T. S. Detinova, Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria, Monogr Ser World Health Organ, vol.47, pp.13-91, 1962.

S. D. Moshkovsky, On the dependency of the speed of development of plasmodia malaria on temperature, Med Para Para Bol, vol.15, pp.19-32, 1946.

C. Garrett-jones and G. R. Shidrawi, Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology, Bull World Health Organ, vol.40, issue.4, pp.531-576, 1969.

D. L. Smith and F. E. Mckenzie, Statics and dynamics of malaria infection in Anopheles mosquitoes, Malar J, vol.3, p.13, 2004.

B. P. Nikolaev, On the influence of temperature on the development of malaria plasmodia inside the mosquito, Trans Pasteur Inst Epi Bact Leningrad, vol.2, pp.1-5, 1935.

K. P. Paaijmans, S. Blanford, A. S. Bell, J. I. Blanford, A. F. Read et al., Influence of climate on malaria transmission depends on daily temperature variation, Proc Natl Acad Sci USA, vol.107, issue.34, pp.15135-15144, 2010.

K. P. Paaijmans, L. J. Cator, and M. B. Thomas, Temperature-dependent pre-bloodmeal period and temperature-driven asynchrony between parasite development and mosquito biting rate reduce malaria transmission intensity, PLoS One, vol.8, issue.1, p.55777, 2013.

K. P. Paaijmans, R. L. Heinig, R. A. Seliga, J. I. Blanford, S. Blanford et al., Temperature variation makes ectotherms more sensitive to climate change, Global Change Biol, vol.19, issue.8, pp.2373-80, 2013.

C. C. Murdock, L. L. Moller-jacobs, and M. B. Thomas, Complex environmental drivers of immunity and resistance in malaria mosquitoes, Proc Biol Sci, vol.280, p.20132030, 1770.

C. C. Murdock, E. D. Sternberg, and M. B. Thomas, Malaria transmission potential could be reduced with current and future climate change, Sci Rep, vol.6, issue.1, p.27771, 2016.

L. M. Beck-johnson, W. A. Nelson, K. P. Paaijmans, A. F. Read, M. B. Thomas et al., The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk, Royal Soc Open Sci, vol.4, issue.3, p.160969, 2017.

L. Lambrechts, K. P. Paaijmans, T. Fansiri, L. B. Carrington, L. D. Kramer et al., Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti, Proc Natl Acad Sci USA, vol.108, issue.18, pp.7460-7465, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00587940

L. B. Carrington, M. V. Armijos, L. Lambrechts, and T. W. Scott, Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti, PLoS Negl Trop Dis, vol.7, issue.4, p.2190, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02011018

S. P. Worner, Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect, Environ Entomol, vol.21, issue.4, pp.689-99, 1992.

J. J. Ruel and M. P. Ayres, Jensen's inequality predicts effects of environmental variation, Trends Ecol Evol (Amst), vol.14, issue.9, pp.361-367, 1999.

P. G. Shute and M. Maryon, Malaria in England past, present and future, R Soc Health J, vol.94, issue.1, pp.23-32, 1974.

R. A. Hutchinson, Mosquito borne diseases in England: past, present and future risks, with special reference to malaria in the Kent Marshes, p.183, 2004.

T. Ikemoto, Tropical malaria does not mean hot environments, J Med Ent, vol.45, issue.1, pp.963-972, 2008.

K. P. Paaijmans, A. F. Read, and M. B. Thomas, Understanding the link between malaria risk and climate, Proc Natl Acad Sci USA, vol.106, issue.33, pp.13844-13853, 2009.

L. M. Beck-johnson, W. A. Nelson, K. P. Paaijmans, A. F. Read, M. B. Thomas et al., The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission, PLoS One, vol.8, issue.11, p.79276, 2013.

E. A. Mordecai, K. P. Paaijmans, L. R. Johnson, C. Balzer, T. Ben-horin et al., Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol Lett, vol.16, issue.1, pp.22-30, 2012.

L. Siddons, Observations on the influence of atmospheric temperature and humidity on the infectivity of Anopheles culicifacies Giles, J Malar Inst India, vol.5, pp.375-88, 1944.

L. Shapiro, S. A. Whitehead, and M. B. Thomas, Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria, PLoS Biol, vol.15, issue.10, p.2003489, 2017.

W. E. Collins, J. S. Sullivan, D. Nace, T. Williams, J. J. Sullivan et al., Experimental infection of Anopheles farauti with different species of Plasmodium, J Parasitol, vol.88, issue.2, p.295, 2002.

W. K. Stratman-thomas, The influence of temperature on Plasmodium vivax, Am J Trop Med Hyg, vol.1, issue.20, pp.703-718, 1940.

R. Knowles and B. C. Basu, Laboratory studies on the infectivity of Anopheles stephensi, J Malar Inst India, vol.5, pp.1-29, 1943.

R. M. Moudy, M. A. Meola, L. Morin, G. D. Ebel, and L. D. Kramer, A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes, Am J Trop Med Hyg, vol.77, issue.2, pp.365-70, 2007.

R. Rico-hesse, Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas, Virology, vol.230, issue.2, pp.244-51, 1997.

J. R. Anderson and R. Rico-hesse, Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus, Am J Trop Med Hyg, vol.75, issue.5, pp.886-92, 2006.

R. C. Christofferson and C. N. Mores, Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype, PLoS One, vol.6, issue.1, p.16298, 2011.

I. Schuffenecker, I. Iteman, A. Michault, S. Murri, L. Frangeul et al., Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak, PLoS Med, vol.3, issue.7, p.263, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01659363

M. Vazeille, S. Moutailler, D. Coudrier, C. Rousseaux, H. Khun et al., Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus, PLoS One, vol.2, issue.11, pp.1168-1177, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00196860

S. Carpenter, A. Wilson, J. Barber, E. Veronesi, P. Mellor et al., Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides biting midges, PLoS One, vol.6, issue.11, p.27987, 2011.

D. C. Jeffares, A. Pain, A. Berry, A. V. Cox, J. Stalker et al., Genome variation and evolution of the malaria parasite Plasmodium falciparum, Nat Genet, vol.39, issue.1, pp.120-125, 2007.

S. M. Kraemer, S. A. Kyes, G. Aggarwal, A. L. Springer, S. O. Nelson et al., Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates, BMC Genomics, vol.8, p.45, 2007.

A. Molina-cruz, M. M. Zilversmit, D. E. Neafsey, and D. L. Hartl, Barillas-Mury C. Mosquito vectors and the globalization of Plasmodium falciparum malaria, Annu Rev Genet, vol.50, issue.1, pp.447-65, 2016.

S. K. Volkman, P. C. Sabeti, D. Decaprio, D. E. Neafsey, S. F. Schaffner et al., A genome-wide map of diversity in Plasmodium falciparum, Nat Genet, vol.39, issue.1, pp.113-122, 2007.

M. Manske, O. Miotto, S. Campino, S. Auburn, J. Almagro-garcia et al., Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing, Nature, vol.487, issue.7407, pp.375-384, 2012.

R. Ayala, H. B. Wacker, M. A. Siwo, G. Ferdig, and M. T. , Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum, BMC Genomics, vol.11, issue.1, p.577, 2010.

L. Lambrechts, J. Halbert, P. Durand, L. C. Gouagna, and J. C. Koella, Host genotype by parasite genotype interactions underlying the resistance of anopheline mosquitoes to Plasmodium falciparum, Malar J, vol.4, p.3, 2005.

O. Niaré, K. Markianos, J. Volz, F. Oduol, A. Touré et al., Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population, Science, vol.298, issue.5591, pp.213-219, 2002.

A. Molina-cruz, R. J. Dejong, C. Ortega, A. Haile, E. Abban et al., Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes, Proc Natl Acad Sci, vol.109, issue.28, pp.1957-62, 2012.

P. Singh and R. C. Dhiman, Sporogonic cycles calculated using degree-days, as a basis for comparison of malaria parasite development in different ecoepidemiological settings in India, Jpn J Infect Dis, vol.69, issue.2, pp.87-90, 2016.

C. D. Goodman, J. E. Siregar, V. Mollard, J. Vega-rodríguez, D. Syafruddin et al., Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes, Science, vol.352, issue.6283, pp.349-53, 2016.

S. Mharakurwa, T. Kumwenda, M. Mkulama, M. Musapa, S. Chishimba et al., Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes, Proc Natl Acad Sci USA, vol.108, pp.18796-801, 2011.

M. E. Sinka, M. J. Bangs, S. Manguin, Y. Rubio-palis, T. Chareonviriyaphap et al., A global map of dominant malaria vectors, Parasit Vectors, vol.5, issue.1, p.69, 2012.

C. M. Cirimotich, Y. Dong, L. S. Garver, S. Sim, and G. Dimopoulos, Mosquito immune defenses against Plasmodium infection, Dev Comp Immunol, vol.34, issue.4, pp.387-95, 2010.
DOI : 10.1016/j.dci.2009.12.005

URL : http://europepmc.org/articles/pmc3462653?pdf=render

G. K. Christophides, D. Vlachou, and F. C. Kafatos, Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae, Immunol Rev, vol.198, issue.1, pp.127-175, 2004.

R. S. White and V. V. Rao, Regulation of the control of Anopheles of the fluviatilisgroup by anti-adult spraying, Ind Med Gaz, vol.79, issue.8, pp.364-373, 1944.

Y. H. Ye, S. F. Chenoweth, A. M. Carrasco, S. L. Allen, F. D. Frentiu et al., Evolutionary potential of the extrinsic incubation period of dengue virus in Aedes aegypti, Evolution, vol.70, issue.11, pp.2459-69, 2016.

M. M. Riehle, W. M. Guelbeogo, A. Gneme, K. Eiglmeier, I. Holm et al., A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites, Science, vol.331, issue.6017, pp.596-604, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01971785

H. Alout, N. T. Ndam, M. M. Sandeu, I. Djegbe, F. Chandre et al., Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates, PLoS One, vol.8, issue.5, p.63849, 2013.

D. A. Joy, L. Gonzalez-ceron, J. M. Carlton, A. Gueye, M. Fay et al., Local adaptation and vector-mediated population structure in Plasmodium vivax malaria, Mol Bio Evo, vol.25, issue.6, pp.1245-52, 2008.

T. Lefèvre, J. Ohm, K. R. Dabiré, A. Cohuet, M. Choisy et al., Transmission traits of malaria parasites within the mosquito: genetic variation, phenotypic plasticity, and consequences for control, Evol Appl, vol.2017, pp.1-33

W. Eling, J. Hooghof, M. Van-de-vegte-bolmer, R. Sauerwein, and G. J. Van-gemert, Tropical temperatures can inhibit development of the human malaria parasite Plasmodium falciparum in the mosquito, Proc Exp App Ent, vol.12, pp.1-6, 2001.

J. A. Vaughan, B. H. Noden, and J. C. Beier, Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae, J Parasitol, vol.78, issue.4, pp.716-740, 1992.

D. Hien, K. R. Dabiré, B. Roche, A. Diabaté, R. S. Yerbanga et al., Plant-mediated effects on mosquito capacity to transmit human malaria, PLoS Pathog, vol.12, issue.8, p.1005773, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998430

I. J. Kligler and G. Mer, Studies on the effect of various factors on the infection rate of Anopheles elutus with different species of Plasmodium, Ann Trop Med Parasit, vol.31, issue.1, p.71, 1937.

L. Lambrechts, J. Chavatte, G. Snounou, and J. C. Koella, Environmental influence on the genetic basis of mosquito resistance to malaria parasites, Proc R Soc B: Bio Sc, vol.273, pp.1501-1507, 1593.

L. Shapiro, C. C. Murdock, G. R. Jacobs, R. J. Thomas, and M. B. Thomas, Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria, Proc Biol Sci, vol.283, p.20160298, 1834.

L. L. Moller-jacobs, C. C. Murdock, and M. B. Thomas, Capacity of mosquitoes to transmit malaria depends on larval environment, Parasit Vectors, vol.7, p.593, 2014.

A. Barreaux, P. Barreaux, K. Thievent, and J. C. Koella, Larval environment influences vector competence of the malaria mosquito Anopheles gambiae, Malaria World J, vol.7, issue.8, pp.1-6, 2016.

J. Bara, Z. Rapti, C. E. Cáceres, and E. J. Muturi, Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus, PLoS One, vol.10, issue.5, p.126703, 2015.

C. M. Stone and W. A. Foster, Plant-sugar feeding and vectorial capacity, pp.35-79, 2013.
DOI : 10.3920/978-90-8686-744-8_3

P. M. Armstrong, H. Ehrlich, A. Bransfield, J. L. Warren, V. E. Pitzer et al., Successive bloodmeals enhance virus dissemination within mosquitoes and increase transmission potential, bioRxiv, 2018.

S. Blanford, B. Chan, N. Jenkins, D. Sim, R. J. Turner et al., Fungal pathogen reduces potential for malaria transmission, Science, vol.308, issue.5728, pp.1638-1679, 2005.

I. Bargielowski and J. C. Koella, A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis, PLoS One, vol.4, issue.3, pp.4676-4681, 2009.

M. T. Aliota, C. Chen, H. Dagoro, J. F. Fuchs, and B. M. Christensen, Filarial worms reduce Plasmodium infectivity in mosquitoes, PLoS Negl Trop Dis, vol.5, issue.2, p.963, 2011.

C. M. Cirimotich, J. L. Ramirez, and G. Dimopoulos, Native microbiota shape insect vector competence for human pathogens, Cell Host Microbe, vol.10, issue.4, pp.307-317, 2011.

L. C. Pollitt, T. S. Churcher, E. J. Dawes, S. M. Khan, M. Sajid et al., Costs of crowding for the transmission of malaria parasites, Evol Appl, vol.6, issue.4, pp.617-646, 2013.

L. C. Pollitt, J. T. Bram, S. Blanford, M. J. Jones, and A. F. Read, Existing infection facilitates establishment and density of malaria parasites in their mosquito vector, PLoS Pathog, vol.11, issue.7, p.1005003, 2015.

M. Imwong, S. Nakeesathit, N. Day, and N. J. White, A review of mixed malaria species infections in anopheline mosquitoes, Malar J, vol.10, issue.1, p.253, 2011.

Y. E. Putri, S. Rozi, H. Tasman, and D. Aldila, Assessing the effect of extrinsic incubation period (EIP) prolongation in controlling dengue transmission with Wolbachia-infected mosquito intervention, AIP Conference Proceedings, p.20019, 2017.

L. B. Carrington, B. Tran, N. Le, T. Luong, T. T. Nguyen et al., Field-and clinically-derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes, Proc Natl Acad Sci, vol.115, issue.2, pp.361-367, 2018.

L. M. Lorenz and J. C. Koella, Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes, Malar J, vol.10, issue.1, p.382, 2011.

A. Vantaux, K. R. Dabiré, A. Cohuet, and T. Lefèvre, A heavy legacy: offspring of malaria-infected mosquitoes show reduced disease resistance, Malar J, vol.13, p.442, 2014.

K. P. Paaijmans, S. Blanford, B. Chan, and M. B. Thomas, Warmer temperatures reduce the vectorial capacity of malaria mosquitoes, Biol Lett, vol.8, issue.3, pp.465-473, 2012.

S. I. Hay, J. Cox, D. J. Rogers, S. E. Randolph, D. I. Stern et al., Climate change and the resurgence of malaria in the East African highlands, Nature, vol.415, issue.6874, pp.905-914, 2002.

M. Pascual, J. A. Ahumada, L. F. Chaves, X. Rodó, and M. Bouma, Malaria resurgence in the East African highlands: temperature trends revisited, Proc Natl Acad Sci USA, vol.103, issue.15, pp.5829-5863, 2006.

P. W. Gething, D. L. Smith, A. P. Patil, A. J. Tatem, R. W. Snow et al., Climate change and the global malaria recession, Nature, vol.465, issue.7296, pp.342-347, 2010.

K. P. Paaijmans, J. I. Blanford, R. G. Crane, M. E. Mann, L. Ning et al., Downscaling reveals diverse effects of anthropogenic climate warming on the potential for local environments to support malaria transmission, Climatic Change, vol.125, issue.3-4, pp.479-88, 2014.

A. S. Siraj, M. Santos-vega, M. J. Bouma, D. Yadeta, D. R. Carrascal et al., Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia, Science, vol.343, issue.6175, pp.1154-1162, 2014.

P. E. Parham, J. Waldock, G. K. Christophides, D. Hemming, F. Agusto et al., Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission, Philos Trans R Soc Lond B Biol Sci, vol.370, p.20130551, 1665.

Y. H. Ye, A. M. Carrasco, F. D. Frentiu, S. F. Chenoweth, N. W. Beebe et al., Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti, PLoS Negl Trop Dis, vol.9, issue.6, p.3894, 2015.

A. Fontaine, D. Jiolle, I. Moltini-conclois, S. Lequime, and L. Lambrechts, Excretion of dengue virus RNA by Aedes aegypti allows non-destructive monitoring of viral dissemination in individual mosquitoes, Sci Rep, vol.6, p.24885, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01316118

S. Rund, A. O'donnell, J. Gentile, and S. Reece, Daily rhythms in mosquitoes and their consequences for malaria transmission, Insects, vol.7, issue.2, pp.14-20, 2016.

L. J. Cator, J. E. Pietri, C. C. Murdock, J. R. Ohm, E. E. Lewis et al., Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential, Sci Rep, vol.5, p.11947, 2015.

J. R. Ohm, J. Teeple, W. A. Nelson, M. B. Thomas, A. F. Read et al., Fitness consequences of altered feeding behavior in immune-challenged mosquitoes, Parasit Vectors, vol.9, issue.1, p.113, 2016.

M. A. Greischar, A. F. Read, and O. N. Bjørnstad, Synchrony in malaria infections: How intensifying within-host competition can be adaptive, Am Nat, vol.183, issue.2, pp.36-49, 2014.

N. Mideo, S. E. Reece, A. L. Smith, and J. E. Metcalf, The Cinderella syndrome: why do malaria infected cells burst at midnight?, Trends Parasitol, vol.29, issue.1, pp.10-16, 2013.

J. C. Koella, P. A. Lynch, M. B. Thomas, and A. F. Read, Towards evolution-proof malaria control with insecticides, Evol Appl, vol.2, issue.4, pp.469-80, 2009.

A. F. Read, P. A. Lynch, and M. B. Thomas, How to make evolution-proof insecticides for malaria control, PLoS Bio, vol.7, issue.4, p.1000058, 2009.

E. D. Sternberg and M. B. Thomas, Insights from agriculture for the management of insecticide resistance in disease vectors, Evol Appl, vol.11, pp.164-175, 1786.