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Abstract. High-elevation tropical islands are ideally suited for examining the factors that determine species distri-
bution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively
small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working
on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the
archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia,
belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic
(non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photo-
graphs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into
a regular 1-min grid (1.852 × 1.852 km), this dataset covered �22 % of the island. The studied rainforest species
exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited
wide elevation (average 891+332 m) and rainfall (average 2.2+0.8 m year21) ranges. Conversely their spatial dis-
tribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly
by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed
richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset
in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to
where future sampling efforts are most required to complete our understanding of rainforest tree species distribution.

Keywords: Area effect; biodiversity hotspot; a-diversity; island; species richness; tropical mountains; ultramafic
substrate.
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Introduction
Despite an ever increasing amount of data, the geograph-
ical distribution of most plant species remains incomplete
and biased, particularly for the most diverse taxonomic
groups and regions (Whittaker et al. 2005). This so-called
Wallacean shortfall frequently originates from the diffi-
culty of evaluating the distribution of species diversity
across large, heterogeneous areas where biodiversity is
high but collecting efforts have been insufficient or inad-
equately planned (Schmidt-Lebuhn et al. 2012). However,
when correctly assessed and accounted for, sampling
biases do not entirely prevent identification of the mech-
anistic determinants of species distribution, which remains
a central question in ecology and biogeography (Hortal
et al. 2007).

Many hypotheses have been proposed to explain the
geographic variability of species diversity. It is widely
accepted that species richness decreases poleward
(Hillebrand 2004). However, the relationship between
species richness and elevation is more complex and highly
dependent on the organism being considered (Lomolino
2001; Nogués-Bravo et al. 2008; McCain and Grytnes
2010; Kessler et al. 2011).

Environmental conditions (air temperature, precipita-
tion and solar radiation) change with elevation and the
available area tends to decrease as elevation increases,
due to the conical shape of mountains, thus affecting
the total number of species (McCain 2007; Barry 2008).
After accounting for the decreasing availability of area
with increasing elevation, many organisms show a
hump-shaped pattern of richness with elevation. In a
meta-analysis involving 204 elevational transects, Rahbek
(2005) found �80 % of hump-shaped richness patterns
but only a small proportion of monotonic patterns. A
number of explanations have been examined for these
hump-shaped richness patterns (e.g. climate-derived
productivity, source–sink dynamics, intermediate disturb-
ance and mid-domain effect) but at this stage the domin-
ant contributing factors remain unclear (McCain and
Grytnes 2010).

Mountainous tropical islands are ideally suited for exam-
ining species distribution along complex environmental
transects by virtue of their exaggerated climatic gradients
and their complex topography. These combine to create a
wide variety of habitats within a relatively small area. In
addition to exhibiting steep environmental gradients,
islands host biota with sharp variations in environmental
tolerance and, paradoxically, harbour a greater proportion
of narrow-range endemics when compared with conti-
nents (Carlquist 1974; Caujapé-Castells et al. 2010).

New Caledonia, an archipelago located in southwest
Pacific Ocean, hosts a rich (more than 3200 species)

and unique vascular flora (75 % of endemism) distributed
within a remarkable mosaic of habitats (Morat et al. 2012).
First considered as a vicariant Gondwanan refugium (Morat
1993), geologists have recently demonstrated the entire
submersion by subduction before a final re-emersion of
the main island ‘Grande Terre’ �37 My ago coated with a
fragment of oceanic crust at the origin of the ultramafic
(UM) substrates (Cluzel and Chiron 1998; Neall and Trewick
2008). The entire submersion thus argues for a secondary
colonization origin for the entire New Caledonian flora.
Sherwin Carlquist was one of the first to support this
view and stated in his book ‘Island Biology’ that there is
‘no reason why New Caledonian flowering plants cannot
be hypothesised to have arrived via long-distance disper-
sal’ (Carlquist 1974). Several phylogenetic studies have
provided evidence supporting the thesis that the flora of
New Caledonia indeed originates from recent (,37 My)
long-distance dispersal colonizations and diversifications
(Murienne et al. 2005; Grandcolas et al. 2008; Murienne
2009; Espeland and Murienne 2011; Pillon 2012).

Such biogeographical mysteries have long focussed the
attention of local and international botanists over more
fundamental studies of rainforest structure, floristic com-
position and ecology. Most earlier studies examining
plant distribution patterns in New Caledonia have focussed
on particular groups: endangered species (Herbert
2006; Kumar and Stohlgren 2009), emblematic species
(Pintaud et al. 1999; Jaffré et al. 2010; Poncet et al. 2013),
narrow-range endemic species (Wulff et al. 2013) or
montane species (Nasi et al. 2002). To our knowledge,
few studies have embraced the entire tree flora of the
archipelago.

The few plot-based studies, that have investigated an
exhaustive number of tree species, point to a consensus
that the species assemblage is of similar interest to the
unusual biogeographical history of the archipelago (e.g.
Jaffré and Veillon 1990; Read et al. 2000; Ibanez et al.
2014). In particular, the New Caledonian rainforests
seem to be characterized by very high stem density, low
a-diversity (low local richness) and high b-diversity (high
between-plot dissimilarity) without significant correla-
tions with either elevation or rainfall (Grytnes and Felde
2014). However, it is fair to question whether the appar-
ent independence of diversity from the environment
arises from an unusually high environmental tolerance
of the New Caledonian tree species or from a failure of
experimental design to capture the species a-diversity
(Grytnes and Felde 2014).

In this study, we used a new-occurrences dataset to test
whether the environment is the main force driving New
Caledonian rainforest tree species diversity and individual
species distribution. In other words, does the species
assemblage in rainforests reflect a deterministic model
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(i.e. an environment or niche-based one) or a stochastic
model (i.e. a null one)?

We draw up a starting-point statement of knowledge of
rainforest tree species distribution in New Caledonia by
compiling tree occurrences from four distinct sources: (i)
herbarium specimens, (ii) plot inventories, (iii) photo-
graphs and (iv) other observations collected over several
decades. First, we evaluated the geographic and environ-
mental representativeness of this occurrence dataset.
Second, we analysed how tree species richness found
on the main island (i.e. the g-diversity) is distributed
along altitudinal and rainfall gradients on the two main
substrate types. Last, we examined whether the spatial
distribution of rainforest tree species is more driven by
the environment than by dispersal ability. If species
exhibit environmental specialisation, their distribution
was hypothesized to be mainly driven by deterministic
processes. Furthermore, if species exhibit aggregative dis-
tributional patterns, we then concluded that their distri-
bution is mainly shaped by stochastic processes and
controlled by dispersal ability.

Methods

Study site

New Caledonia is located slightly north of the Tropic of Cap-
ricorn (20–238S, 164–1678E), �1500 km east of Australia
and 2000 km north of New Zealand. The main island
‘Grande Terre’, is long (400 km), narrow (40 km) and
accounts for nearly 85 % of the archipelago area. It lies
roughly SE : NW and is crossed by a central mountain
chain, where the highest peaks reach 1628 m in the north
(Mont Panié) and 1618 m in the south (Mont Humboldt).

Most of the UM substrates are located in the southeast
of Grande Terre in a main massif called the Grand Massif
du Sud while 12 other smaller UM massifs are scattered
along the northwest coast (Fritsch 2012). The UM sub-
strates provide a variety of soils with somewhat unusual
characteristics—always a deficiency of phosphorus,
potassium and calcium; frequently a high concentration
of magnesium; often a low water retention and poten-
tially phytotoxic levels of some metals including nickel,
manganese, chromium and cobalt. Obviously, plants
must be able to tolerate these soil conditions if they are
to establish here (Jaffré 1980). Overall, New Caledonian
trees can be classified into three balanced edaphic group-
ings: UM specialists, non-ultramafic (non-UM) specialists
(on volcano-sedimentary or acidic substrates) and
substrate-generalists (Ibanez et al. 2014).

Rainfalls range widely from 0.6 to 4.5 m year21 and are
generally lower on the leeward lowlands of the west coast
and higher on the windward mountain slopes of the east-
coast due to oro-topography and the eastern trade winds

(Météo-France 2007; Terry et al. 2008). A combination of
rainfall and elevation is commonly used to classify the
vegetation into the following: rainforest, dry sclerophyll
forest, scrubland called ‘maquis’, savannah, secondary
thickets and mangroves (Jaffré 1993; Jaffré et al. 2012).
Rainforests are the richest vegetation type (more than
2000 native vascular species) and covers �3800 km2,
with 1800 km2 on non-UM, 1100 km2 on UM and 900 km2

on calcareous substrates, mainly located in the Loyalty
Islands.

Selection of tree species

We focussed on the distribution of 702 woody tree species
(i.e. excluding lianas, tree ferns and palms) reaching a
diameter at breast height (DBH at 1.3 m) of 10 cm, at
least once in our set of 37 597 trees in the New Caledonian
Plant Inventory and Permanent Plot Network (NC-PIPPN).
Intraspecific ranks (subspecies and varieties) were merged
at the specific rank to ensure uniformity of identification
across datasets. The nomenclature of tree species followed
the New Caledonian taxonomic name reference Florical
(Morat et al. 2012).

The NC-PIPPN inventory covers a surface area of �15 ha
and comprises: (i) 220 plots of 0.04 ha (20 × 20 m), with
30 221 inventoried trees (DBH .5 cm) located across rain-
forests of Grande Terre on both UM (111 plots) and non-UM
substrates (89 plots) along a wide range of elevations
(5–1292 m on UM and 105–1187 m on non-UM) and rain-
falls (1.6–3.5 m year21 on UM and 1.8–3.4 m year21 on
non-UM) (see Ibanez et al. 2014) and (ii) six recently estab-
lished 1 ha plots (100 × 100 m), with 7376 inventoried
trees (DBH .10 cm) located in rainforests of the Northern
Province on non-UM substrates at mid-elevations (240–
780 m) and mid-rainfalls (1.3–3.0 m year21).

Compilation of tree occurrences

Occurrences of the 702 tree species were compiled from
four datasets: (i) the NC-PIPPN inventory (29 409 occur-
rences), (ii) herbarium specimens (22 715 specimens)
compiled from the database of the herbarium of the
IRD Centre of Noumea (NOU, http://herbier-
noumea.plantnet-project.org), (iii) other observations
(44 227 observations) from different unpublished inven-
tories used for assessing the flora of areas under consid-
eration for mining exploration or for conservation
measures ([see Supporting Information]) and (iv) photo-
graphs acquired in the field (4326 photographs).

We then checked datasets and removed inaccurate
geolocations. We only retained herbarium specimens
that were: (i) georeferenced with a Global Positioning Sys-
tem (GPS), (ii) collected by Hugh S. MacKee (the principal
contributor to the NOU Herbarium with �45 000 speci-
mens) and estimated to have a horizontal accuracy of
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,500 m according to his online gazetteer (http://
phanero.novcal.free.fr) or (iii) labelled with an elevation
matching with a difference of +50 m the elevation
extracted from a digital elevation model (DEM).

From the 100 677 initial occurrences, we compiled a
dataset of 38 936 (�40 %) unique occurrences combining
species with accurate geolocation: 11 845 from herbarium,
7420 from plots, 18 390 observations and 1281 photo-
graphs, used thereafter to describe the known distribution
of tree species in New Caledonia. A total of 15 285 occur-
rences (i.e. ,40 % of the whole dataset) were found in
rainforests while the remainder occurred in other vegeta-
tion types.

Environmental features

Substrate types (i.e. UM and non-UM) were extracted from
a UM substrate map downloaded from the Geographic
Portal of New Caledonia (http://www.georep.nc/, DIMENC/
SGNC-BRGM 2010). Elevation was extracted from a 50-m
resolution digital elevation model (DEM-DTSI 2012) and
rainfall from an interpolation model with a resolution of
1 km using mean annual rainfall compiled from 1990 to
2010 (AURELHY model, METEO-FRANCE). Finally, vegeta-
tion types were extracted from the vegetation map of
the Atlas of New Caledonia (Bonvallot et al. 2012). This
vegetation map is a broad-scale digitalization (scale of
1/1 600 000) based on aerial photographs in which only
the largest rainforest units covering �3276 km2 were
delineated (Jaffré et al. 2012).

Statistical analysis

Tree occurrences dataset. First, we subdivided the main
island into 5546 cells of 1 min2 resolution (1.852 ×
1.852 km) and computed in each cell the number of
occurrences (i.e. the occurrence density) and the number
of species (i.e. the species richness or a-diversity). We
then analysed the relative contributions of the four
datasets and examined the occurrence and species
patterns they produced.

Geographical and environmental distributions of
g-diversity. We then focussed on occurrences found
exclusively in rainforests, and analysed their distribution
as a function of environmental features including (i) the
substrate type (UM or non-UM), (ii) elevation and (iii)
mean annual rainfall. For each substrate, elevation and
rainfall class (bands of 100 m and 0.25 m year21,
respectively), we computed the number of occurrences
found in rainforests, the observed g-diversity and the
theoretical g-diversity (calculated by considering that a
species occurs between the minimal and maximal class
where it had been recorded). We then compared the
class distribution of available rainforest area, occurrences,

observed and theoretical g-diversity using linear log–log
models of correlation. Finally, we computed species
rarefaction curves and Fisher’s a diversity index at low,
mid and high classes of elevation (,400, 400–800 and
.800 m) and rainfall (,2.5, 2.5–3.0 and .3.0 m year21)
to avoid sampling bias (see McCain and Grytnes 2010).
Occurrence-based rarefaction curves with 95 % confidence
intervals were computed using 1000 random permutations
(e.g. Gotelli and Colwell 2001).

Geographical and environmental distributions of species.
Finally, we calculated a basic index of aggregation as the
ratio between the number of occurrences and the number
of grid-cells intercepted by each dataset (i.e. the mean
density of occurrences per grid-cell). At the species level,
we computed the Morisita index of aggregation (Imor) in
grid-cells as well as in the entire plots dataset (before
removing species duplicates) and used the standardized
Imst which ranges from 21 to 1. Species with Imst ≤ 20.5
are equally distributed across grid-cells or plot inventories
while species with Imst ≥ 0.5 are aggregated in some
grid-cells or plots.

Geographic data processing was performed using
Quantum GIS 2.6.0-Brighton (Quantum GIS Development
Team, 2014) and statistical analyses using R 2.15.2
(R Foundation for Statistical Computing, Vienna, Austria),
including the vegan package (Oksanen et al. 2013).

Results

Tree occurrences dataset

The 702 tree species selected belong to 195 accepted
genera and 80 families. At the family level, Myrtaceae
were the most common, followed in decreasing order
by Cunoniaceae, Sapindaceae, Araliaceae, Sapotaceae,
Clusiaceae, Rubiaceae, Lauraceae, Primulaceae, Ruta-
ceae and Apocynaceae. Together these represented
50 % of the total number of occurrences [see Supporting
Information]. At the species level, the 124 species
most-represented (92–491 occurrences per species) con-
tributed to 50 % of the total occurrences. In contrast, the
434 species least-represented (1–50 occurrences per
species) contributed to ,25 % of the total number of
occurrences.

Tree occurrences were distributed into 1213 cells of a
regular 1-min grid, which covers �22 % of New Caledo-
nia’s main island (Fig. 1). Occurrence density ranged
from 1 to 1405 per grid-cell (32 on average, +2 standard
error). Occurrences from the plot inventory dataset were
the most aggregated data, occurring in only 68 cells with
an average of 109 occurrences +18 per grid-cell. The next
most aggregated dataset was of observations (340 grid-
cells and 54 occurrences +5 per grid-cell). This was
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followed by herbarium specimens (1073 grid-cells and 11
occurrences +1 per grid-cell) and, last, photographs (156
grid-cells and 8 occurrences +1 per grid-cell).

Tree occurrences were substantially imbalanced among
substrate types (Table 1). More than two-thirds of the
occurrences were found on UM substrates while these

Figure 1. Distribution of the number of tree occurrences (N ), the number of species or g-diversity (R), number of intercepted cells on a 1 min-
resolution grid (G) and the occurrences/cells ratio (N/G) within each dataset and the resulting a-diversity computed for overall occurrences by
1-min cell (1.852 × 1.852 km).
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substrates cover only one-third of the island (Fig. 1). This
over-sampling was particularly high in the observation
dataset. Thus, the number of occurrences for a given
species was strongly correlated with its abundance on
UM substrates (Pearson’s correlation test R2 ¼ 0.94,
P-value ,0.001).

Overall, tree occurrences covered most of the eleva-
tion—rainfall combinations available on both UM and
non-UM substrates (Fig. 2). As a result, we observed a sig-
nificant correlation between the number of occurrences
and the available rainforest area along the elevation
gradient (R2 ¼ 0.71 on UM and 0.64 on non-UM, P-value
,0.001 in both cases). This correlation was weaker along
the rainfall gradient (R2 ¼ 0.45 on UM and 0.34 on non-
UM, P-value ,0.01 and 0.05, respectively, Table 2).

However, Fig. 2 reveals that occurrences on UM substrates
were particularly under-represented at mid-elevations
(500–800 m) and for mid-rainfalls (2.3–3.0 m year21),
while they were over-represented at high elevations
(above 1200 m) and for rainfalls (above 4.0 m year21).
On non-UM substrates, occurrences were concentrated
in a narrow elevation range (500–700 m) and also over-
represented at high elevations (above 800 m) and for
rainfalls (above 3.0 m year21).

Figure 3A and B shows under- and over-represented
regions of the environmental space. On both substrates,
below 500 m elevation and 2 m year21 rainfall, occur-
rences were under-represented with regard to the relative
rainforest surfaces. When projected on a map, under-
represented areas covered 1873 km2 of rainforests (i.e.
57 % of the total rainforest area) including 975 km2

(52 %) on UM substrates (Fig. 3C). The number of occur-
rences in under-represented areas was null in two-thirds
of the grid-cells (no-data cells) and ranged from 1 to
1405 in the other third. Among major orographic massifs
with no-data cells, those presenting an over-represented
environment include ‘Colnett’, ‘Me Maoya’ or ‘Saint
Vincent’ while those with an under-represented envir-
onment include ‘Mandjelia/Balade’, ‘Tonine/Gaitada’
‘Forêt plate’, ‘Source Neaoua’, ‘Karagreu/Boreare’ and
‘Kouakoué’.

Geographical and environmental distributions
of g-diversity

Overall, the a-diversity (i.e. the total number of species
per 1-min cell) was strongly correlated with the total
number of occurrences (Pearson’s correlation test, R2 ¼

0.86, P-value ,0.001). The observed g-diversity was
strongly log-correlated with the number of occurrences,
regardless of the substrate type or the environmental
gradient (R2 . 0.90 and P-value ,0.001 in all cases,
Table 2). Furthermore, the observed g-diversity was also
strongly log-correlated with the theoretical g-diversity
(R2 . 0.97, P-value ,0.001) except along the elevation
gradient on non-UM substrates, where the correlation
was weaker (R2 ¼ 0.82, P-value ,0.001, Table 2). Never-
theless we observed important differences between
observed and theoretical g-diversity at mid-elevation
and rainfall (Fig. 4). We note that along the elevation gra-
dient, the highest g-diversity on UM substrates was
recorded at low elevation despite a low density of occur-
rences. Conversely, at high elevations and high rainfalls,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1. Distribution of land area and tree occurrences in the whole Grande Terre (All) and in the outline of rainforests (Forest) for both UM and
non-UM substrates. Italic values represent the relative contribution of each classes.

All Forest

UM Non-UM Total UM Non-UM Total

Area (km2) 5805 11 469 17 274 1190 2086 3276

33.6 % 66.4 % 36.3 % 63.7 %

Occurrences (#) 26 340 12 596 38 936 7009 8276 15 285

67.6 % 32.4 % 45.9 % 54.1 %

Herbarium 6626 5219 11 845 2670 3204 5874

55.9 % 44.1 % 45.5 % 54.5 %

Plot 3831 3589 7420 780 3074 3854

51.6 % 48.4 % 20.2 % 79.8 %

Photograph 498 783 1281 192 599 791

38.9 % 61.1 % 24.3 % 75.7 %

Observation 15 385 3005 18 390 3367 1399 4766

83.7 % 16.3 % 70.6 % 29.4 %
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occurrences were dense, so the g-diversity observed
deviated from the available area.

However occurrences-based rarefaction curves clearly
attest a lower rate of species accumulation at higher classes
of elevation and rainfall on both substrates (Fig. 5). Such a
decrease was more pronounced on UM than on non-UM
substrates. Indeed, on UM substrates, Fisher’s a decreased
by �40 % from mid to high elevation or rainfall, while on
non-UM substrates it decreased by 25 and 30 % from low
to high elevation and rainfall.

Geographical and environmental distributions
of species

Although our list of tree species was drawn from occur-
rences in rainforest plots, tree species distribution extended
to many other vegetation types (see Fig. 1). Indeed, �5 %
of them (38 species) occurred only in rainforests. Less

than 10% (66 species) occurred strictly on UM substrates
and 13% (90 species) on non-UM. However, if we consider
that a threshold of 90% of the occurrences reveals a
species affiliation to a substrate, then 29% (205 species)
were affiliated to UM and 23% (161 species) to non-UM.
Finally �80 % of the rainforest species (561 species)
occurred once in ‘maquis’ through a total number of
18 503 occurrences.

With respect to other environmental features, half of
the species exhibited an elevation tolerance (the differ-
ence between the minimum and maximum elevation
where a species has been recorded) higher than 895 m
(891+332 m on average) and a rainfall tolerance higher
than 2.4 m year21 (2.2+0.8 m year21 on average), with
no significant deviation according to affiliations to sub-
strate (Kruskal–Wallis rank sum test, P-values .0.05).
This range of tolerances represents more than half of

Figure 2. Relative density distributions of land area (A and C) and tree occurrences (B and D) on UM substrate (A and B) and non-UM substrates
(C and D) along the rainfall and elevation gradients.
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the elevation and rainfall ranges available across the rain-
forest of Grande Terre. In contrast, the vast majority of
species exhibited a spatial distribution highly aggregated
at the scale of the Grande Terre (92 % of the species with
Imst ≥ 0.5) as well as in plots (90 % of the species with
Imst ≥ 0.5).

Discussion

Tree occurrences dataset

We compiled occurrences from herbarium specimens,
plot inventories, photographs and observations to draw
up a first assessment of tree distribution and diversity in
New Caledonian rainforests. These occurrences cover
almost a quarter of the main island, Grande Terre, provid-
ing a fairly comprehensive view of the actual distribution
of rainforest tree species. Herbarium specimens have

long been used to study species and diversity distribu-
tions (Lavoie 2013) and the biases associated with a taxo-
nomic approach are widely recognized (Ahrends et al.
2011). Species accumulation is more rapid when using
herbarium specimens than when using plot inventories
but their relative abundance is not reliable (e.g. Garcillán
and Ezcurra 2011). To our knowledge, the use of field
photographs is less common. The development of GPS
and photographic technologies now generates a huge
amount of high-quality georeferenced and retrospectively
verifiable information. In our study, even though this data
source was less substantial, we stress that in the future it
is likely to become a critical source of reliable data, by
involving parataxonomists, in particular, through collab-
orative networks (e.g. Basset et al. 2004). Even if observa-
tions may be more doubtful than from other datasets (i.e.
there is no way to check data a posteriori), these rapid

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Linear log–log correlation between the available rainforest area (AREA), the number of occurrences (N ), the observed g-diversity (Robs)
and the theoretical g-diversity (Rtheo) along the elevation gradient and the rainfall gradient and on UM and non-UM substrates separately
(*P , 0.05, **P , 0.01, ***P , 0.001).

Model Gradient Substrates Slope (SE) Intercept (SE) R2 F value Df P-value

log(N ) ¼ a × log(AREA) + b Elevation UM 0.44 (0.08) 21.52 (0.30) 0.71 34.65 14 ***

Non-UM 0.52 (0.10) 21.39 (0.44) 0.65 25.78 14 ***

Rainfall UM 0.85 (0.25) 20.62 (0.86) 0.45 11.32 14 **

Non-UM 0.87 (0.32) 20.71 (1.16) 0.34 7.33 14 *

log(Robs) ¼ a × log(N ) + b Elevation UM 0.83 (0.06) 7.56 (0.22) 0.92 163.9 15 ***

Non-UM 0.81 (0.06) 7.56 (0.23) 0.92 175.3 15 ***

Rainfall UM 0.64 (0.04) 7.03 (0.12) 0.96 334.1 13 ***

Non-UM 0.84 (0.06) 7.56 (0.22) 0.95 229.9 13 ***

log(Robs) ¼ a × log(AREA) + b Elevation UM 0.36 (0.06) 6.31 (0.22) 0.74 40.27 14 ***

Non-UM 0.44 (0.09) 6.49 (0.36) 0.65 25.88 14 ***

Rainfall UM 0.49 (0.16) 6.52 (0.55) 0.40 8.84 13 *

Non-UM 0.83 (0.26) 7.38 (0.94) 0.44 10.16 13 **

log(Rtheo) ¼ a × log(AREA) + b Elevation UM 0.37 (0.06) 21.01 (0.26) 0.7 32.9 14 ***

Non-UM 0.32 (0.07) 21.16 (0.28) 0.63 24 14 ***

Rainfall UM 0.57 (0.18) 20.60 (0.60) 0.44 10.27 13 **

Non-UM 0.78 (0.27) 20.13 (0.96) 0.39 8.44 13 *

log(Rtheo) ¼ a × log(N) + b Elevation UM 0.89 (0.06) 0.42 (0.20) 0.93 213.8 15 ***

Non-UM 0.65 (0.07) 20.23 (0.27) 0.84 82.05 15 ***

Rainfall UM 0.70 (0.05) 20.13 (0.17) 0.94 214.3 13 ***

Non-UM 0.80 (0.07) 0.11 (0.31) 0.90 111.1 13 ***

log(Robs) ¼ a × log(Rtheo) + b Elevation UM 0.93 (0.03) 7.18 (0.09) 0.98 734.8 15 ***

Non-UM 1.09 (0.13) 7.45 (0.34) 0.83 72.02 15 ***

Rainfall UM 0.89 (0.04) 7.10 (0.10) 0.97 486.1 13 ***

Non-UM 1.00 (0.05) 7.33 (0.14) 0.97 480.3 13 ***
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botanical surveys provide the very substantial quantity of
data required to enhance our understanding of species
distribution (Guitet et al. 2014). The complementarity of

these datasets provides information on both the spatial
and the ecological distribution of taxa and an assessment
of g-diversity.

Figure 3. Environmental representativeness of occurrences on UM (A) and non-UM substrates (B) and geographical projection of no-data cells
(C). Cells in red and green do not contain data. Cells in red are under-represented in our dataset and so are priorities for future botanical surveys
to improve the knowledge of species distribution.
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The dataset is unbalanced with regard to the number of
occurrences found on UM substrates (two-thirds of the
dataset). This pattern results from a huge dataset collected
over decades on UM substrates to assess and anticipate the
environmental impacts of mining activities (McCoy et al.
1999). In a cruel irony, our knowledge of tree species
distribution on UM has increased in direct proportion to
the decline in rainforest areas. In addition, the mismatch
between the number of occurrences and available rainfor-
est areas along the elevation and rainfall gradients reveals
substantially unknown rainforest areas (notably at low ele-
vation and with rainfall). These areas (see Fig. 3) should be
sampled in priority to improve the representativeness of
our occurrence data and subsequently to enhance our
knowledge of New Caledonian tree species distribution.
In the face of the high level of threat to New Caledonian
rainforests, this information is critical to build reliable
species distribution models under the current climate and
also under putative future climatic conditions.

Geographical and environmental distributions
of g-diversity

The log–log correlations between observed or theoretical
species g-diversity and the available land area along
the elevation gradient suggest that elevation impacts
g-diversity mainly through the so-called ‘area effect’ as
a consequence of the basic species/area relationship
(Sanders 2002). This effect was also found to drive plant
g-diversity on other high-elevation islands, including the
vascular flora of Borneo (Grytnes et al. 2008), the palm
flora of New Guinea (Bachman et al. 2004), the epiphytic
flora of Taiwan (Hsu et al. 2014) and the fern flora of
La Réunion Island (Karger et al. 2011). At the highest
elevations and rainfalls, the species accumulation rates
(a-Fisher) reveal a faster saturation of species richness.
This may reflect a bias in our species selection method
focussed on plots rarely distributed in such extremes
values. However, few tree species are known to be high-
elevation specialists in New Caledonia (Nasi et al. 2002).

Figure 4. Distribution of observed and theoretical g-diversities, the density of rainforest area and the density of tree occurrences on UM sub-
strates (A and B) and non-UM substrates (C and D) along the elevation and rainfall gradients.
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Furthermore, elevation in New Caledonia remains too low
to record abiotic factors such as extreme low tempera-
tures, freezing or extreme levels of solar radiation which
can radically change a flora due to plant physiological
limitations (Ghalambor et al. 2006; McCain and Grytnes
2010). Finally, the weaker correlation between g-diversity
and area along the rainfall gradient suggests that rainfall
is likely to act as a stronger environmental driver of
g-diversity than elevation.

Geographical and environmental distributions
of species

Most of the tree species selected from rainforest plots
occurred beyond the rainforest boundaries (�60 %).
This habitat transgression may be explained by a high tol-
erance of some species to open habitats such as ‘maquis’.
However, it could also be partially due to the scale of the
digitalization of the vegetation map, likely to be

inappropriate for exhaustively delineating rainforests
which are highly fragmented from low to mid-elevation
(Morat et al. 1999). This fragmentation results from a dra-
matic decrease in rainforest areas, which now occur on
only 50 % of the pre-human surfaces (Jaffré et al.
1998). As a consequence, occurrences recorded in small
relict patches were not included in the rainforest dataset
but they did contribute in identifying the range of species
tolerance with respect to substrate, elevation and rainfall.

Surprisingly, few species are substrate-specialists and
our findings depart markedly from a balanced distribution
in the three edaphic compartments (UM, non-UM and
generalist). The adjective ‘affiliated’ should be used rather
than ‘specialist’ since some edaphic transgressions could
be explained by soil properties that could mitigate defi-
ciencies and toxicity arising on UM substrates rather
than by the substrate itself (Read et al. 2006; Ibanez
et al. 2014). This tolerance to such contrasting habitats

Figure 5. Species richness occurrences-based rarefaction curves compiled for low (red), mid (green) and high (blue) classes of elevation (≤400,
400–800 and .800 m, respectively) and rainfall (≤2.5, 2.5–3.0 and .3.0 m year21, respectively) on UM (A and B) and non-UM substrates (C and
D), where a is Fisher’s index and N is the total number of occurrences (the dotted line is the theoretical maximum rate of accumulation).
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leads to an imbalance in species frequency; few were very
abundant (124 species that account for 50 % of our data-
set) while the vast majority remained rare in our dataset.
Hyperdominance or oligarchy has previously been
reported in other locations (Pitman et al. 2001, 2013; ter
Steege et al. 2013), including in Pacific islands (Keppel
et al. 2011), and is commonly related to low environmen-
tal heterogeneity, combined with a tendency towards
species–habitat associations rather than obligate associa-
tions. In New Caledonia, tree oligarchic species always
occur beyond the boundaries of substrates and rainforest
habitat, even though they are clearly affiliated with UM
substrate and rainforest. Thus, while constraints provided
by UM substrates are often invoked to explain the origin-
ality and the diversification of the New Caledonian flora
(Jaffré et al. 1987; Pintaud and Jaffré 2001; Pillon et al.
2010; Barrabé 2013), our findings nuance the specific rela-
tionship between UM substrate and trees distribution.
They suggest that the large spatial variability in environ-
mental conditions in UM rainforests could also have
been involved in the diversification processes.

Finally, the large tolerance of species to UM substrates,
elevation and rainfall contrasts with their spatial aggre-
gation at the scale of Grande Terre as well as within
plots network. This pattern supports the hypothesized
low dispersibility among rainforest tree species (Seidler
and Plotkin 2006). The loss of dispersibility in island plants
is one of the ‘insular syndromes’ described by Carlquist
(Carlquist 1974). Three hypotheses have been proposed
by Carlquist to explain the loss of dispersibility in island
plants: (i) the ‘precinctiveness’, which means that most
seedlings germinate close to the parent plant because
these habitats are more likely to be favourable than
those further away; (ii) some island plants have shifted
from a pioneering plant syndrome (r-strategists) to an
exacerbated forest syndrome (K-strategists) and (iii) con-
tact with the original dispersal vector may have been lost.
The first hypothesis fits well with the observed aggrega-
tion of rainforest tree species while the third could be con-
sistent with the low diversity of potential animal dispersal
agents (Carpenter et al. 2003). However the second
hypothesis runs counter to the very high tolerance of spe-
cies to environmental gradients, including the observed
transgressions beyond the habitat boundaries.

As a result, although the g-diversity follows classical
variations (e.g. hump-shaped) along environmental gra-
dients, the distribution of individual species results more
from stochastic processes rather than from deterministic
ones (Leibold 1995; Chase and Myers 2011; Rosindell et al.
2011). This is in line with previous results from Ibanez
et al. (2014) showing that the a-diversity is particularly
low and the b-diversity particularly high in New
Caledonian rainforests.

Conclusions
This study is the first to attempt to describe tree diversity
in New Caledonian rainforests through extensive datasets
collected over several decades. The collection effort is
clearly critical if a realistic view of the observed g-diversity
is to be obtained, while the complementarity of several
data collection methods provides both a comprehensive
and dense coverage of tree species distribution. The
wide ranges of tree species distribution with respect to
substrates, elevation and rainfall contrast (i) with their
spatial aggregation, (ii) with the small extent of rainforest
core and (iii) with the lowest g-diversity observed at
high elevation or rainfall. Our results suggest a uniform
g-diversity from low to mid-elevations (,800 m) and
rainfalls (,2.5 m year21), mostly dependent of occur-
rences and availability of rainforest areas. Above these
thresholds, the decrease in the g-diversity could be
more related to the increase in rainfall through biological
processes that we must further investigate in the future.
Lastly, this study calls for new botanical data to be col-
lected, mainly in non-UM rainforests under low elevation
and low rainfall, to better estimate the total g-diversity
with respect to the large amplitude of ecological condi-
tions available on Grande Terre.
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l’environnement-Service impact environmental et con-
servation’ of the Northern Province of New Caledonia.

Contributions by the Authors
P.B. conceived the study, managed the database, compiled
the datasets, proceeded with the GIS-analysis and led the
writing of this article. T.I. conceived the study, led the stat-
istical analyses and actively contributed to the writing. R.P.
actively contributed to the data compilation, the statistical
analyses and the writing. H.V. was involved in the collec-
tion of many tree species occurrences in all the datasets
used in this article. V.H. was also involved in the collection
of many tree species occurrences in all the datasets used
in this article. E.B. was fully involved in the setting up of
1 ha plots and reviewed the final manuscript. T.J. contrib-
uted to the overall coherence, robustness and balance of
this article by providing the essential references and con-
tributing from his experience of the ecology of New Cale-
donian forests, especially those on UM soils.

Conflict of Interest Statement
None declared.

12 AoB PLANTS www.aobplants.oxfordjournals.org & The Authors 2015

Birnbaum et al. — Tree diversity patterns in New Caledonia rainforests

 at C
IR

A
D

 - D
IST

 on Septem
ber 9, 2015

http://aobpla.oxfordjournals.org/
D

ow
nloaded from

 

http://aobpla.oxfordjournals.org/


Acknowledgements
The authors wish to thank all the contributors who have
collected data over lengthy periods, without whose con-
siderable efforts this study would not have been possible.
This dedication includes botanists who have collected
many samples as well as technicians and students who
have participated in the overall effort of observation of
New Caledonia trees. We also thank the two anonymous
referees for their invaluable help in improving the manu-
script. Finally, we express our sincere thanks to J.J. Cassan
and the SIEC (‘Service Impact environmental et conserva-
tion’) of the Northern Province of New Caledonia for their
unwavering commitment to our work.

Supporting Information
The following additional information is available in the
online version of this article –

File S1. List of the 702 tree species according to their
endemic (E) or indigenous (I) status, the total number of
occurrences (N), the number of occurrences on ultramafic
(UM) substrates, the number of occurrences in rainforest
(Forest) and the ranges of elevation and rainfall calculated
by the difference between the maximum and the min-
imum values where the species have been recorded.

File S2. Simplified list of reports related to inventory
studies and surveys in New Caledonian forests that have
most contributed to the ‘observations’ tree occurrences
dataset.

Literature Cited
Ahrends A, Rahbek C, Bulling MT, Burgess ND, Platts PJ, Lovett JC,

Kindemba VW, Owen N, Sallu AN, Marshall AR, Mhoro BE,
Fanning E, Marchant R. 2011. Conservation and the botanist
effect. Biological Conservation 144:131–140.

Bachman S, Baker WJ, Brummitt N, Dransfield J, Moat J. 2004. Eleva-
tional gradients, area and tropical island diversity: an example
from the palms of New Guinea. Ecography 27:299–310.
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Nouvelle-Calédonie, 73–76.
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Morat P. 1993. Our knowledge of the flora of New Caledonia: endem-
ism and diversity in relation to vegetation types and substrates.
Biodiversity Letters 1:72–81.

Morat P, Jaffré T, Veillon J-M. 1999. Menaces sur les taxons rares de la
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Monteagudo A, Núñez Vargas P, Montero JC, Feldpausch TR,
Coronado ENH, Killeen TJ, Mostacedo B, Vasquez R, Assis RL,
Terborgh J, Wittmann F, Andrade A, Laurance WF,
Laurance SGW, Marimon BS, Marimon B-H Jr, Guimarães
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