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Abstract
Recent developments in sequencing technologies and bioinformatics analysis provide a

greater amount of DNA sequencing reads at a low cost. Microsatellites are the markers of

choice for a variety of population genetic studies, and high quality markers can be discovered

in non-model organisms, such as tuna, with these recent developments. Here, we use a high-

throughput method to isolate microsatellite markers in albacore tuna, Thunnus alalunga,
based on coupling multiplex enrichment and next-generation sequencing on 454 GS-FLX

Titanium pyrosequencing. The crucial minimum number of polymorphic markers to infer evo-

lutionary and ecological processes for this species has been described for the first time. We

provide 1670microsatellite design primer pairs, and technical and molecular genetics selec-

tion resulting in 43 polymorphic microsatellite markers. On this panel, we characterized 34

random and selectively neutral markers («neutral») and 9 «non-neutral» markers. The vari-

ability of «neutral» markers was screened with 136 individuals of albacore tuna from south-

west Indian Ocean (42), northwest Indian Ocean (31), South Africa (31), and southeast

Atlantic Ocean (32). Power analysis demonstrated that the panel of genetic markers can be

applied in diversity and population genetics studies. Global genetic diversity for albacore was

high with a mean number of alleles at 16.94; observed heterozygosity 66% and expected het-

erozygosity 77%. The number of individuals was insufficient to provide accurate results on dif-

ferentiation. Of the 9 «non-neutral» markers, 3 were linked to a sequence of known function.

The one is located to a sequence having an immunity function (ThuAla-Tcell-01) and the

other to a sequence having energy allocation function (ThuAla-Hki-01). These two markers

were genotyped on the 136 individuals and presented different diversity levels. ThuAla-Tcell-

01 has a high number of alleles (20), heterozygosity (87–90%), and assignment index.

ThuAla-Hki-01 has a lower number of alleles (9), low heterozygosity (24–27%), low assign-

ment index and significant inbreeding. Finally, the 34 «neutral» and 3 «non-neutral» microsat-

ellites markers were tested on four economically important Scombridae species—Thunnus
albacares, Thunnus thynnus, Thunnus obesus, and Acanthocybium solandri.
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Introduction
Albacore tuna (Thunnus alalunga) is a highly migratory tuna species found in both subtropical
and temperate waters of the three oceans and in the Mediterranean [1]. With a high commer-
cial value [2], this species is mainly targeted by pelagic fisheries in all ocean basins and current
catches are estimated to represent 5% of the global tuna catch [2, 3]. As such, it is the responsi-
bility of regional fisheries management organizations, such as the Indian Ocean Tuna Com-
mission (IOTC), to oversee the management and sustainable harvesting of this species. Several
stocks of albacore are currently considered fully exploited or overexploited, although consider-
able uncertainty remains in the results of stock assessment due to fisheries statistics and species
biology uncertainties (e.g. for the Indian Ocean; [4]). Therefore precautionary approach to the
management of albacore should be applied and it remains a priority to improve stock assess-
ments of this species, through the development of alternative methods of population assess-
ment [5, 6, 7].

Scientific results are the baseline to improve the management of a species and investigation
of population structure provides key information to improve stock assessments [8]. The stock
structure assumed during an assessment process has important consequences in the manage-
ment and must be as close as possible to the actual population structure of the resource [9].
Population genetics have much to offer to improve stock structure for fisheries management.
For example, whereas all tuna species are highly migratory, genetic differentiation has been
detected at various scales, within an ocean basin for bluefin tuna Thunnus thynnus [10], and
both within and among oceans for the yellowfin tuna Thunnus albacares [11] and bigeye tuna
Thunnus obesus [12, 13]. Information on the population structure of albacore and its habitats
are unfortunately scarce (see review of albacore stock structure in [14]. For instance, the Indian
Ocean is the oceanic region in which the least knowledge of albacore is available and, in lieu of
the results of recent albacore stock assessments, the IOTC Scientific Committee has encour-
aged studies on the population structure within the Indian Ocean and adjacent waters [15, 4].

Over the past several years, mainly by using 454 pyrosequencing, genome-wide microsatel-
lite screening and marker development has been performed in many non-model species, such
as fish, for genetic and molecular ecology study [16, 17, 18, 19]. Next-generation sequencing
technology (454) with the reduced representation library (RRL) construction rapidly and easily
isolates the microsatellite of the genome of the non-model teleost at low cost and time [19]. In
this study, we used the high throughput 454 technology from an enriched microsatellites
library on albacore tuna to insulate rapidly, easily and flexibly microsatellite on the whole
genome.

Genetic markers are widely used to investigate genetic diversity within populations, connec-
tivity between populations, and to identify stocks and mixed stocks in a fishery [20, 21]. Molec-
ular genetics has led to considerable progress but to unravel population structures, studies are
dependent on the use of polymorphic neutral markers. Neutral markers usually indicate a
DNA region that is not under the influence of selection, and the vast majority of genetic diver-
sity estimates are based on neutral markers [22]. Neutral markers that are capable of inferring
genetic diversity are most commonly microsatellites [22]. The hypothetically random and
selectively «neutral» markers are mentioned in this study. Microsatellites markers have much
to offer in fisheries management (see the review in [23, 24]). These genetic markers are used in
a variety of population genetic studies on marine species because of their high locus variability
allowing high statistical power to detect genetic structure within and among populations, as
well as inferring evolutionary history [25, 26, 27, 28, 29]. Due to their cosmopolitan distribu-
tion, large population size, high fecundity, production of numerous pelagic larvae, long larval
periods allowing widespread dispersal in currents and due to the ability of adults to easily
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migrate inter-ocean distances [30]; marine pelagic fish species have commonly been thought to
lack genetic spatial structure [31, 32]. In this last decade, genetic studies using microsatellites in
pelagic fish investigations have increased [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].
Microsatellites have been characterized from Thunnus thynnus, Thunnus orientalis, Thunnus
obesus, Thunnus albacares, yet none have been specifically designed for albacore tuna. Some of
the markers developed on bluefin ([46], [47] (4 markers), [48] (24 markers)) were tested on
albacore to study the population structure of albacore in the Atlantic ([42] (12 markers), [44]
(13 markers)). These studies revealed contrasting results and have fuelled the need for an
increase in the number microsatellite markers to be able to spatial structure in such pelagic spe-
cies. In this short communication, we describe the development of new appropriate microsatel-
lite markers for extensive population genetic analysis on albacore using shotgun
pyrosequencing of a microsatellite-enriched library [49], and the power analysis. Additionally,
these new microsatellites markers have been tested with four other Scombridae species (Thun-
nus albacares, Thunnus thynnus, Thunnus obesus, and Acanthocybium solandri).

Materials and Methods

Ethics statement
The field studies did not involve endangered or protected species. Albacore tuna is a commer-
cial species caught all over the world and does not fall in any official ethical rules (UICN, RED
list etc.). No specific permissions were required for the sampling locations (Fig 1). All fishes
were randomly sampled from French, Seychelles and South African fishing vessels either at sea
within an observer program in the authorized marine waters or at landing sites. The fishing
areas are related to the fishing method (mainly longliner and purse seine) and are from one to
several kilometers in range.

Test, procedure, and analysis
Our study includes 136 samples of albacore tuna collected from four different geographic
areas, A) southwest Indian Ocean (42), B) northwest Indian Ocean (31), C) South Africa (31),
and D) southeast Atlantic Ocean (32) (Fig 1). The Fig 1 was performed using ArcGIS software
(www.arcgis.com). Hence, we followed the rule-of-thumb for the estimation of differentiation
with> 30 individuals per area [50].

The number of individuals used to develop high quality microsatellite markers in this study
varied from 8 to 136 depending on the molecular process. The genomic DNA was isolated
from muscle tissue sample (25ng) of a single fish using Qiagen DNeasy spin columns. 1 μg of
an equimolar pool of 13 DNA samples was used for the development of a microsatellites library
through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries, as described in
[49]. In order to increase the percentage of final sequences with microsatellites, total DNA was
enriched for AG, AC, AAC, AAG, AGG, ACG, ACAT, and ATCT repeat motifs and subse-
quently amplified. Polymerase Chain Reaction (PCR) products were purified, quantified, and
GsFLX libraries were then carried out following the manufacturer’s protocols (Roche Diagnos-
tics), and sequenced by 454 GS FLX Titanium pyrosequencing.

A summary of the different selection steps to obtain a final microsatellite panel of markers
is presented in Table 1.

From the 62 682 sequences obtained, the bioinformatics program QDD [51] was used to fil-
ter the primers that designed successfully. This software allowed for high-throughput microsat-
ellite isolation of 4 285 sequences containing SSR motifs, including motifs longer than five
repeats (Fig 2).
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A total of 1 670 primer pairs were designed (S2 Table for detailed information). Among the
225 microsatellites designed, we retained and tested 95 based on the sequence pattern that
would maximize the number of polymorphic markers (S2 Table for detailed information). All
primers were tested with one PCR condition in order to apply multiplexed reactions. These
consisted of 75 di-nucleotide, 7 tri-nucleotide, 12 tetra-nucleotide, and 1 penta-nucleotide
microsatellites primer pairs. Among the 95 candidate loci tested, 25 failed to amplify. From the
60 loci tested for polymorphism, 16 gave inconsistent electrophoretic patterns and 1 showed
no or low polymorphism levels. 43 microsatellites markers were interpretable, clear, repeatable,
and the polymorphic patterns were validated. Multiplexed loci were built with the same opti-
mal primer pairs annealing temperature of 55°C and can be used for future genetic studies on
albacore (see example S1 Fig and Table 2).

PCR were performed in 25 μl reactions containing 5 ng of template DNA, 1X reaction
buffer, 1.5 mMMgCl2, 0.24 mM dNTP, 0.1 μM of each primer, and 1U Taq polymerase. The
PCR cycling consisted of an initial denaturation at 95°C for 10 min, followed by 40 cycles:
denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 1 min and a
final extension at 72°C for 10 min.

Fig 1. Geographic location of albacore sampled. Circles are proportional to the number of individuals collected. (A) southwest Indian Ocean (n = 42), (B)
northwest Indian Ocean (n = 31), (C) South Africa (n = 31), and (D) southeast Atlantic Ocean (n = 32).

doi:10.1371/journal.pone.0141830.g001
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Out of the 95 markers, 70 markers were validated on agarose gel electrophoresis and 60
were selected for a polymorphism study (minimum of 3 alleles) on 15 albacore DNA samples
(5 from area A, 5 from area B, and 5 from area C; Fig 1). PCR was performed following the
same conditions as set above but with fluorescent forward primers (with 6’FAM, PET, VIC or
NED fluorescent dye—Applied Biosystems). Each PCR amplicon was diluted with pure water
(1:20), mixed with Hi-Di Formamide and GeneScan 500 LIZ dye size standard (Applied

Table 1. Summary of the selection steps used to developmicrosatellite markers.

Steps Total number Number of
individuals

Development of sequences 62 682 sequences with 4 285 microsatellites
isolated

13

Design of microsatellites (with QDD software) 1670 primer pairs

First selection: best design (for each microsatellite, the closest pair to the
optimum parameters of QDD software)

225 primer pairs

Second selection: Tested primer pairs. See S1 Table (ex. motif, length,
repeats number, most dinucleotide motif)

95 primer pairs 8

Third selection: positive amplification (specific product at expected size for at
least 5 samples). See S1 Table

70 primer pairs

Fourth selection: polymorphic study 60 primer pairs 15

Fifth selection: technical criteria (genotype readings, weak background, no
specific products)

43 markers

Sixth selection: neutral and encoding characteristics 34 neutral and 9 encoding (with two well-known
functions) microsatellites

15

Last selection on neutral markers: diversity and structure analysis 25 higher quality microsatellites from the 34
markers

136

doi:10.1371/journal.pone.0141830.t001

Fig 2. Read length distribution and number of reads throughout QDD bioinformatics pipeline steps.

doi:10.1371/journal.pone.0141830.g002
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Table 2. Microsatellite markers developed for Thunnus alalunga (43) with the corresponding GenBank number.

Locus
name

Genbank
accession
number

Sequence
Range size

(bp)

Primer sequences Motif Dye Blast on the
complete
sequence

>75% (see S2
Table)

Detail on the
corresponding

alignment (see S2
Table)

Supplement
details

ThuAla-
mt-01

KM977780 238 F: CAGTGAATGTTTTGCCAACG (tatc)
17

PET «neutral»

R: TCATACAGTTTCCCCAAGGC

ThuAla-
Tcell-01

KM977781 203 F: GTCACTGGAGGAACCGGTAA (gata)
17

6FAM yes FERM and PDZ
domain-containing

protein 1-like

«non-neutral»

R: CCGTGTTGGAGGATCTGAGT

ThuAla-
mt-02

KM977782 302 F: TCAGCAGTCCATCACTTTTCA (atag)
16

PET «neutral»

R: TCAAGTCACAGCAGAGATCACA

ThuAla-
mt-03

KM977783 183 F: TGAAGTGCTGGTCTCCAGTG (gata)
15

VIC «neutral»

R: TGATTTCTGTTAAGTGGCTGCT

ThuAla-
mt-04

KM977784 133 F: TTCTAAGGAGTGTTGGGTCACA (tatc)
12

NED «neutral»

R: CAACATGCAACTACACAAAACA

ThuAla-
Und-01

KM977785 123 F: TCCTTCTCTTCCTCATCTTTCC (ttct)
11

PET yes Variant sequence «non-neutral»

R: CCACATCTCACTGCCTTCAG

ThuAla-
mt-05

KM977786 218 F: TGGTCTCCCTTGCTGTTACC (ct)8 6FAM «neutral»

R: TCCAGTTCCCACTAGCAACC

ThuAla-
mt-06

KM977787 123 F: CATCATGAAATCCATGCAGC (ac)9 6FAM «neutral»

R: ACATGGTTAACCTGGCGTGT

ThuAla-
mt-07

KM977788 124 F: GCTTCACAAGGCTGGTTACTG (tg)9 VIC «neutral»

R: GGAGGTGGAAACAAGCTCAG

ThuAla-
mt-08

KM977789 134 F: TCTGACCAGTTCAGCTCCCT (gt)9 PET «neutral»

R: TGTTTGCAATGAAATAGTTTTGAA

ThuAla-
mt-09

KM977790 135 F: GCAACCCTTGCTGTCCAATA (ac)9 6FAM «neutral»

R: TCTGTACTGATGAACTCCATGACA

ThuAla-
Und-02

KM977791 144 F: AATGAGGCATTTGCAGCTCT (gt)9 6FAM yes Gene
undeterminated

«non-neutral»

R: CACCGTATTGATCCACTTTGC

ThuAla-
mt-10

KM977792 198 F:
CCAGAGATAAATGAATTGAATTAAAGG

(ac)9 PET «neutral»

R: CAGCAGCCTTTGCTTTCTCT

ThuAla-
mt-11

KM977793 205 F: TCATGTTCTCACTCGCGTTC (tc)9 VIC «neutral»

R: CCCTTAAACGGGAAGAAACC

ThuAla-
mt-12

KM977794 269 F: TTTCCCTAACATTTGGGCTG (ac)
10

NED «neutral»

R: TGGACACAGTGGTGCCTCTA

ThuAla-
mt-13

KM977795 119 F: AGGGAAACGAGGTTCTAGGG (gt)11 VIC «neutral»

(Continued)
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Table 2. (Continued)

Locus
name

Genbank
accession
number

Sequence
Range size

(bp)

Primer sequences Motif Dye Blast on the
complete
sequence

>75% (see S2
Table)

Detail on the
corresponding

alignment (see S2
Table)

Supplement
details

R: CCTCCTAATGAGTCCGGAGA

ThuAla-
mt-14

KM977796 125 F: CATGAAGAATAGAATAGCAGCTTTG (tg)11 NED «neutral»

R: TCTGTGAATGGAGACGTTGG

ThuAla-
mt-15

KM977797 149 F: GATTGCGCAACAATCAAAGA (tc)11 VIC «neutral»

R: GCACAGATGGACAGAGCAGA

ThuAla-
mt-16

KM977798 205 F: CGACTGCCTTTGTCTGGTTT (ga)
11

NED «neutral»

R: CCACCAGTGAAGTACTGCTGAT

ThuAla-
mt-17

KM977799 226 F: GCTGCAGCTCATCTGTTCAC (ac)
11

6FAM «neutral»

R: TGGATTTCGTTTTCATTCTGTG

ThuAla-
mt-18

KM977800 110 F: TCTGCTCAAACCTGCTGACA (tg)12 6FAM «neutral»

R: TACCGTCCCGATAAGAATGC

ThuAla-
Hki-01

KM977801 138 F: CTCACAGATGATGGGCAGG (tc)12 NED yes Hexokinase type I «non-neutral»

R: TCCCTCCTCTGTGCATGTAA

ThuAla-
mt-19

KM977802 225 F: TCTGGACGTCTGATTGATCG (ttc)
12

NED «neutral»

R: GGCTGCCTTTTCTTGACAAC

ThuAla-
mt-20

KM977803 259 F: AGAACATGGGACCAGATTGC (gt)12 VIC «neutral»

R: AGAATCGGTCAAAGGTCACG

ThuAla-
mt-21

KM977804 138 F: GTACCCTTCTCCCCTCAACC (ca)
13

PET «neutral»

R: CAATCTGCGTGAAGTGGGTA

ThuAla-
mt-22

KM977805 182 F: AACTTTGCTGCCAATCTGCT (ac)
13

6FAM «neutral»

R: GAATGCACGCTCATGTTCAC

ThuAla-
mt-23

KM977806 210 F: ATGATTTTAACCCTTGGCCC (tg)13 PET «neutral»

R: CCAAATCACATCTGTGTCCG

ThuAla-
Und-03

KM977807 109 F: TGCGGGTTTTGTGAAATTCT (ttc)
14

PET yes Variant sequence
and undeterminated

gene

«non-neutral»

R: ACTGTGGCAACCCCTAACAG

ThuAla-
mt-24

KM977808 118 F: GCTGGCAGTGCATATTCAAA (ac)
14

6FAM «neutral»

R: CAGTTGCAGCCTGTCATCAT

ThuAla-
mt-25

KM977809 132 F: GTCCCCAGTTGGACAAGATG (ac)
14

VIC «neutral»

R: CGCACAGCTGTTCCATTAAA

ThuAla-
mt-26

KM977810 151 F: TTCCCCTGCAGTGATTTAGG (tg)14 PET «neutral»

R: AGGTACTGCCACTCCATTCG

(Continued)
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Biosystems), and were run on an Applied Biosystems 3730 XL DNA Analyzer. Alleles were
scored using GeneMapper v 5.0 (Applied Biosystems). Of the 60 markers, we retained 43 mark-
ers based on technical (PCR feasibility and genotype reading) and molecular (optimal primer
length of 20 bp (range 19–27 bp); optimal 50% GC content (range 25–60%); number of repeats

Table 2. (Continued)

Locus
name

Genbank
accession
number

Sequence
Range size

(bp)

Primer sequences Motif Dye Blast on the
complete
sequence

>75% (see S2
Table)

Detail on the
corresponding

alignment (see S2
Table)

Supplement
details

ThuAla-
mt-27

KM977811 184 F: TCTGAAAGATAGACAGACATGCG (ac)
14

NED «neutral»

R: CAATTTTGCCAAAGCATCAA

ThuAla-
Tyr-01

KM977812 106 F: GAACATCAAGAACCACGAAGG (gtt)
15

VIC yes Receptor-type
tyrosine-protein

phosphatase-like N-
like

«non-neutral»

R: CCGTTCTCCCAGACCATCTA

ThuAla-
mt-28

KM977813 115 F: TGTCCCGGATACAGTTCTACA (ac)
15

NED «neutral»

R: CTGGCATGTTGATGTTGTCA

ThuAla-
mt-29

KM977814 116 F: ACAAATGCATTGCAGGTACG (ac)
15

PET «neutral»

R: CACCAGTGTGGCAACCATAA

ThuAla-
mt-30

KM977815 173 F: GCCAGCAGAGTATTCATCCC (ca)
15

6FAM yes Microsatellite «neutral»

R: ATTTAAGTAGGCGGCAGCAA

ThuAla-
Und-04

KM977816 137 F: CGAGGCATTATTTGATCCCTAT (tg)16 VIC yes Gene
undeterminated

«non-neutral»

R: ACCTACAGGGAAGCCAGGAC

ThuAla-
mt-31

KM977817 106 F: TCATCATCTGGACAGATTGTGTAT (tg)17 NED «neutral»

R: GAGGCAGAACATGAGGAAGG

ThuAla-
Und-05

KM977818 121 F: CAGTTCCTCCAAAGCAGGAG (atg)
17

NED yes Gene
undeterminated

«non-neutral»

R: AGAACAGGCAAAGATGCAGG

ThuAla-
Und-06

KM977819 138 F: AAGCAGCGTATTCCCAAAGA (ag)
17

6FAM yes Gene
undeterminated

«non-neutral»

R: GCCACTCGCCTGTTAACTTT

ThuAla-
mt-32

KM977820 142 F: TGCATGTTTGTTTGCAAGAG (tg)17 PET «neutral»

R: GTGAGCTAAGTGCCACGACA

ThuAla-
mt-33

KM977821 225 F: GCTCCAAGTCCATCCTTGTC (ac)
18

PET «neutral»

R: GTAATGGGCTGACAGGTCGT

ThuAla-
mt-34

KM977822 236 F: CAGGCATGCAGAGGTAAACA (ac)
18

NED «neutral»

R: CAGCCTAATGAAGCCAGTGA

Sequence range size in base pairs (complete sequence—primers, microsatellites and flanking region), primers sequence, number of repeats in the

microsatellite motif determinate, microsatellite sequence corresponding at >75% alignment from GenBank NR and BOLD sequences, summary on the

«non-neutral» gene alignment details, and information on the class of the markers («neutral», «non-neutral» and selected or not in the final panel).

doi:10.1371/journal.pone.0141830.t002
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greater than 8; most dinucleotide motif repeats; polymorphic (minimum of 4 alleles for each
marker, observed on 15 individuals genotyped)) criteria.

Sequences similarities were sought by BLASTn (scanning databases of nucleotide collections
with Megablast to search for highly similar sequences, [52] on the 43 markers. Sequences from
GenBank NR and BOLD systems were downloaded for a local deployment (version 2014, Gen-
Bank; http://www.ncbi.nlm.nih.gov). We retained the alignment sequences with the expected
value significance cut-off (E-value)�10–3. The degree of similarity was assessed using highly
similar sequences (Megablast) and a ratio of similar bases (nucleotides) as a function of the
microsatellite length to reveal the alignment sequences>75% (Table 2 and S2 Table). Sequence
alignments were performed using the ClustalW program, setting parameters to default for gap
criterions, followed by manual corrections with BioEdit software (http://www.ebi.ac.uk/Tools/
msa/clustalo/).

Population diversity and structure analyses require random «neutral» microsatellite mark-
ers. 9 markers were detected as potentially encoded and 34 potentially «neutral» markers
(Table 2). ThuAla-mt-30 has a high alignment and correspondence with a microsatellite
sequence in Cottus gobio. The variability of 34 «neutral» microsatellites markers was screened
using 136 individuals from the four areas. The level of diversity (allelic richness (Na); expected
(He), expected unbiased from [53] (Hnb) and observed (Ho) heterozygosity) by locus was ana-
lyzed using GENETIX 4.05 [54]. Estimates of homozygote and heterozygote excess that dif-
fered significantly from zero (P<0.05) were calculated from the standard error in Pedant [55].
Probability of identity (PI) by locus was estimated using GenAlEx v6 [56]. PI is an advanced
frequency-based analysis, also referred to as population match probability that provides an esti-
mate of the average probability that two unrelated individuals will have the same multilocus
genotype. It indicates the statistical power of marker loci. Deviations from Hardy-Weinberg
equilibrium (HWE) were detected by exact tests and permutations (1 000 000 chains and 100
000 steps) and linkage disequilibrium by chi-square test and permutations (10 000) with
ARLEQUIN version 3.1 [57]. Fisher’s inbreeding coefficient (Fis) and its significance was esti-
mated by the exact test and Markov Chain method (10 000 dememorization, 1000 batches, 10
000 iterations per batch) using GENEPOP [58], and it was based on heterozygote excess to
avoid disadvantages of common tests such as chi-square. Polymorphism Information Content
(PIC) was generated in Cervus [59]. Null allele frequency (Fnull) was estimated with INEst
[60] using the individual inbreeding model (estimates significantly different from zero,
P<0.05), followed by MICRO-CHEKER [61] to understand the result of null alleles. Probabil-
ity of parentage exclusion (PE1, single parent [62]); PE2, a second parent given a first parent
assigned [63]; PE3, a pair of parents [62] was estimated per locus using INest. Assigning an
individual determines the probability of assigning individuals to their likely population of ori-
gin. Genotyping error rate per allele, E1 referring to allelic dropout rate and E2 to the false allele
rate, and the 95% confidence interval (CI), was evaluated using the number of repeated geno-
types (Nrep and percentage (%) of the total number of individuals genotyped for each loci) and
based on He computed in Pedant.

POWSIM software [64] was used to estimate the statistical power to detect levels of differen-
tiation with a minimum of 30 individuals per area. Burn-in consisted of 1000 steps followed by
100 batches of 1000 steps. Chi-square and Fisher’s probabilities were used to test the signifi-
cance of a Wright’s F-statistics (FST) value for each replicate run. The number of significant
FST values in 1000 replicate simulations provided an estimate of statistical power for a given
level of divergence, which was controlled by allowing frequencies to drift for a given number of
generations.

Differentiation between the four areas (Fig 1) was visualized by Factorial Component Anal-
ysis in GENETIX with different numbers of markers. Global FST considering the 4 areas and
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the panel of potentially «neutral» microsatellite markers was estimated using GENETIX with
1000 bootstrap. Analysis of Molecular Variance (AMOVA) and Phi-statistics (analogous to F-
statistics) were performed between the 4 areas using adegenet [65] and poppr [66] R package
with 1 000 permutations.

SPOTG [67] was used to estimate the power of assignment of 4 populations, using 1000
runs. FST was equal to 0.005 and normal allele frequencies were used with the mean number of
alleles equal to 17. The number of genetic markers to consider varied between 20 and 150 with
30 individuals. The number of individuals to sample varied between 30 and 500 with 34 mark-
ers. This software uses inputs from ARLEQUIN [68] and SIMCOAL [69].

The above analysis on the genetic diversity and structure were also applied to two «non-neu-
tral» microsatellites markers in which the functions were well defined from GenBank NR and
BOLD sequences alignment (ThuAla-Tcell-01, ThuAla-Hki-01; Table 1).

Finally, we tested the 34 selected microsatellites (Table 3) and 3 «non-neutral» markers
(ThuAla-Tcell-01, ThuAla-Hki-01, and ThuAla-Tyr-01 –Table 2) on 4 species of Scombridae
with high economic importance; three tuna species (Thunnus albacares, Thunnus thynnus,
Thunnus obesus) and Acanthocybium solandri. PCR amplification was visualized in 2% agarose
gel on 4 or 5 individuals per species.

Results

Development of microsatellite panel on albacore tuna
A total of 62 628 sequences with 4 285 (7%, Fig 2) unique and consensus sequences containing
microsatellite markers were identified (motifs—type of repeat unit—range length of 248–288
bp) from 454 pyrosequencing. Genotyping profile characteristics of 1 670 primer pairs have
been designed and described (S2 Table). Out of these sequences, 250 were high quality candi-
date microsatellite markers (Fig 3) and 225 were successfully designed. As expected, the most
commonly found motifs were those used for library enrichment, in particular dinucleotide
types AG and AC (37 and 139 microsatellites, respectively), followed by trinucleotides AAG,
AAC, and AGG (7, 11, and 5 microsatellites, respectively) (Fig 3). However, although AT was
not used as a motif for enrichment, 3 AT microsatellites were identified. Focusing on AG and
AC motifs, the average number of repeated motifs was 8 for AG and 11 for AC with a maxi-
mum of 21 and 29, respectively (Fig 3). Allelic size range was 106 bp to 302 bp for 43 microsat-
ellite markers (Table 2).

Among the 43 microsatellite markers, the BLASTn search revealed 9 microsatellites markers
localized in a coding sequence. These 9 markers, called «non-neutral», have an E-value� 10−3,
except for marker ThuAla-Und-05 (Table 2 and S2 Table). Of the 9 «non-neutral» markers
(>75% of alignment with a sequence mainly marine species, S2 Table), 6 undetermined func-
tion (ThuAla-Und-01, ThuAla-Und-02, ThuAla-Und-03, ThuAla-Und-04, ThuAla-Und-05,
ThuAla-Und-06) presented some difficulties in the PCR process, in particular ThuAla-Und-01
and ThuAla-Und-03. These markers have not been included in the final panel. Concerning the
remaining 3 «non-neutral» markers, ThuAla-Tcell-01 has a high ratio alignment (85%, S2
Table) with FERM and PDZ domain-containing protein 1-like. This domain is a protein often
involved in localizing proteins to the plasma membrane and is both dispensable for the T cell
receptor signal transduction [70] and could provide information on the immune system.
ThuAla-Hki-01 has a high ratio alignment (80–83%, S2 Table) with the hexokinase type I
which is one of the four hexokinases that participate in glycolysis playing a significant role in a
wide range of cellular processes particularly in providing energy in muscle cells. ThuAla-Tyr-
01 has a high ratio alignment (89%, S2 Table) with the receptor-type tyrosine-protein phospha-
tase-like N-like (PTPRN). It is an enzyme that regulates a variety of cellular processes (cell
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Table 3. Summary statistics of the potentially selective «neutral» microsatellite markers (34) for albacore (Thunnus alalunga).

Genotyping error rate

Locus Nind Na He Hnb Ho PIC Fnull Fis PI PE1 PE2 PE3 Nrep (%) E1 (CI 95%) E2 (CI 95%)

ThuAla-mt-01 125 19 0.92 0.92 0.72 0.92 0.098 0.22 0.012 0.72 0.84 0.96 10(7) 0.00 (-0.00–0.22) 0.00 (0.00–0.09)

ThuAla-mt-02 134 27 0.91 0.92 0.90 0.91 0.014 0.02 0.013 0.71 0.83 0.95 11(8) 0.00 (-0.00–0.09) 0.00 (-0.00–0.07)

ThuAla-mt-03 121 27 0.92 0.92 0.45 0.91 0.221 0.52 0.013 0.71 0.83 0.95 12(9) 0.33 (-0.02–0.68) 0.00 (0.00–0.08)

ThuAla-mt-04 120 15 0.90 0.91 0.68 0.89 0.109 0.25 0.018 0.67 0.80 0.94 13(10) 0.00 (-0.00–0.42) 0.00 (0.00–0.06)

ThuAla-mt-05 132 8 0.59 0.59 0.55 0.54 0.046 0.06 0.217 0.19 0.35 0.53 13(10) 0.00 (0.00–0.21) 0.00 (0.00–0.06)

ThuAla-mt-06 136 10 0.70 0.70 0.71 0.66 0.014 0.00 0.136 0.29 0.46 0.65 13(10) 0.00 (0.00–0.07) 0.00 (0.00–0.06)

ThuAla-mt-07 135 12 0.69 0.69 0.66 0.64 0.019 0.04 0.143 0.28 0.45 0.64 13(10) 0.00 (0.00–0.07) 0.00 (0.00–0.06)

ThuAla-mt-08 135 14 0.83 0.83 0.73 0.81 0.054 0.12 0.049 0.50 0.67 0.85 13(10) 0.00 (-0.00–0.06) 0.00 (0.00–0.06)

ThuAla-mt-09 136 9 0.76 0.77 0.70 0.73 0.042 0.09 0.095 0.36 0.54 0.72 13(10) 0.00 (-0.00–0.06) 0.00 (0.00–0.06)

ThuAla-mt-10 136 27 0.87 0.87 0.85 0.85 0.014 0.03 0.030 0.59 0.74 0.90 13(10) 0.00 (-0.00–0.07) 0.00 (0.00–0.06)

ThuAla-mt-11 106 3 0.21 0.21 0.15 0.19 0.080 0.27 0.646 0.02 0.10 0.18 3(2) 0.00 (0.00–0.08) 0.00 (0.00–0.06)

ThuAla-mt-12 136 11 0.54 0.55 0.55 0.52 0.017 0.00 0.229 0.18 0.35 0.56 12(8) 0.00 (-0.00–0.13) 0.00 (-0.00–0.07)

ThuAla-mt-13 136 6 0.47 0.47 0.46 0.45 0.033 0.04 0.299 0.13 0.29 0.48 13(10) 0.00 (0.00–0.15) 0.00 (0.00–0.06)

ThuAla-mt-14 136 16 0.85 0.85 0.83 0.83 0.010 0.02 0.038 0.55 0.71 0.88 13(10) 0.00 (-0.00–0.07) 0.00 (-0.00–0.06)

ThuAla-mt-15 136 10 0.62 0.61 0.54 0.57 0.058 0.12 0.193 0.22 0.38 0.57 13(10) 0.00 (-0.00–0.11) 0.00 (0.00–0.06)

ThuAla-mt-16 134 20 0.89 0.89 0.79 0.88 0.051 0.12 0.021 0.65 0.79 0.93 12(9) 0.00 (0.00–0.07) 0.00 (0.00–0.06)

ThuAla-mt-17 51 10 0.63 0.63 0.12 0.60 0.293 0.82 0.166 0.24 0.43 0.63 6(4) 0.70 (0.03–1.81) 0.00 (-0.00–0.22)

ThuAla-mt-18 134 18 0.88 0.89 0.81 0.88 0.034 0.08 0.023 0.63 0.77 0.92 13(9) 0.00 (-0.00–0.06) 0.00 (0.00–0.06)

ThuAla-mt-19 115 13 0.72 0.72 0.29 0.68 0.240 0.60 0.121 0.32 0.50 0.69 11(8) 0.00 (0.00–0.14) 0.00 (0.00–0.07)

ThuAla-mt-20 130 36 0.94 0.94 0.63 0.94 0.139 0.33 0.007 0.78 0.88 0.97 13(9) 0.00 (-0.00–0.12) 0.00 (0.00–0.06)

ThuAla-mt-21 124 18 0.86 0.87 0.45 0.85 0.207 0.48 0.033 0.57 0.73 0.89 12(9) 0.42 (-0.02–0.78) 0.00 (0.00–0.09)

ThuAla-mt-22 125 20 0.85 0.85 0.51 0.83 0.165 0.40 0.038 0.55 0.71 0.88 11(8) 0.41 (-0.98–0.84) 0.00 (0.00–0.10)

ThuAla-mt-23 135 9 0.63 0.63 0.65 0.60 0.010 -0.03 0.166 0.24 0.42 0.63 13(9) 0.00 (0.00–0.22) 0.00 (0.00–0.06)

ThuAla-mt-24 136 13 0.85 0.85 0.84 0.83 0.014 0.01 0.041 0.53 0.70 0.87 13(10) 0.02 (0.00–0.06) 0.00 (0.00–0.06)

ThuAla-mt-25 136 13 0.77 0.77 0.79 0.74 0.012 -0.03 0.080 0.40 0.58 0.78 13(10) 0.00 (0.00–0.12) 0.00 (-0.00–0.07)

ThuAla-mt-26 136 16 0.69 0.70 0.67 0.65 0.019 0.04 0.140 0.29 0.46 0.65 13(10) 0.00 (-0.00–0.08) 0.00 (-0.00–0.06)

ThuAla-mt-27 121 20 0.80 0.80 0.45 0.79 0.186 0.44 0.052 0.48 0.65 0.86 9(6) 0.00 (-0.00–0.25) 0.00 (0.00–0.09)

ThuAla-mt-28 136 30 0.92 0.93 0.94 0.92 0.007 -0.02 0.011 0.74 0.85 0.96 13(10) 0.00 (0.00–0.06) 0.00 (-0.00–0.06)

ThuAla-mt-29 135 22 0.84 0.84 0.78 0.82 0.024 0.06 0.043 0.53 0.69 0.87 13(10) 0.00 (-0.00–0.06) 0.00 (-0.00–0.06)

ThuAla-mt-30 136 17 0.85 0.86 0.84 0.84 0.014 0.02 0.035 0.56 0.72 0.89 13(10) 0.00 (0.00–0.00) 0.00 (0.00–0.06)

ThuAla-mt-31 135 24 0.91 0.91 0.90 0.90 0.010 0.00 0.016 0.69 0.81 0.95 13(10) 0.00 (-0.00–0.07) 0.00 (-0.00–0.06)

ThuAla-mt-32 136 14 0.61 0.61 0.63 0.59 0.019 -0.02 0.172 0.23 0.42 0.64 13(10) 0.00 (-0.00–0.08) 0.00 (0.00–0.06)

ThuAla-mt-33 130 32 0.95 0.96 0.94 0.95 0.013 0.02 0.004 0.83 0.90 0.98 10(7) 0.00 (0.00–0.07) 0.00 (0.00–0.07)

ThuAla-mt-34 135 17 0.84 0.84 0.85 0.82 0.020 -0.01 0.042 0.53 0.69 0.87 13(10) 0.00 (-0.00–0.07) 0.00 (-0.00–0.06)

Average 16.94 0.77 0.77 0.66 0.75

Number of individuals (Nind). Number of alleles (A). Expected (He), unbiased Nei's (1978) expected (H.n.b) and observed (HO) heterozygosity.

Polymorphism information content (PIC). Null allele frequency (Fnull). Fisher’s inbreeding coefficient (Fis). Probability of identity (PI). Probability of

exclusion (PE1, single parent; PE2, a second parent given a first parent assigned; PE3, a pair of parents). Number of repeated genotypes (Nrep and

percentage (%) of the total number of individuals genotyped for each loci). Genotyping error rate per allele, E1 referring to allelic dropout rate and E2 to

the false allele rate, and the 95% confidence interval (CI). Significant values are highlighted in bold (P<0.05) for heterozygote excess, Fnull, and Fis.

doi:10.1371/journal.pone.0141830.t003
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growth, differentiation, mitotic cycle, and oncogenic transformation) but the role in fish is
unknown and it may have a general role in neuroendocrine functions, as in humans. In this
study, we analyzed ThuAla-Hki-01 and ThuAla-Tcell-01 markers on overall albacore collected
(136) as they are located to sequence having role in important biological traits (immunity and
energy).

Genotyping was successfully performed on 136 albacore tunas collected from 4 different
geographic areas (Tables 3 and 4) with the 34 supposed «neutral» and 2 «non-neutral» markers,
ThuAla-Hki-01 and ThuAla-Tcell-01.

“Encoding”markers analysis on albacore tuna
Number of alleles, heterozygosity and PIC was high for ThuAla-Tcell-01 and low for ThuAla-
Hki-01 (Table 4). Both markers could be under balanced selection judging by the frequency of
their allelic distribution, particularly ThuAla-Tcell-01 (S2 Fig), though these results are not suf-
ficient to support this hypothesis. ThuAla-Tcell-01 presented low PI and high probability of
parentage exclusion meaning high potential to assign individuals (Table 4). ThuAla-Hki-01

Fig 3. Number of microsatellites detected within good quality reads for primer design purpose and number of microsatellites with a successfully
designed primer pair by motif type.

doi:10.1371/journal.pone.0141830.g003
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showed a significantly greater than zero estimate of Fis, a high PI and low probability of parent-
age exclusion (Table 4) and were detected in deviation from HWE. Concerning the linkage dis-
equilibrium analysis, there is random association of alleles at all loci. These loci have a low
genotyping error rate giving exactly repeatable genotypes with an observed error rate of 0.00
with low 95% CI.

“Neutral”markers analysis on albacore tuna
Most of these markers had a large number of alleles per locus (A), ranging from 3 to 33 alleles
(Table 3). 26 markers had at least 12 alleles and 10 markers had 16 or more alleles. The mean
He and Ho varied, from 21% to 95% and from 15% to 94%, respectively. The PIC value aver-
aged 0.75. Of all the markers, two presented low number of alleles, heterozygosity and PIC
(ThuAla-mt-11, ThuAla-mt-13) (Table 3). 16 markers showed a significantly greater than zero
estimate of Fis (Table 3) and they were detected in deviation from HWE. Null alleles may be
present at 9 markers (ThuAla-mt-01, ThuAla-mt-03, ThuAla-mt-04, ThuAla-mt-17, ThuAla-
mt-19, ThuAla-mt-20, ThuAla-mt-21, ThuAla-mt-22, and ThuAla-mt-27) (Table 3) as is also
suggested by the significant excess of homozygotes (heterozygosity deficit). In these loci there
was no evidence for scoring error due to stuttering and no evidence for large allele dropout.
However, the significant null allele frequency in ThuAla-mt-03, ThuAla-mt-21, and ThuAla-
mt-22 (Table 3) may be due to stuttering, resulting in possible scoring errors, as indicated by
the highly significant shortage of heterozygote genotypes with alleles of one repeat unit differ-
ence. Concerning the linkage disequilibrium analysis, there is random association of alleles at
all loci. Loci have a low genotyping error rate giving exactly repeatable genotypes with an
observed error rate of 0.00 with low 95% CI except ThuAla-mt-03, ThuAla-mt-17, ThuAla-mt-
21, and ThuAla-mt-22 (Table 3). These results confirm the stuttering for ThuAla-mt-03,
ThuAla-mt-21, and ThuAla-mt-22. Concerning ThuAla-mt-17, this may be due to the null
alleles.

The PI values ranged from 0.004 to 0.646 and the probability of exclusion from 0.02 to 0.98
on 34 microsatellite markers (Table 3). A total of 15 markers have a high PI (>0.05) (Table 3),
meaning a high average probability that two unrelated individuals will have the same multilo-
cus genotype (Table 3). It may be as a result of the low number of individuals (31–42) in the
structure units.

Comparison of selected panel with and without «non-neutral» markers
POWSIM simulations indicated that the 34 independent markers (34 «neutral») (Table 3) and
2 «non-neutral» markers (Table 4) were able to detect significant differences among samples

Table 4. Characteristics of two «non-neutral» microsatellite markers for albacore (Thunnus alalunga).

Genotyping error rate

Locus Nind Na He Hnb Ho PIC Fnull Fis PI PE1 PE2 PE3 Nrep (%) E1 (CI 95%) E2 (CI 95%)

ThuAla-Tcell-01 135 20 0.89 0.90 0.87 0.886 0.014 0.03 0.020 0.65 0.79 0.93 13(10) 0.00 (0.00–0.07) 0.00 (0.00–0.06)

ThuAla-Hki-01 136 9 0.27 0.27 0.24 0.254 0.041 0.12 0.551 0.04 0.14 0.26 13(10) 0.00 (-0.00–0.12) 0.00 (0.00–0.06)

Number of individuals (Nind). Number of alleles (A). Expected (He), unbiased Nei's (1978) expected (H.n.b) and observed (Ho) heterozygosity.

Polymorphism information content (PIC). Null allele frequency (Fnull). Fisher’s inbreeding coefficient (Fis). Probability of identity (PI). Probability of

exclusion (PE1, single parent; PE2, a second parent given a first parent assigned; PE3, a pair of parents). Number of repeated genotypes (Nrep and

percentage (%) of the total number of individuals genotyped for each loci). Genotyping error rate per allele, E1 referring to allelic dropout rate and E2 to

the false allele rate, and the 95% confidence interval (CI). Significant values are highlighted in bold (P<0.05) for heterozygote excess, Fnull, and Fis.

doi:10.1371/journal.pone.0141830.t004
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with FST = 0.002 in around 90–95% of the tests and with FST = 0.005 in 100% of the tests
(Table 5). Subsequently, the 34 high quality independent «neutral» markers were able to detect
the same significant differences among samples with FST� 0.002 in about 90–95% of the tests
(Table 5). Finally, differentiation between the four areas was visualized by FCA with different
numbers of markers (with and without “encoding markers” and potential Fnull markers (34–
9 = 25 markers)) (Fig 4 and S3 Fig). The results obtained by power FST analysis and FCA anal-
ysis provided evidence of the suitability of 34 «neutral» microsatellite markers to determine the
genetic relatedness among different populations and to evaluate their genetic variability. The
addition of the two «non-neutral» markers does not improve or damage the analysis (Table 5,
Fig 4 and S3 Fig). Jacknife by locus estimated the values of FST similar, around 0.0045

Table 5. Probability of detecting a particular level of differentiation (FST) among populations of albacore with 1 000 replicates.

36 markers(34 «neutral» + 2 «non-neutral») 34 markers («neutral»)

Fst P Chi-squares P Fisher P Chi-squares P Fisher

0.0005 0.17 0.20 0.16 0.19

0.001 0.49 0.49 0.46 0.47

0.002 0.95 0.91 0.94 0.90

0.005 1 1 1 1

Values > 0.005 1 1 1 1

doi:10.1371/journal.pone.0141830.t005

Fig 4. Factorial correspondence analysis (FCA) in three dimensions of four albacore populations. A (grey), B (yellow), C (blue), and D (white)
(populations names as defined in Fig 1) with 36 markers (34 «neutral» and 2 «non-neutral» markers).

doi:10.1371/journal.pone.0141830.g004
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(standard deviation 0.00114) per markers. Global FST considering the 4 areas and the panel of
potentially «neutral» microsatellite markers was low (0.005) with 95% CI equal to 0.003–0.007.
FCA plots differentiated area C from D, whereas A and B were more similar (Fig 4).

However AMOVA analysis does not support this result, Phi-statistics was low (0.003) and
not significant between C and D. The degree of differentiation between all area divisions was
low and not significant, excepted weakly for A-D, and B-D, then highly between B and C (S4
Table). With regards to the high PI (15; Table 3), the number of individuals in each area may
be insufficient, yet this probability may improve by increasing the number of markers provid-
ing high assignment discrimination. SPOTG estimated that with 30 individuals per sampling
area, 40 microsatellites markers are the minimum number required to detect evolutionary and
ecological processes with a power> 50% (S3 Table). SPOTG estimated that with 34 microsatel-
lites, a minimum of 35 individuals from each sampling area is necessary to obtain a
power> 50% and with 300 individuals the power increases to> 80% (S3 Table). SPOTG will
not run simulations on more than 500 individuals.

Panel tests on Scombridae species
The 34 «neutral» microsatellites markers at high quality (Table 3) and 2 «non-neutral» markers
(Table 2) were amplified in 4 Scombridae species (Thunnus albacares, Thunnus thynnus, Thun-
nus obesus, Acanthocybium solandri). PCR amplification was successful for all markers in all
Thunnus individuals tested (5) (Table 6). For Acanthocybium solandri the ratio of PCR amplifi-
cation success was weak (1/4 individuals) with 4 markers (ThuAla-mt-03, ThuAla-mt-17,
ThuAla-mt-19, and ThuAla-mt-20; Table 6). PCR amplification was weak with 10 markers in
all 4 species (ThuAla-mt-14, ThuAla-mt-17, ThuAla-mt-26, ThuAla-mt-27, ThuAla-Tyr-01,
ThuAla-mt-28, ThuAla-mt-29, ThuAla-mt-30, ThuAla-mt-31, ThuAla-mt-32; Table 6).

Discussion
The 454 GS FLX Titanium technology allowed fast development of polymorphic markers in
albacore tuna, a non-model organism, for which low genomic information was available. This
technology is interesting in term of cost and time and is effective in discovering high quality
microsatellite markers for albacore tuna. This study provides the design of 1 670 microsatellite
markers with all characteristics which could be used for different genetics projects on tuna
(such as those carried by IOTC and ICCAT). Here, we chose a set of microsatellite markers,
from the available markers designed, to investigate the albacore population genetics. Hence,
the set of microsatellite markers developed in this study provides an additional tool to scientists
who are investigating the genetic stock structure of this species and its implications for conser-
vation and management measures. The same annealing temperature for optimal primer pairs
allows easy multiplexing and faster manipulation at lower cost. Moreover, these markers dis-
play perfect microsatellite motif, making them easily usable in demographic inference, as in the
coalescent theory [71, 29], which is a key question for albacore tuna (ex. population structure
inferences’ implications on tuna species by [72]). Finally, most of 36 novel markers can also be
used on other Scombridae species such as Thunnus albacares, Thunnus thynnus, Thunnus obe-
sus, and Acanthocybium solandri.

The suitability of selected loci for population genetics analyses was assessed by computing
several diversity and information content parameters and estimating 95% CI for genotyping
error rate using repeated blind genotyping of the test panel. Analyses on the 136 individuals
from all 4 areas results in a significant deviation from HWE. The 36 novel markers discovered
constitute a useful tool for achieving detailed information on the genetic diversity and structure
of this species and investigating its evolutionary history. Their high polymorphism, with the
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exception of 3 markers, proves their value in the characterization and evaluation of genetic
diversity within and between populations.

Of the 9 «non-neutral» microsatellites markers discovered, two markers (ThuAla-Hki-01
and ThuAla-Tcell-01) were also characterized based on their link to sequence having potential
role in a main biological trait (immunity and energy). Assessing statistical power by POWSIM
confirmed that the panel of 25 «neutral» markers and of 34 «neutral» markers (Tables 2 and 3)

Table 6. PCR amplification results of 37 microsatellites markers tested on Scombridae species (Thunnus albacares, Thunnus thynnus, Thunnus
obesus, Acanthocybium solandri) with 4 or 5 individuals per species.

Locus name Thunnus albacares Acanthocybium solandri Thunnus thynnus Thunnus obesus

ThuAla-mt-01 2/5 2/4 5/5 5/5

ThuAla-Tcell-01 5/5 4/4 5/5 3/5

ThuAla-mt-02 4/5 4/4 5/5 5/5

ThuAla-mt-03 4/5 1/4 5/5 1/5

ThuAla-mt-04 5/5 3/4 4/5 5/5

ThuAla-mt-05 5/5 4/4 5/5 5/5

ThuAla-mt-06 5/5 4/4 5/5 5/5

ThuAla-mt-07 4/5 1/4 5/5 5/5
ThuAla-mt-08 5/5 3/4 5/5 5/5

ThuAla-mt-09 5/5 4/4 5/5 5/5

ThuAla-mt-10 5/5 3/4 5/5 5/5

ThuAla-mt-11 5/5 4/4 5/5 2/5

ThuAla-mt-12 5/5 2/4 5/5 5/5

ThuAla-mt-13 5/5 4/4 5/5 5/5

ThuAla-mt-14 5/5 3/4 5/5 5/5

ThuAla-mt-15 5/5 3/4 5/5 5/5

ThuAla-mt-16 5/5 4/4 5/5 5/5

ThuAla-mt-17 4/5 1/4 4/5 5/5

ThuAla-mt-18 5/5 4/4 5/5 5/5

ThuAla-Hki-01 5/5 4/4 5/5 5/5

ThuAla-mt-19 5/5 1/4 5/5 5/5

ThuAla-mt-20 5/5 1/4 5/5 5/5

ThuAla-mt-21 5/5 3/4 5/5 5/5

ThuAla-mt-22 5/5 2/4 5/5 5/5

ThuAla-mt-23 5/5 4/4 5/5 5/5

ThuAla-mt-24 5/5 4/4 5/5 5/5

ThuAla-mt-25 5/5 2/4 5/5 5/5

ThuAla-mt-26 5/5 4/4 5/5 5/5

ThuAla-mt-27 5/5 3/4 5/5 5/5

ThuAla-Tyr-01 5/5 4/4 5/5 5/5

ThuAla-mt-28 5/5 4/4 5/5 5/5

ThuAla-mt-29 5/5 4/4 5/5 5/5

ThuAla-mt-30 5/5 4/4 5/5 5/5

ThuAla-mt-31 5/5 4/4 5/5 5/5

ThuAla-mt-32 5/5 4/4 5/5 5/5

ThuAla-mt-33 5/5 4/4 5/5 5/5

ThuAla-mt-34 5/5 4/4 5/5 5/5

Weak amplified product in bold. Very weak amplified product in bold and italic. Smear in grey.

doi:10.1371/journal.pone.0141830.t006
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could detect high levels of differentiation. However many markers have huge PI (15 from 34
«neutral»). In this study, FCA plots differentiated area C from D, whereas A and B were more
similar. FCA did the best discrimination with all the markers. However AMOVA did not sup-
port this discrimination, particularly between C and D, and the Phi-statistics were low. Popula-
tions separated by lower genetic differentiation are less easy to make assignments, as is the case
for albacore with a very low FST. The SPOTG simulations were made based on the mean num-
ber of alleles from this study. A higher number of individuals will increase the number of alleles
and hence decrease the number of markers necessary to obtain an assignment power> 95%.
The analysis by SPOTG revealed the necessity to increase the number of individuals and/or
markers to detect evolutionary and ecological processes. Hence, we cannot conclude on the
population genetics analysis due to the low number of individuals per sampling area. An
increase in the number of individuals is required to assess the connectivity of albacore between
geographic areas (Indian and Atlantic oceans).

Tests that produce different results based on increasing/decreasing the numbers of individu-
als used are encouraged to ensure the best individual assignment. Population structure and
migration of albacore tuna is a challenging scientific question, but it is also a key question that
needs to be addressed in terms of management of this species at the ocean-wide scale. There
are at least six genetically distinct stocks of albacore, located in the North and South Pacific
Ocean, North and South Atlantic Ocean, the Indian Ocean and the Mediterranean Sea [9, 42,
47, 73, 74]. Doubt subsists about the heterogeneity of stocks between the South Atlantic and
Indian Oceans [14]. Small numbers of albacore may undertake inter-oceanic migrations
between the South Atlantic Ocean and the Indian Ocean [75]. Nevertheless, the results are con-
trasted with one side genetic homogeneity [44] and the other heterogeneity [7, 76, 77]; between
South Atlantic and Indian Oceans. The genetic studies, which did not detect any differentiation
between populations, may not have enough resolution in the markers (type, polymorphism,
and number) and/or the number of individuals sampled may have been too low.

A small number of «neutral» markers may not reflect inbreeding depression because they
are unlikely to represent genome wide changes in homozygosity ([78] by [22]). Fine-scale
genetic population structure often needs a large number of polymorphic microsatellite mark-
ers; and the final panel of microsatellite markers in this study corresponds to the general rec-
ommended number [27, 79, 80, 81]; under the condition of a minimum number of albacore
individuals sampled. This panel could be expanded by existing markers (total 18) from litera-
ture on albacore population genetics studies [7, 42, 44, 47, 82].

Supporting Information
S1 Fig. Example of a typical electropherogram profile obtained with multiplexed PCR pro-
tocol for one individual and six microsatellite markers.
(TIFF)

S2 Fig. Allelic distribution of ThuAla-Tcell-01 microsatellite marker.
(TIFF)

S3 Fig. Factorial correspondence analysis (FCA) in three dimensions of four albacore popu-
lations. A (grey), B (yellow), C (blue), and D (white) (populations names as defined in Fig 1)
with 36 markers (34 «neutral» and 2 «non-neutral» markers). (a) 34 «neutral» markers; (b) 27
(25 «neutral» and 2 «non-neutral» markers); (c) 25 «neutral» markers; and (d) microsatellite
markers.
(TIFF)
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S1 Table. Selection criterion used to develop microsatellite markers.
(XLS)

S2 Table. Information on the alignment analysis corresponding to microsatellites (micro.)
markers developed for albacore. 9 «non-neutral» markers and 1 marker (ThuAla-mt-30)
align to Cottus gobiomicrosatellite corresponding sequence.
(XLSX)

S3 Table. Assignment power with SPOTG simulations using different numbers of markers
and individuals sampled.
(XLSX)

S4 Table. Matrix of pairwise Phi-statistics from AMOVA analysis. Lower matrice shows the
Phi-statistics values of the four geographic location of albacore (A, B, C, and D). Signifi-
cance was estimated using Monte Carlo tests and 1 000 permutations, � P-value<0.05, �� P-
value<0.01, ��� P-value<0.001.
(XLSX)
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