 1and Supporting Information 

Figures S1, S2). 

 

4 | DISCUSSION 

 

The term macrostigma is widely used to phenotypically describe peri-Mediterranean trout 

samples from North Africa, Turkey, Middle East and Southern Europe. However, no 

phylogenetic study focused on this phenotype has previously been performed. Its recognition 

as a valid species may contribute to taxonomic inflation because morphological and meristic 

characters that strongly vary within the S. trutta complex are being erroneously used to 

diagnose an invalid taxon. Results showed that the existence of a single S. (t.) macrostigma 

(sub)species covering this very wide geographic area is unlikely as the four macrostigma trout 

considered in this study did not cluster together. No specimen from the Balkans, Turkey, Iran 

or France, where macrostigma is thought also to be distributed, was found to cluster with the 

MNHN syntype or with other macrostigma specimens considered in this study. They were all 

found to cluster within recognized S. trutta lineages (e.g. Danubian for Iranian samples; 

Adriatic for Albanian samples; Atlantic, Adriatic, Marbled and Mediterranean for Corsican 

samples).  

The macrostigma syntype from MNHN and two other macrostigma trouts clustered 

with specimens from Moroccan and Sicilian populations that were grouped in a well-

supported clade in the concatenated tree (Figure 1). The geographical origin of these three 

museum specimens matched with the location from where S. macrostigma was originally 

described (Oued-el-Abaïch, Algeria; Duméril, 1858). However, results did not support the 

existence of a monophyletic S. macrostigma restricted to North Africa, but rather showed that 

these specimens with alternative phenotypes are included in the S. trutta complex. Individuals 
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of this well-supported Siculo-North African clade are distributed in four more-or-less 

geographically restricted groups with unresolved relationships (Figure 1) and with low 

intergroup genetic distances (0.2 to 0.6% for cytb and 0.2 to 0.5% for CR in Doadrio et al., 

2015). Such distances compared with the intergroup genetic distances between S. trutta and 

other species considered (S. obtusirostris, S. ohridanus and S. salar, always > 2% for cytb, > 

3.5% for CR) do not support the definition of valid Salmo species. According to Snoj et al. 

(2011), the evolutionary legacy of Salmo diversification in Northern Africa is probably the 

result of several waves of colonisation in North Africa during the Pleistocene. It may have 

occurred that S. trutta mtDNA haplotypes replaced undetected macrostigma, and possibly 

other (e.g. similarity of cytochrome oxidase I haplotypes among Mediterranean trout; Figure 

S1 in Geiger et al., 2014), mtDNA haplotypes during this process. However, samples that 

grouped with the three macrostigma trout are all Sicilian (T250009, T25010 and T25011) and 

Moroccan samples from Lake Ifni (I1, MNCN85764 and MNCN85765) in the concatenated 

tree (Figure 1). This suggests that at least one wave of mtDNA replacement would had to 

have been strong enough and relatively uniform throughout the range covered by those 

samples, from western Morocco (Lake Ifni) to Sicily. Additionally, some authors have 

reported that the so-called S. macrostigma is restricted to Mediterranean drainages of 

Morocco and Algeria (Delling & Doadrio, 2005; Zouakh, 2009; Doadrio et al., 2015), while 

Lake Ifni is located in the Atlantic slope of Morocco. Thus, a multi-replacement scenario over 

a wide North African geographic area does not appear to be very parsimonious. This has to be 

investigated further but, at this stage, the North African S. macrostigma appears to be more of 

a myth than a well-supported reality. Nuclear data are necessary to address the relevance of S. 

macrostigma and other described Salmo species as valid species. Phylogenomic methods to 

delimit taxon boundaries are challenging but have greatly improved in the past few years. 

Such methods can distinguish between structure associated with intraspecific variation and 
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introgression from that resulting from speciation (Wagner et al., 2013; Mutanen et al., 2015; 

Zarza et al., 2016; Baumsteiger et al., 2017) and sometimes allow for a deep taxonomic 

reassessment of evolutionary units in challenging taxa (Papakostas et al., 2016), or even 

reconciliation of morphological and molecular taxonomies in integrative studies (Dejaco et 

al., 2016; Morard et al., 2016). The Salmo genus is certainly one interesting case to consider 

because large scale integrative taxonomic studies are currently lacking. Consideration of type 

specimens certainly remains crucial (Mutanen et al., 2015; Schultz et al., 2015). New 

techniques may facilitate the retrieval of more complete mitochondrial (van der Valk et al., 

2017) and nuclear data (e.g. Grandjean et al., 2017) from museum specimens. 

Conversely, it is clear from Figure 1 that North African macrostigma specimens and 

other samples probably belong to a previously undescribed North African mtDNA lineage in 

S. trutta, with the well-known Atlantic lineage as its sister clade. This confirms previous 

results based on partial and complete CR that have already underlined the close phylogenetic 

relationships between native Moroccan and Sicilian populations (Schöffmann et al., 2007; 

Snoj et al., 2011; Fruciano et al., 2014).  

However, if S. macrostigma is not a valid species based on our mtDNA data, native 

populations of the so-called North African lineage are currently threatened by human 

activities (e.g. increased water use, environmental degradation due to deforestation) and by 

introgression with domestic S. trutta from hatcheries (Snoj et al., 2011; Fruciano et al., 2014). 

To manage native biodiversity better, Zachos et al. (2013) particularly discouraged both 

species-splitting based on gene trees inferred from mtDNA and phenetic analyses aimed at 

diagnosability. These authors recommend the use of concepts such as ESUs (considering the 

spatial distribution of the genetic diversity; Moritz, 1994; Almodóvar et al., 2006), or 

alternatives [e.g. operational conservation units (OCU), reflecting interaction with socio-

economic issues (Dodson et al., 1998; Machordom et al., 2000)], which highlight 
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intraspecific diversity without promoting taxonomic inflation and the arbitrary concept of 

subspecies (Freudenstein et al., 2017). The North African lineage described in this study and 

probably more local groups within this lineage certainly must be managed in a more adaptive 

and integrated evolutionary framework, such as with ESUs, to be more effective (Fraser & 

Bernatchez, 2001).  
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FIGURE 1 Bayesian phylogenetic tree reconstructed from a concatenated alignment of the 

mitochondrial control and cytochrome b regions. Sample labels are given in Table S1. 

Museum samples are in bold. *, Macrostigma MNHN syntype; **, the accession number of 

the mitogenome used as a reference for read mapping. Numbers at nodes are for posterior 

probabilities (≥ 0.80) and bootstrap percentages (≥ 50%). –, Nodes weakly supported in either 

the maximum likelihood or Bayesian inference analyses. Lineage or species names are 

indicated on the right. 
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e TABLE 1 Genetic distances between lineages and the most closely related species of Salmo trutta based on the concatenated dataset. Genetic 

distances (with S.E. in brackets) in the diagonal are intragroup distances (in bold), while the genetic distances below the diagonal (with their S.E. 

above the diagonal) are intergroup distances 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

Adriatic 0.004 

(0.001) 

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.005 

Atlantic 0.011 0.001 

(0.000) 

0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.003 0.003 0.005 

Dades 0.009 0.009 0.002 

(0.001) 

0.002 0.002 0.002 0.002 0.001 0.002 0.003 0.003 0.005 

Danubian 0.012 0.013 0.011 0.005 

(0.001) 

0.003 0.002 0.002 0.002 0.002 0.004 0.003 0.005 

Duero 0.011 0.009 0.011 0.016 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.005 
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North African 0.011 0.005 0.009 0.013 0.010 0.003 

(0.001) 

0.002 0.002 0.002 0.003 0.002 0.005 

Marbled 0.008 0.011 0.008 0.012 0.013 0.010 0.001 

(0.000) 

0.002 0.002 0.004 0.003 0.005 

Mediterranean 0.009 0.011 0.007 0.012 0.013 0.011 0.008 0.001 

(0.000) 

0.002 0.004 0.003 0.005 

Turkish 0.009 0.011 0.010 0.012 0.013 0.011 0.010 0.011 0.003 

(0.001) 

0.004 0.003 0.005 

S. obtusirostris 0.018 0.016 0.018 0.021 0.016 0.016 0.016 0.019 0.018 0.001 

(0.001) 

0.003 0.005 

S. ohridanus 0.028 0.029 0.022 0.026 0.031 0.024 0.027 0.029 0.026 0.027 0.002 

(0.001) 

0.005 

S. salar 0.058 0.059 0.055 0.059 0.059 0.057 0.058 0.058 0.056 0.068 0.061 0.008 

(0.002) 
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