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4 Biocrates life sciences AG, Innsbruck, Austria, 5 sAnalytiCo Ltd, Belfast, United Kingdom, 6 Department of Biomedical Informatics and Mechatronics, Private University for

Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria, 7 Néphrologie Dialyse St Guilhem, Séte, France, 8 Service de Néphrologie, Dialyse Péritonéale et
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Abstract

Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over
the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining
metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To
test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples
were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for
metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients
selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9616.5 mL/min/1.73 m2; n = 10) or
advanced (8.964.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of
76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these
biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after
2.860.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of
kidney function in the test set at baseline and follow-up (r= 20.8031; p,0.0001 and r= 20.6009; p = 0.0019, respectively).
Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (r= 20.6557;
p = 0.0001 and r= 20.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically
equivalent to the urinary and plasma metabolite classifier (r= 20.7752; p,0.0001 and r= 20.8400; p,0.0001). The
combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with
eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney
function, and disease progression, but no added value in combining the different biomarkers data.
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Introduction

Chronic kidney disease (CKD) is characterised by progressive

loss of renal function resulting in reduced glomerular filtration.

The condition is categorised into 5 different stages with the final

stage being end-stage renal failure [1]. Although current clinical

analytical methods are accurate in diagnosing advanced kidney

dysfunction, this is not the case for early stages [2]. Most

importantly, tools for predicting the risk of progression towards

end-stage renal failure are lacking and developing accurate

biomarkers for prognosis of CKD progression represents a clinical

challenge. Hence, efforts are directed towards earlier detection

and better prognosis in order to allow for better therapeutic

interventions to slow down or potentially prevent the progression

of the disease in the future [3]. New technologies such as ‘‘omics’’-

based approaches, including proteomics and metabolomics,

provide more insight into disease mechanisms and therefore hold

the potential to improve management of CKD by providing stage-

specific biomarkers [4]. Proteomic methods are widely used to

identify biomarkers in tissues [5] and various other biological

entities including urine [6]. We have recently developed a CKD

classifier based on 273 urinary peptides (CKD273) with high
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specificity and sensitivity for the diagnosis of CKD [7]. In the

course of this study 889 urine samples of healthy volunteers and

patients with CKD were analysed using capillary electrophoresis–

mass spectrometry (CE-MS). The CKD273 classifier performs

better than the currently used markers (i.e. albuminuria and serum

creatinine) in the early diagnosis of diabetic nephropathy [8,9]. In

addition, a recent study used plasma metabolomics to investigate

the decline of the renal function [10] and to predict incident CKD

[11]. The latter study utilised a large cohort comprising of 1434

participants and identified 16 metabolites in the plasma signifi-

cantly associated with CKD via liquid chromatography-mass

spectrometry (LC-MS); 9 of these metabolites performed better

than serum creatinine. In a prospective cohort, a urinary

metabolite-based profile was found to have diagnostic and

monitoring values in CKD [12]. Proteomics and metabolomics

therefore seem to enable displaying CKD stages with high

confidence. However, the potential of the combination of the

two technologies in improving CKD diagnosis has never been

explored so far. We thus hypothesised that proteomic and

metabolomic biomarkers might perform even better when

combined.

In the present study, our aim was to investigate the potential

value of molecular classifiers for CKD that combine urinary and/

or plasma metabolomics with urinary proteomics. The study

cohort comprised a group of patients from mild to moderate and

advanced CKD, classified by the estimated glomerular filtration

rate (eGFR). For this cohort metabolomic and proteomic data

were available and allowed for a direct and uniform comparison of

metabolomic and proteomic traits. Thus, we established a new

proteomic CKD classifier based on this cohort and did not use the

previously established proteomic classifier CKD273. We indeed

established such classifiers and then tested their performance at

baseline and at follow-up after 2.860.8 (mean 6 SD) years.

Patients and Methods

Patients
Some of the data evaluated in this study have already been

described in previous manuscripts [13,14]. During three consec-

utive days, all patients eligible and attending the outpatient clinics

of the hospitals of Sète and Montpellier, as well as the dialysis unit

in Sète, were invited to participate in the study. Clinically stable

patients, over 18 years old, who have not been admitted to

hospital for at least 2 months and did not have acute inflammatory

diseases, were included. A total of 49 patients were involved in the

study; of those, 26 had diabetic nephropathy and the remaining 23

had other aetiologies. For evaluation, glomerular filtration rate

(eGFR) was estimated by the simplified MDRD formula [15].

Plasma and urine samples were obtained from all patients.

Fresh, midstream urine was collected and centrifuged; protein and

creatinine concentrations were determined by the hospital

laboratory. Two aliquots of urine were frozen immediately for

proteomic and metabolomic analyses as described below, and

stored at 280uC until analysis. Blood samples were collected in

EDTA-containing tubes. Blood was put on ice and immediately

centrifuged (10 minutes at 20006g or following the tube

manufacturer’s instructions) at 4uC. Plasma was removed and

stored at 280uC until analysis. Urine and plasma samples were

coded and shipped to two laboratories. Samples were unblinded

after receiving results.

The patients were subsequently seen regularly in the outpatient

clinic; clinical and laboratory data were recorded. Patient manage-

ment during the follow-up period was only based on usual clinical

care. When patients did not attend the clinic, data were obtained

from general practitioners. After 2.860.8 years of follow-up,

outcome was obtained from 43 patients. Of those, eight patients

started dialysis and four patients died not being on dialysis.

The study was designed and conducted fulfilling all the

requisites of the French law on the protection of individuals

collaborating in medical research and was in accordance with the

principles of the Declaration of Helsinki. Written informed

consent was obtained from all participants. The data were

handled according to the rules of the CNIL (Centre National

d’Informatique et Liberté) warranting the respect of privacy.

Sample collection was declared to the French Ministry with the

allocated reference number DC – 2008 – 417 and was approved

by the local ethics committee, the Comité de Protection de

Personnes (CPP) of Montpellier. The CPP is based in the

University Hospital of Montpellier [13].

Study design
According to current recommendations [16,17], a training set was

determined and the results were assessed in an independent test set

(Table 1). The training set was selected based on eGFR measure-

ments at baseline of the 49 samples used in this study. The ‘‘mild

CKD’’ group was defined by patients with the highest eGFRs

(59.9616.5 mL/min/1.73 m2; mean 6 SD) whereas the ‘‘advanced

CKD’’ group was defined by patients with the lowest eGFRs

(8.964.5 mL/min/1.73 m2; mean 6 SD) (Table 1). The total

sample of the training set was 20 patients equally distributed between

the two groups and the remaining 29 patients constituted the

independent test set in agreement with current recommendations for

clinical biomarker studies [18]. However, as age and gender are two

factors used to calculate eGFR, they were taken into consideration

during study design and the training set was sex and age matched. A

follow-up cohort was provided after 2.860.8 years to investigate the

progression of renal function. Inter-group comparison of the mean

age in the training set was achieved using t-test.

Methods
Metabolome analysis. Targeted metabolome analysis was

performed using the AbsoluteIDQ p180 Kit (BIOCRATES Life

Sciences AG, Innsbruck, Austria). The commercially available

AbsoluteIDQ p180 kits were used according to the manufacturer’s

instructions for the quantitation of amino acids, acylcarnitines,

sphingomyelins, phosphatidylcholines, hexose (glucose), and bio-

genic amines. The fully automated assay was based on PITC

(phenylisothiocyanate)-derivatization in the presence of isotopical-

ly labelled internal standards followed by flow injection analysis

tandem mass spectrometry (FIA-MS/MS) (acylcarnitines, lipids,

and hexose) as well as liquid chromatography (LC)-MS/MS

(amino acids and biogenic amines). Multiple reaction monitoring

(MRM) detection was used for quantitation. Prostaglandins, other

oxidised polyunsaturated fatty acids and bile acids were extracted

in aqueous acetonitrile containing deuterated internal standards

[19]. The metabolites were determined by reverse phase HPLC-

ESI-MS/MS in negative MRM detection mode. For determining

reducing mono-, di- and oligosaccharides, samples were labelled

with 1-phenyl-3-methyl pyrazolone in the presence of internal

standards. The derivative allowed sugars to be isolated, desalted

and concentrated using C18 solid-phase extraction (SPE). Sugar

concentrations were determined by FIA-MS/MS using MRM

mode in positive and negative ion mode. For quantitation of

energy metabolism intermediates from the citrate cycle, glycolysis,

pentose phosphate pathway and urea cycle in the presence of

internal standards, an LC-MS/MS method in MRM mode was

performed. All above described assays used an API4000 QTrap

tandem mass spectrometer instrument with electrospray ionisation
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(AB Sciex, Concord, Canada) for quantitation. The content of free

and total fatty acids was determined as their corresponding methyl

ester derivatives (FAMEs) using gas chromatography (GC) coupled

with mass spectrometric detection (Agilent 7890 GC/5795 MSD,

Agilent Technologies, Santa Clara, CA, USA) with an electron

impact ion source in SIM mode against external standards after

derivatisation. Where no external standard was available, com-

pounds were measured semi-quantitatively using spectra recorded

in SCAN mode, respective ratios of characteristic ions and the

retention behaviour. The (semi)-quantitation was carried out with

response factors extra- and/or intrapolated from the nearby

eluting compounds having the same number of double bonds.

The concentrations of amino acids, amines, eicosanoides and

bile acids were calculated with Analyst 1.4.2 Software (AB Sciex).

Quantitation of acylcarnitines, lipids and reducing mono- and

oligosaccharides was accomplished by relating peak heights of the

analytes to peak height of the chosen internal standard using the

MetIDQ Software (Biocrates Life Sciences AG). MetIDQ contains

all listed annotated metabolites with settings for validation.

Quantitation of individual FAME (fatty acid methyl ester) was

carried out with reference to the internal standard 18-methylno-

nadecanoic acid with the Agilent ChemStation Enhanced Data

Analysis Software. The API4000 QTRAP was controlled using

Analyst 1.4.2.

Concentrations of all analysed metabolites were corrected for

natural isotope distribution using algorithms developed by

Biocrates and implemented in the MetIDQ software suite [20]

and reported in mM units.

Proteome analysis. Urine samples were prepared as de-

scribed in [7]. Briefly, a 0.7 mL aliquot stored urine was thawed

and diluted with 0.7 mL 2 M urea, 10 mM NH4OH containing

0.02% SDS. Samples were filtered using Centrisart ultracentrifu-

gation filter devices (20 kDa cut-off; Sartorius, Goettingen,

Germany) at 3,000 g until 1.1 mL of filtrate was obtained.

Subsequently, filtrate was desalted using PD-10 column (GE

Healthcare, Sweden) equilibrated in 0.01% NH4OH OH in

HPLC-grade water. Finally, samples were lyophilised and stored at

4uC prior analysis. The proteomics technique used was CE-MS.

Shortly before CE-MS analysis, lyophilisates were re-suspended in

HPLC-grade water to a final protein concentration of 0.8 mg/mL

checked by BCA assay (Interchim, Montlucon, France). CE-MS

analysis was performed as described [7,8,21]. The average

recovery of sample in the preparation procedure was, ,85%

and the limit of detection was, ,1 fmol. Mass resolution was

above 8,000 Da enabling resolution of monoisotopic mass signals

for z#6. After charge deconvolution, mass accuracy was, ,25

ppm for monoisotopic resolution and, ,100 ppm for unresolved

peaks (z.6). The analytical precision of the platform was assessed

extensively [7,21,22].

Proteomics data processing
Mass spectral peaks representing identical molecules at different

charge states were deconvoluted into single masses using

MosaiquesVisu software [23]. Only signals with z.1 observed in

a minimum of 3 consecutive spectra with a signal-to-noise ratio of

at least 4 were considered. Reference signals of 1770 urinary

polypeptides were used for CE-time calibration by locally

weighted regression. For normalisation of analytical and urine

dilution variances, signal intensities were normalised relative to 29

‘‘housekeeping’’ peptides [21,24]. The obtained peak lists char-

acterise each polypeptide by its molecular mass [Da], normalised

CE migration time [min] and normalised signal intensity. All

detected peptides were deposited, matched, and annotated in a

Microsoft SQL database allowing further statistical analysis [25].

For clustering, peptides in different samples were considered

identical if mass deviation was ,50 ppm. CE migration time was

controlled to be below 0.35 minutes after calibration. All data of

the proteomic and metabolomic analyses were included in Table

S2 and Table S3 in File S1.

Statistical analysis and development of high dimensional
classifiers

For biomarker discovery, statistical analysis was performed by

the use of Wilcoxon rank sum test to calculate the p-values. Only

biomarkers that were found at a 70% frequency in either case or

control group were examined. The false discovery rate adjust-

ments of Benjamini-Hochberg [26] were employed to correct for

multiple testing. A p-value less than 0.05 was considered to be

statistically significant. MosaCluster (version 1.7.0) was used to

build a classifier based on support vector machine (SVM) that

allows the classification of samples in the high dimensional data

space [27,28]. MosaCluster calculated classification scores based

on the amplitudes of the CKD biomarkers. Classification is

performed by determining the Euclidian distance (defined as the

SVM classification score) of the vector to a maximal margin

hyperplane. The SVM classifier uses the log transformed

intensities of x features (peptides or metabolites) as coordinates

in a x-dimensional space. It then builds a x-1 dimensional

Table 1. Patients Characteristics.

Training set Test set

‘‘mild CKD’’ ‘‘advanced CKD’’ p-values

n 10 10 29

Age (years) 65.9610.9 70.769.8 0.2767 73.369

Gender (M/F) 7/3 7/3 17/12

Baseline eGFR (mL/min/1.73 m2) 59.9616.5 8.964.5 ,0.0001 29.5615.6

Follow-up eGFR (mL/min/1.73 m2)* 61.2626.2 8.763.1 0.0025 28.1614.5

BMI (kg/ m2) 31.565.9 2964.7 0.3085 29.766.7

Serum creatinine (mmol/L) 110.7627.1 473.76162.2 ,0.0001 232.46136.7

Serum albumin (g/L) 41.662.4 35.563.7 0.0004 38.563.1

CRP (mg/L) 3.463.0 4.964.4 0.3848 4.463.9

*The mean duration of the follow-up study was 2.860.8 years.
doi:10.1371/journal.pone.0096955.t001
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hyperplane that spans this space by performing a quadratic

programming optimisation of a Lagrangian using the training

labels only while allowing for samples to lie on the wrong side of

the plane. For such mistakes in classification the SVM introduces a

cost parameter C. Because non separable problems in low

dimensions may be separable in higher dimensions the SVM uses

the so called Kernel-trick to transform the samples to a higher

dimensional space. MosaCluster uses the standard radial basis

functions as kernel. These functions are just Gaussians with the

parameter gamma controlling their width. The optimal parame-

ters C and gamma are found via e.g. leave one out cross validation

error estimation. There are generally implemented in SVMs in all

popular data mining software, particularly the kernlab cran

contributed R package is a versatile tool for building SVM

based-classifiers [29]. After identification of significant biomarkers

and generation of different classifiers, they were assessed in a test

set to check their performance.

Correlation of CKD classifiers with eGFR
After biomarker identification using the training set, CKD

molecular classifiers were developed and their performance was

assessed. Individual CKD classifier scores were correlated with

eGFR at baseline and follow-up eGFR was used to predict the

progression of the renal function. The test set of 29 patients was

used in multiple correlation analyses using the classification scores

of the different classifiers with baseline eGFR. For the correlation

analysis with the follow-up eGFR after a period of 2.860.8 years,

data from 43 out of 49 patients were available. The analysis was

performed using MedCalc version 8.2.1.0 (MedCalc Software,

Mariakerke, Belgium).

Results

Urine and plasma samples obtained from patients representing

different stages of CKD were divided into two cohorts: a training

set (n = 20; Table 1) for biomarker identification and generation of

CKD classifiers and a test set (n = 29; Table 1) to asses the classifier

performance. The training set defined according to eGFR

measurements included a ‘‘mild CKD’’ group (59.9616.5 mL/

min/1.73 m2, mean 6 SD; n = 10) with patients between mild to

moderate CKD and a second group named ‘‘advanced CKD’’

(8.964.5 mL/min/1.73 m2, mean 6 SD; n = 10) with patients in

advanced CKD that were matched for demographic and clinical

data (Table 1). Follow-up data were obtained after 2.860.8 years.

In the training set, the mean eGFR progressed to 61.2626.2 mL/

min/1.73 m2 (mean 6 SD; Table 1) in the ‘‘mild CKD’’ group

and to 8.763.1 mL/min/1.73 m2 (mean 6 SD; Table 1) in the

‘‘advanced CKD’’ group.

Metabolomic and proteomic biomarkers in urine and
plasma

The statistical analysis resulted in the identification of 76

significant biomarkers with p,0.05 (Table S1 in File S1). The

biomarkers included 30 metabolites comprising 17 plasma

metabolites (Figure 1A) and 13 urinary metabolites (Figure 1B)

and 46 peptides (Figure 1C). Serum creatinine, one of the

significant metabolomic biomarker identified in plasma, was

excluded, as it is the major driver in the calculation of the eGFR.

Among the most significant metabolites identified were asym-

metric dimethylarginine (ADMA) and hydroxykynurenine

(Figure 1B, 1C and Table S1 in File S1). ADMA was the only

identified metabolite present in both plasma and urine (Figure 1B

and 1C). While the concentrations of ADMA and acylcarnitines

were higher in the plasma samples of ‘‘advanced CKD’’ compared

to the ‘‘mild CKD’’ group, ADMA concentrations were lower in

the urine of late CKD patients (Figure 1A and B). Of the 46

urinary peptides to be significantly changed in CKD in this small

study, 28 were collagen fragments with collagen type I alpha 1

being the most represented (Figure 1C and Table S1 in File S1).

Eighteen additional non-collagen peptides were associated with

CKD, including uromodulin, beta-2-microglobulin, apolipopro-

tein A-I, CD99 antigen and cadherin (Figure 1C and Table S1 in

File S1). Most of the collagen type I (Figure 1C) and uromodulin

fragments (Figure 1C) were in lower abundance in advanced CKD

while beta-2-microglobulin, apolipoprotein AI and protein S100-

A9 fragments were in higher abundance in advanced CKD

(Figure 1C) in accordance with previous findings [7,8].

Significant metabolite biomarkers associated with CKD were

further combined into classifiers and assessed in the test set. Two

different classifiers were established using metabolite biomarkers:

one classifier incorporating the 17 metabolites from plasma only

named MetaboP and another classifier based only on 13 urinary

metabolite biomarkers named MetaboU. Likewise, a classifier

based on proteomic traits alone was established with the 46

identified peptides in a classifier named Pept.

Correlation of the biomarker based classifiers with
baseline eGFR

To assess the performance of each classifier at characterising the

renal function, a correlation analysis based on the baseline eGFR

was performed. The three classifiers MetaboP, MetaboU and Pept

were significantly correlated with baseline eGFR (r= 20.8031,

p,0.0001, Figure 2A; r= 20.6557, p = 0.0001, Figure 2B, and

0.7752, p,0.0001, Figure 2C, respectively). Individual compar-

ison of Pept with MetaboU and MetaboP was not significant

(p = 0.3712 and p = 0.7895, respectively).

Assessment of the biomarker based classifiers in
predicting future eGFR

The performance of above-mentioned CKD classifiers at

predicting the progression of renal function was investigated using

the follow-up data from the test set. The classifier MetaboP was

significantly correlated with follow-up eGFR (r= 20.6009,

p = 0.0019, Figure 3A) and the classifier MetaboU also show a

significant correlation (r= 20.6574, p = 0.0005, Figure 3B). The

urinary peptide-based classifier was significantly correlated with

the follow-up eGFR (r= 20.8400, p,0.0001, Figure 3C). The

individual comparison of Pept with MetaboU and MetaboP

(p = 0.1606 and p = 0.0879, respectively) again demonstrated no

significant difference between the classifiers.

Development of a classifier using combination of
metabolomic and proteomic biomarkers

To assess the potential of combining metabolomics and

proteomics data, all identified biomarkers including 17 plasma

metabolites, 13 urinary metabolites and 46 urinary peptides were

unified in one classifier named Pept_MetaboP+U. In the test set,

the classifier Pept_MetaboP+U showed a significant correlation at

baseline eGFR with a correlation coefficient of r= 20.7833 (p,

0.0001, Figure 4A). The comparison of correlation coefficients of

Pept_MetaboP+U with MetaboU and MetaboP with baseline

eGFR (p = 0.3328 and p = 0.8472, respectively) demonstrated no

significant difference. Similar observations were made between

Pept_MetaboP+U and Pept at baseline (p = 0.9407).

The classifier Pept_MetaboP+U also revealed a significant

association with follow-up eGFR with a correlation coefficient of

r= 20.8061 (p,0.0001, Figure 4B). The comparison of correla-
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tion coefficients of Pept_MetaboP+U with MetaboU and MetaboP

at follow-up (p = 0.2885 and p = 0.1723, respectively) depicted no

significant difference and these observations were also made

between Pept_MetaboP+U and Pept (p = 0.7327).

Discussion

The aim of the present study was to investigate the value of

proteomics and metabolomics in assessing renal function, and to

assess if combining metabolomic and proteomic approaches in one

comprehensive biomarker-based classifier for CKD may be

Figure 1. Regulation of metabolites and peptides. The fold changes of metabolites and peptides ‘‘mild CKD’’ vs. ‘‘advanced CKD’’. A. Plasma
metabolites. B. Urinary metabolites. C. Urinary peptides. C19:0: Nonadecanoic acid. SM C26:1: Sphingomyelin with acyl residue sum C26:1. PC aa
C42:4: Phosphatidylcholine with acyl-alkyl residue sum C42:4. C14:2: Tetradecadienoylcarnitine. cis-C20:1w9: cis-11-Eicosenoic acid. PC aa C42:4:
Phosphatidylcholine with acyl-alkyl residue sum C42:4. C17:0: Heptadecanoic acid. PC aa C42:5: Phosphatidylcholine with acyl-alkyl residue sum
C42:5. C4: Nonanoylcarnitine. C5: Isovalerylcarnitine. ADMA: Asymmetric dimethylarginine. Total DMA: Total dimethylarginine. C9: Nonanoylcarnitine.
C4:1: Butenoylcarnitine. C5-DC(C6-OH): Acylcarnitine. C14:1-OH: 3-Hydroxytetradecenoylcarnitine. dH: Deoxyhexose. HNAc(S2): (N-acetylhexosamine)-
disulfate. C3:1: Propenoylcarnitine. C7-DC: Pimelylcarnitine. H2-dH2: Dihexose-dideoxyhexose. Asn: Asparagine. Leu: Leucine. H1: Hexose. Pro: Proline.
Cit: Citrulline.
doi:10.1371/journal.pone.0096955.g001
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advantageous. We investigated the value of these molecular

markers in a cross sectional design, and their performance in the

prediction of the renal function decline.

Proteomics [7–9] and metabolomics [10–12] have already

demonstrated value in classifying CKD patients. However, the

diagnostic potential of the combination of both approaches has not

been investigated so far. In our study, we examined samples from

49 patients at different stages of CKD. Urine samples were

analysed employing proteomics, and urine and plasma samples

were analysed using metabolomics. We identified a panel of 30

metabolites (17 plasma and 13 urinary metabolites) significantly

different when comparing a training set of patients with early and

with advanced stage CKD. In the same training set 46 peptides

also demonstrated significantly different distribution. We com-

bined these potential biomarkers in different classifiers and then

performed correlation analyses with the baseline and follow-up

eGFR in an independent test set. All three classifiers, plasma

metabolite-based (MetaboP) urinary metabolite-based (MetaboU),

and urinary peptide-based (Pept) correlated very well with eGFR,

with no significant difference between them. Thus, the plasma and

urinary metabolite and the urinary peptide-based classifiers

individually were identified as effective tools associated with CKD.

The prognostic value of the classifiers was assessed based on the

correlation with the follow-up data. The metabolite and peptide-

based classifiers individually showed good performances in the

prediction of future renal function. Although all classifiers

performed equally well there seemed to be a tendency for the

urinary peptide-based classifier to performed better in the

prognostic evaluation than MetaboU and MetaboP (p = 0.1606

and p = 0.0879, respectively). However, a larger sample size would

be required to investigate if this difference is in fact significant.

The results indicate that urinary and plasma metabolites and

urinary peptides may provide similar information in the assess-

ment of CKD. However, urinary peptides may demonstrate

superior performance in a larger study [6].

An advantage of this study is that samples from patients

representing all stages of CKD were included, which enabled

identification of potential biomarkers representing the entire range

of changes occurring throughout CKD progression with good

confidence.

Figure 2. Correlation analysis of metabolomic and proteomic based classifier scores with baseline eGFR. The correlation analysis is
performed by using the support vector machine classification scores obtained for the test set with baseline. A. Classifier MetaboP (plasma
metabolites) r= 20.8031 and p,0.0001. B. Classifier MetaboU (urinary metabolites) r= 20.6557 and p = 0.0001. C. Classifier Pept (urinary peptides)
r= 20.7752 and p,0.0001.
doi:10.1371/journal.pone.0096955.g002

Figure 3. Correlation analysis of metabolomic and proteomic based classifier scores with follow-up eGFR. The correlation analysis is
performed by using the support vector machine classification scores obtained for the test set with follow-up eGFR. A. Classifier MetaboP (plasma
metabolites) r= 20.6009 and p = 0.0019. B. Classifier MetaboU (urinary metabolites) r= 20.6574 and p = 0.0005. C. Classifier Pept (urinary peptides)
r= 20.8400 and p,0.0001.
doi:10.1371/journal.pone.0096955.g003
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The combination of urinary peptide, urinary metabolite and

plasma metabolite biomarkers in a classifier (Pept_MetaboP+U)

showed a good correlation performance with eGFR at baseline

(r= 20.7833, p,0.0001) and follow-up (r= 20.8061, p,0.0001).

However, the comparison of single traits classifiers with the

combined classifier showed no significant improvement suggesting

that the combination of proteomics and metabolomics was not of

an added value in our study.

In the current study 46% of the peptides and 26% of the

metabolites identified were also previously reported [7,30] (see

Table S1 in File S1). The limited coverage of the peptides is due to

differences in the study design as mild and advanced CKD

patients were compared to enable identification of good

confidence biomarkers instead of comparing between healthy

and CKD patients. In the case of the metabolites only amino acids

were investigated in the earlier study whereas we analysed amino

acids, acylcarnitines, sphingomyelins, phosphatidylcholines, hex-

ose (glucose), and biogenic amines. Besides mild versus advanced

CKD detection and prediction of progression, the identified

peptides as well as metabolites could potentially provide insight

into the pathology of CKD. Most of collagen peptide fragments,

representing the majority of detected urinary peptides, were

reduced in patients with advanced CKD, which is in good

accordance with previous studies [31,32]. We hypothesise that this

observation may mirror alterations in the extracellular matrix

(ECM) turnover and fibrosis [33]. Renal fibrosis is one of the key

features of CKD [34] and is characterised by ECM accumulation

as a result of both, increased synthesis and reduced degradation of

ECM proteins [35,36]. Reduced abundance of urinary collagen

fragments in CKD patients might thus reflect decreased ECM

turnover. Renal fibrosis associated with CKD is the ultimate end-

point of a cascade of events, including inflammation [37]. The

observed elevation of protein S100-A9, a pro-inflammatory

protein that promotes the migration of phagocytes [38] supports

the presence of inflammatory processes. Urinary levels of

uromodulin were also reduced which is in accordance with the

literature as decreased uromodulin levels are associated with

interstitial fibrosis or tubular atrophy [32].

In regard to metabolites, we observed increases of ADMA,

hydroxykynurenine, and acylcarnitine levels in the plasma and a

decrease of ADMA in the urine that significantly correlated with a

decrease in the eGFR.

The observed changes in ADMA levels are consistent with

previous observations in early and late stage CKD patients [392

42]. In one of these studies, it was shown that plasma and urinary

levels of ADMA could be used to determine the CKD stage as

plasma accumulation and lower urinary excretion pointed towards

advanced CKD stages [43]. ADMA is a metabolite that inhibits

nitric oxide synthase, an enzyme converting L-arginine to L-

citrulline and nitric oxide (NO) [44]. Impaired generation of NO

by accumulation of ADMA contributes to hypertension and in

turn cardiac and renal dysfunction [45,46].

The accumulation of various acylcarnitines in the plasma likely

depicts impaired clearance due to chronic kidney dysfunction,

which is consistent with recent observations [47]. Besides its

function in fatty acid beta oxidation, L-carnitine modulates acyl-

CoA levels through esterification to acylcarnitines, thus preventing

the accumulation of acyl-CoAs generated in excess in renal failure

[48,49]. Excess acyl-CoAs may contribute to renal and cardiac

lipotoxicity [50252]. Hence, the resulting excess acylcarnitines

normally are filtered in the glomerulus and undergo only limited

renal tubular reabsorption compared to free L-carnitine [53256].

Hydroxykynurenine is part of the kynurenine pathway and

generated as a result of tryptophan degradation [57]. Increased

plasma levels of hydroxykynurenine have previously been reported

to be associated with advanced stage CKD [58,59]. The

association of hydroxykynurenine with CKD is not very well

understood. A hypothesis was presented that accumulation of

hydroxykynurenine could be a result of oxidative stress leading to

impaired renal function [60]. In addition, phosphatidylcholine

diacyl C42:5 increased in the plasma of patients with severe renal

impairment. Phosphatidylcholine diacyl C42:5-to-phosphatidyl-

choline acylalkyl C36:0 ratios were found to be associated with the

loss of eGFR in CKD patients in a longitudinal study [10].

In conclusion, we could demonstrate in this study the feasibility

of combining proteomic and metabolomic approaches in the

prediction of renal function. However, we could not demonstrate

an advantage of combining these different omics traits. In contrast,

our data indicate that essentially a solely urinary peptide, urinary

metabolite and plasma metabolite-based approaches may be

sufficient to predict renal function and that combining metabo-

lomics and proteomics may not provide significant added value.

The results also suggest that urinary peptides may be superior in

predicting renal function decline. However, these results are based

Figure 4. Correlation analysis of a combined proteomics and metabolomics based classifier with baseline or follow-up eGFR. A.
Classifier Pept_MetaboP (urinary peptides and plasma metabolites) with baseline eGFR r= 20.7833 and p,0.0001. B. Classifier Pept_MetaboP with
follow-up eGFR r= 20.8061 and p,0.0001.
doi:10.1371/journal.pone.0096955.g004
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on a small cohort and need to be further reproduced in large

independent cohorts. The results are valid only in the context of

CKD, and the same concept may well be found advantageous in

the diagnosis of other diseases like coronary artery disease.

Supporting Information

File S1 Supporting tables. Table S1, List of significantly

identified biomarkers between ‘‘Mild CKD vs. Advanced CKD’’

at baseline. 46 peptides, 17 plasma metabolites and 13 urinary

metabolites derived from the training set of mild and advanced

CKD at baseline. The statistical and correlation analysis of each

biomarker with the eGFR were performed at baseline. In the

table, the biomarker marker ID, name, type, source, the Spear-

man’s rank correlation coefficient and its p-values, the p-values

from the statistical analysis (Benjamini Hochberg), the comparison

with biomarkers identified in previous CKD studies were

provided. In the ‘‘comparison with CKD studies’’ column, x

indicates that the biomarker was previously identified. Table S2,

Raw data of identified peptides at baseline. The raw data of all 46

peptides were provided at baseline for the 49 patients used in the

study. Each column represents a patient and the patient ID goes

from 1 to 49. Table S3, Raw data of identified metabolites at

baseline. The raw data of all 30 metabolites (17 in the plasma and

13 in the urine) were provided at baseline for the 49 patients used

in the study. Each column represents a patient and the patient ID

goes from 1 to 49.

(XLS)
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