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Abstract. It has been shown that vegetation growth in semi-
arid regions is important to the global terrestrial CO2 sink,
which indicates the strong need for improved understanding
and spatially explicit estimates of CO2 uptake (gross primary
production; GPP) in semi-arid ecosystems. This study has
three aims: (1) to evaluate the MOD17A2H GPP (collection
6) product against GPP based on eddy covariance (EC) for
six sites across the Sahel; (2) to characterize relationships
between spatial and temporal variability in EC-based pho-
tosynthetic capacity (Fopt) and quantum efficiency (α) and
vegetation indices based on earth observation (EO) (normal-
ized difference vegetation index (NDVI), renormalized dif-
ference vegetation index (RDVI), enhanced vegetation index
(EVI) and shortwave infrared water stress index (SIWSI));
and (3) to study the applicability of EO upscaled Fopt and
α for GPP modelling purposes. MOD17A2H GPP (collec-
tion 6) drastically underestimated GPP, most likely because
maximum light use efficiency is set too low for semi-arid
ecosystems in the MODIS algorithm. Intra-annual dynam-
ics in Fopt were closely related to SIWSI being sensitive to
equivalent water thickness, whereas α was closely related to
RDVI being affected by chlorophyll abundance. Spatial and
inter-annual dynamics in Fopt and α were closely coupled to
NDVI and RDVI, respectively. Modelled GPP based on Fopt
and α upscaled using EO-based indices reproduced in situ
GPP well for all except a cropped site that was strongly im-

pacted by anthropogenic land use. Upscaled GPP for the Sa-
hel 2001–2014 was 736± 39 g C m−2 yr−1. This study indi-
cates the strong applicability of EO as a tool for spatially ex-
plicit estimates of GPP, Fopt and α; incorporating EO-based
Fopt and α in dynamic global vegetation models could im-
prove estimates of vegetation production and simulations of
ecosystem processes and hydro-biochemical cycles.

1 Introduction

Vegetation growth in semi-arid regions is an important sink
for fossil fuel emissions. Mean carbon dioxide (CO2) up-
take by terrestrial ecosystems is dominated by highly pro-
ductive lands, mainly tropical forests, whereas semi-arid re-
gions are the main biome driving its inter-annual variability
(Ahlström et al., 2015; Poulter et al., 2014). Semi-arid re-
gions contribute to 60 % of the long-term trend in the global
terrestrial C sink (Ahlström et al., 2015). It is thus impor-
tant to understand long-term variability of vegetation growth
in semi-arid areas and the response of vegetation to environ-
mental conditions to better quantify and forecast effects of
climate change.

The Sahel is a semi-arid transition zone between the dry
Sahara desert in the north and the humid Sudanian savanna
in the south. The region has experienced numerous severe
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droughts over the last decades, which resulted in region-
wide famines in 1972–1973 and 1984–1985 and localized
food shortages across the region in 1990, 2002, 2004, 2011
and 2012 (Abdi et al., 2014; United Nations, 2013). Vege-
tation production is thereby an important ecosystem service
for livelihoods in the Sahel, but it is under threat. The region
is experiencing strong population growth, increasing the de-
mand on ecosystem services due to cropland expansion, in-
creased pasture stocking rates and fuelwood extraction (Abdi
et al., 2014).

At the same time as we have reports of declining vegeta-
tion production, we have contradicting reports of the green-
ing of the Sahel based on earth observation (EO) data (Dardel
et al., 2014; Fensholt et al., 2013). The greening of the Sa-
hel has mainly been attributed to alleviated drought stress
conditions due to increased precipitation since the mid-1990s
(Hickler et al., 2005). Climate is thus another important fac-
tor regulating vegetation production. Semi-arid regions, such
as the Sahel, are particularly vulnerable to climate fluctua-
tions due to their dependency on moisture.

Estimation of gross primary production (GPP), i.e. uptake
of atmospheric CO2 by vegetation, is still a major challenge
for the remote sensing of ecosystem services. Gross primary
production is a main driver of ecosystem services such as
climate regulation, carbon (C) sequestration, C storage, food
production and livestock grassland production. Within EO,
spatial quantification of GPP generally involves light use ef-
ficiency (LUE), defined as the conversion efficiency of ab-
sorbed solar light into CO2 uptake (Monteith, 1972, 1977). It
has been shown that LUE varies in space and time due to fac-
tors such as plant functional type, drought and temperature,
nutrient levels, and physiological limitations of photosynthe-
sis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et
al., 2008). The LUE concept has been applied through vari-
ous methods, either by using a biome-specific LUE constant
(Ruimy et al., 1994) or by modifying a maximum LUE using
meteorological variables (Running et al., 2004).

An example of a LUE-based model is the standard GPP
product from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensor (MOD17A2). Within the model,
absorbed photosynthetically active radiation (PAR) is esti-
mated as a product of the fraction of PAR absorbed by green
vegetation (FPAR from MOD15A2) multiplied with daily
PAR from the meteorological data of the Global Model-
ing and Assimilation Office (GMAO). A set of maximum
LUE parameters specified for each biome are extracted from
a Biome Properties Look-Up Table (BPLUT). Then maxi-
mum LUE is modified depending on air temperature (Tair)

and vapour pressure deficit (VPD; Running et al., 2004).
Sjöström et al. (2013) evaluated the MOD17A2 product (col-
lection 5.1) for Africa and showed that it underestimated
GPP for semi-arid savannas in the Sahel. Explanations for
this underestimation were that the assigned maximum LUE
from BPLUT was set too low and that there were uncertain-
ties in the FPAR product (MOD15A2). Recently, a new col-

lection of MOD17A2 at a 500 m spatial resolution was re-
leased (MOD17A2H, collection 6) with an updated BPLUT,
updated GMAO meteorological data, improved quality con-
trol and gap-filling of the FPAR data from MOD15A2 (Run-
ning and Zhao, 2015).

It has been shown that the LUE method does not perform
well in arid conditions and at agricultural sites (Turner et al.,
2005). Additionally, the linearity assumed by the LUE model
is not usually found as the response of GPP to incoming light
follows more of an asymptotic curve (Cannell and Thorn-
ley, 1998). Investigating other methods for remotely deter-
mining GPP is thus of great importance, especially for semi-
arid environments. Therefore, instead of LUE, we focus on
the light response function of GPP at the canopy scale, and
spatial and temporal variation of its two main parameters:
maximum GPP under light saturation (canopy-scale photo-
synthetic capacity, Fopt) and the initial slope of the light re-
sponse function (canopy-scale quantum efficiency, α; Falge
et al., 2001; Tagesson et al., 2015a). Photosynthetic capac-
ity is a measure of the maximum rate at which the canopy
can fix CO2 during photosynthesis (µmol CO2 m−2 s−1),
whereas α is the amount of CO2 fixed per incoming PAR
(µmol CO2 µmol PAR−1). To clarify the difference in LUE
and α in this study, LUE (µmol CO2 µmol APAR−1) is the
slope of a linear fit between CO2 uptake and absorbed PAR,
whereas α (µmol CO2 µmol PAR−1) is the initial slope of an
asymptotic curve against incoming PAR.

It has been proven that Fopt and α are closely related to
chlorophyll abundance due to their coupling with the elec-
tron transport rate (Ide et al., 2010). Additionally, in semi-
arid ecosystems, water availability is generally considered to
be the main limiting factor affecting intra-annual dynamics
of vegetation growth (Fensholt et al., 2013; Hickler et al.,
2005; Tagesson et al., 2015b). Several remote sensing stud-
ies have established relationships between remotely sensed
vegetation indices and ecosystem properties such as chloro-
phyll abundance and equivalent water thickness (Yoder and
Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In
this study, we will analyse whether EO vegetation indices
can be used to upscale Fopt and α and investigate whether this
could offer a promising way to map GPP in semi-arid areas.
This potential will be analysed by the use of detailed ground
observations from six eddy covariance (EC) flux tower sites
across the Sahel.

The three aims of this study are

1. to investigate whether the recently released
MOD17A2H GPP (collection 6) product is better
at capturing GPP for the Sahel than collection 5.1. We
hypothesize that the MOD17A2H GPP (collection 6)
product will estimate GPP well for the six Sahelian EC
sites because of major changes made in comparison to
collection 5.1 (Running and Zhao, 2015);

2. to characterize the relationships between spatial and
temporal variability in Fopt and α and remotely sensed
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vegetation indices. We hypothesise that EO vegetation
indices that are closely related to chlorophyll abundance
will be most strongly coupled with spatial and inter-
annual dynamics in Fopt and α, whereas vegetation in-
dices closely related to equivalent water thickness will
be most strongly coupled with intra-annual dynamics in
Fopt and α across the Sahel;

3. to evaluate the applicability of a GPP model based on
the light response function using EO vegetation indices
and incoming PAR as input data.

2 Materials and methods

2.1 Site description

The Sahel stretches from the Atlantic Ocean in the west to
the Red Sea in the east. The northern border towards the Sa-
hara and the southern border towards the humid Sudanian
savanna are defined by the 150 and 700 mm isohyets, respec-
tively (Fig. 1; Prince et al., 1995). Tree and shrub canopy
cover is now generally low (< 5 %) and dominated by species
of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et
al., 1996). Annual grasses such as Schoenefeldia gracilis,
Dactyloctenium aegyptium, Aristida mutabilis and Cenchrus
biflorus dominate the herbaceous layer, but perennial grasses
such as Andropogon gayanus and Cymbopogon schoenan-
thus can also be found (Rietkerk et al., 1996; de Ridder et al.,
1982). From the FLUXNET database (Baldocchi et al., 2001)
we selected six measurement sites with EC-based CO2 flux
data from the Sahel (Table 1; Fig. 1). The sites represent a
variety of ecosystems present in the region, from dry fallow
bush savanna to seasonally inundated acacia forest. For a full
description of the measurement sites, we refer to Tagesson et
al. (2016a) and references in Table 1.

2.2 Data collection

2.2.1 Eddy covariance and hydrometeorological in situ
data

Eddy covariance and hydrometeorological data originating
from the years between 2005 and 2013 were collected from
the principal investigators of the measurement sites (Tages-
son et al., 2016a). The EC sensor set-up consisted of open-
path CO2 and H2O infrared gas analysers and three-axis
sonic anemometers. Data were collected at 20 Hz and statis-
tics were calculated for 30 min periods. For a full descrip-
tion of the sensor set-up and post processing of EC data,
see the references in Table 1. Final fluxes were filtered ac-
cording to quality flags provided by FLUXNET and out-
liers were filtered according to Papale et al. (2006). We
extracted the original net ecosystem exchange (NEE) data
without any gap-filling or partitioning of NEE to GPP and

ecosystem respiration. The hydrometeorological data col-
lected were air temperature (Tair, ◦C), rainfall (P , mm), rela-
tive air humidity (Rh, %), soil moisture at 0.1 m depth (SWC,
% volumetric water content), incoming global radiation (Rg,
W m−2), incoming photosynthetically active radiation (PAR,
µmol m−2 s−1), VPD (hPa), peak dry weight biomass (g dry
weight m−2), C3 /C4 species ratio and soil conditions (ni-
trogen and C concentration, %). For a full description of the
collected data and sensor set-up, see Tagesson et al. (2016a).

2.2.2 Earth observation data and gridded ancillary
data

Composite products from MODIS/Terra covering the Sa-
hel were acquired at Reverb ECHO (NASA, 2016). Col-
lected products were GPP (MOD17A2H, collection 6), nadir
bidirectional reflectance distribution function adjusted re-
flectance (NBAR; 8-day composites; MCD43A4, collection
5.1) at 500× 500 m2 spatial resolution, the normalized dif-
ference vegetation index (NDVI) and the enhanced vegeta-
tion index (EVI; 16-day composites; MOD13Q1; collection
6) at 250× 250 m2 spatial resolution. The NBAR product
was preferred over the reflectance product (MOD09A1) in
order to avoid variability caused by varying sun and sen-
sor viewing geometry (Huber et al., 2014; Tagesson et al.,
2015c). We extracted the median of 3× 3 pixels centred at
the location of each EC tower. Time series of EO prod-
ucts were filtered according to MODIS quality control data.
MOD17A2H is a gap-filled and filtered product, and QC data
from MCD43A2 were used for filtering of MCD43A4. Bit
2–5 (highest-decreasing quality) was used for MOD13Q1.
Finally, data were gap-filled to daily values using linear in-
terpolation.

We downloaded ERA Interim reanalysis PAR at the
ground surface (W m−2) with a spatial resolution of
0.25◦× 0.25◦ accumulated for each 3 h period from 2000 to
2014 from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Dee et al., 2011; ECMWF, 2016a).

2.3 Data handling

2.3.1 Intra-annual dynamics in photosynthetic capacity
and quantum efficiency

To estimate daily values of EC-based Fopt and α, the asymp-
totic Mitscherlich light-response function was fitted between
daytime NEE and incoming PAR using a 7-day moving win-
dow with a 1-day time step:

NEE=−(Fopt)× (1− e
(
−α×PAR
Fopt

)
)+Rd, (1)

where Fopt is CO2 uptake at light saturation (photosyn-
thetic capacity; µmol CO2 m−2 s−1), Rd is dark respiration
(µmol CO2 m−2 s−1) and α is the initial slope of the light re-
sponse curve (quantum efficiency; µmol CO2 µmol PAR−1;

www.biogeosciences.net/14/1333/2017/ Biogeosciences, 14, 1333–1348, 2017



1336 T. Tagesson et al.: Modelling spatial and temporal dynamics of gross primary production

Table 1. Description of the six measurement sites, including location, soil type, ecosystem type and dominant species.

Measurement site Coordinates Soil type Ecosystem Dominant species

Agoufoua 15.34◦ N, Sandy ferruginous Open woody Trees: Acacia spp.,
(ML-AgG, Mali) 1.48◦W Arenosol savanna (4 % Balanites aegyptiaca,

tree cover) Combretum glutinosum
Herbs: Zornia glochidiata
Cenchrus biflorus, Aristida
mutabilis, Tragus berteronianus

Dahrab 15.40◦ N, Sandy luvic Grassland and/or shrubland Trees: Acacia spp.,
(SN-Dah, Senegal) 15.43◦W Arenosol Savanna (3 % Balanites aegyptiaca

tree cover) Herbs: Zornia latifolia,
Aristida adscensionis,
Cenchrus biflorus

Demokeyac 13.28◦ N, Cambic Arenosol Sparse acacia Trees: Acacia spp.,
(SD-Dem, Sudan) 30.48◦ E savannah (7 % Herbs: Aristida pallida,

tree cover) Eragrostis tremula,
Cenchrus biflorus

Kelmaa 15.22◦ N, Clay soil Open acacia forest Trees: Acacia seyal,
(ML-Kem, Mali) 1.57◦W depression (90 % tree cover) Acacia nilotica, Balanites aegyptiaca,

Herbs: Sporobolus hevolvus
Echinochloa colona, Aeschynomene
sensitive

Wankama Fallowd 13.65◦ N, Sandy ferruginous Fallow bush Guiera senegalensis
(NE-WaF, Niger) 2.63◦ E Arenosol
Wankama Millete 13.64◦ N, Sandy ferruginous Millet crop Pennisetum glaucum
(NE-WaM, Niger) 2.63◦ E Arenosol

a Timouk et al. (2009). b Tagesson et al. (2015b). c Sjöström et al. (2009). d Velluet et al. (2014). e Boulain et al. (2009).

Figure 1. Land cover classes for the Sahel and the location of the six measurement sites of this study. The land cover classes are based on
multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), Dahra (SN-Dah), Demokeya (SD-Dem), Kelma
(ML-Kem), Wankama Fallow (NE-WaF) and Wankama Millet (NE-WaM). The thick black line delineates borders of the Sahel based on
annual 150 and 700 mm isohyets (Prince et al., 1995).
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Falge et al., 2001). By subtracting Rd from Eq. (1), the func-
tion was forced through zero and GPP was thereby estimated.
To ensure a high quality of fitted parameters, parameters
were excluded from the analysis when fitting was insignif-
icant (p value > 0.05) and when they were out of range (Fopt
and α > peak value of the rainy season times 1.2). Addition-
ally, outliers were filtered following the method by Papale et
al. (2006) using a 30-day moving window with a 1-day time
step.

2.3.2 Vegetation indices

The maximum absorption in red wavelengths generally oc-
curs at 682 nm as this is the peak absorption for chlorophyll a
and b (Thenkabail et al., 2000), which makes vegetation in-
dices that include the red band sensitive to chlorophyll abun-
dance. By far the most common vegetation index is NDVI
(Rouse et al., 1974):

NDVI=
(ρNIR− ρred)

(ρNIR+ ρred)
, (2)

where ρNIR is the reflectance factor in the near-infrared
(NIR) band (band 2) and ρred is the reflectance factor in the
red band (band 1). Near-infrared radiance is reflected by leaf
cells since absorption of these wavelengths would result in
overheating of the plant, whereas red radiance is absorbed by
chlorophyll and its accessory pigments (Gates et al., 1965).
Normalization is done to reduce effects of atmospheric er-
rors, solar zenith angles and sensor viewing geometry, as well
as to increase the vegetation signal (Qi et al., 1994; Inoue et
al., 2008).

A well-known deficiency of NDVI is problems of index
saturation at high biomass because absorption of red light at
∼ 670 nm peaks at higher biomass loads, whereas NIR re-
flectance continues to increase due to multiple scattering ef-
fects (Mutanga and Skidmore, 2004; Jin and Eklundh, 2014).
By reducing atmospheric and soil background influences,
EVI is designed to increase the signal from the vegetation
and maintain sensitivity in high biomass regions (Huete et
al., 2002).

EVI=G
(ρNIR− ρred)

(ρNIR+C1ρred−C2ρblue+L)
, (3)

where ρblue is the reflectance factor in the blue band (band 3).
The coefficientsC1 = 6 andC2 = 7.5 correct for atmospheric
influences, while L= 1 adjusts for the canopy background.
The factor G= 2.5 is a gain factor.

Another attempt to overcome problems of NDVI satura-
tion was proposed by Roujean and Breon (1995), who sug-
gested the renormalized difference vegetation index (RDVI),
which combines advantages of DVI (NIR-red) and NDVI for
low and high vegetation cover, respectively:

RDVI=
(ρNIR− ρred)
√
(ρNIR+ ρred)

. (4)

As a non-linear index, RDVI is not only less sensitive to vari-
ations in geometrical and optical properties of unknown fo-
liage but also less affected by solar and viewing geometry
(Broge and Leblanc, 2001).

The NIR and shortwave infrared (SWIR) bands are af-
fected by the same ground properties, except that SWIR
bands are also strongly sensitive to equivalent water thick-
ness. Fensholt and Sandholt (2003) proposed a vegetation in-
dex, the shortwave infrared water stress index (SIWSI), using
NIR and SWIR bands to estimate drought stress for vegeta-
tion in semi-arid environments:

SIWSI12 =
(ρNIR− ρSWIR12)

(ρNIR+ ρSWIR12)
(5)

SIWSI16 =
(ρNIR− ρSWIR16)

(ρNIR+ ρSWIR16)
, (6)

where ρSWIR12 is NBAR band 5 (1230–1250 nm) and
ρSWIR16 is NBAR band 6 (1628–1652 nm). As the vegeta-
tion water content increases, reflectance in SWIR decreases,
indicating that low and high SIWSI values point to sufficient
water conditions and drought stress, respectively. The vege-
tation indices RDVI, SIWSI12 and SIWSI16 were calculated
based on NBAR bands 1, 2, 5 and 6.

2.3.3 Incoming PAR across the Sahel

A modified version of the ERA Interim reanalysis PAR was
used in the current study as there was an error in the code pro-
ducing these PAR estimates; the estimates were generally too
low (ECMWF, 2016b). Accordingly, incoming PAR at the
ground surface from ERA Interim was systematically under-
estimated even though it followed the pattern of PAR mea-
sured at the six Sahelian EC sites (Fig. S1 in Supplement). In
order to correct for this error, we fitted and applied an ordi-
nary least squares linear regression between in situ PAR and
ERA Interim PAR (Fig. S1). The PAR produced from this re-
lationship is at the same level as in situ PAR and should be at
a correct level even though the original ERA Interim PAR is
actually produced from the red and near-infrared part of the
spectrum.

2.4 Data analysis

2.4.1 Coupling temporal and spatial dynamics in
photosynthetic capacity and quantum efficiency
with explanatory variables

The coupling between intra-annual dynamics in Fopt and
α and the vegetation indices for the different measurement
sites were studied using Pearson correlation analysis. As part
of the correlation analysis, we used a bootstrap simulation
methodology with 200 iterations from which the mean and
the standard deviation (SD) of the correlation coefficients
were calculated (Richter et al., 2012). Relationships between
intra-annual dynamics in Fopt and α and the vegetation in-
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dices for all sites combined were also analysed. In the anal-
ysis for all sites, data were normalized to avoid influence of
spatial and inter-annual variability. Time series of ratios of
Fopt and α (Fopt_frac and αfrac) against the annual peak val-
ues (Fopt_peak and αpeak; see below for calculation of annual
peak values) were estimated for all sites:

Fopt_frac =
Fopt

Fopt_peak
(7)

αfrac =
α

αpeak
. (8)

The same standardization procedure was used for all vegeta-
tion indices (VIfrac):

VIfrac =
VI

VIpeak
, (9)

where VIpeak is the annual peak values of the vegetation in-
dices (14-day running mean with highest annual value). The
αfrac and Fopt_frac were correlated with the different VIfrac
to investigate the coupling between intra-annual dynamics in
Fopt and α and the vegetation indices for all sites.

Regression trees were used to fill gaps in the daily esti-
mates of Fopt and α. Based on 100 cross-validation runs,
100 tree sizes were chosen, and these trees were then used
to estimate Fopt and α following the method in De’ath and
Fabricius (2000). We used SWC, VPD, Tair, PAR and the
vegetation index with the strongest correlation with intra-
annual dynamics as explanatory variables in the analysis. In
the analysis for all sites, the same standardization procedure
as done for Fopt, α and the vegetation indices was done for
the hydrometeorological variables. The 100 Fopt and α out-
put subsets from the regression trees were averaged and used
for filling gaps in the times series of Fopt and α. From these
time series, we estimated annual peak values of Fopt and α
(Fopt_peak and αpeak) as the 14-day running mean with the
highest annual value. To investigate spatial and inter-annual
variability in Fopt and α across the measurement sites of the
Sahel, Fopt_peak and αpeak were correlated with the annual
sum of P ; yearly means of Tair, SWC, RH, VPD and Rg;
annual peak values of biomass; soil nitrogen and C concen-
trations; the C3 /C4 ratio; and VIpeak.

2.4.2 Parameterization and evaluation of the GPP
model and evaluation of the MODIS GPP

On the basis of Eq. (1) and the outcome of the statistical anal-
ysis previously described under Sect. 2.4.1 (for results, see
Sect. 3.2), a model for estimating GPP across the Sahel was
created:

GPP=−Fopt×

(
1− e

(
−α×PAR
Fopt

))
. (10)

Firstly, Fopt_peak and αpeak were estimated spatially and inter-
annually using linear regression functions fitted against the

vegetation indices, with the strongest relationships to spa-
tial and inter-annual variability in Fopt_peak and αpeak for all
sites. Secondly, exponential regression functions were estab-
lished for Fopt_frac and αfrac with the vegetation index, with
the strongest relationships with intra-annual variability of
Fopt_frac and αfrac for all sites. By combining these relation-
ships, Fopt and α can be calculated for any day of year and
for any point in space across the Sahel:

Fopt = Fopt_peak×Fopt_frac

=
(
kFopt ×NDVIpeak+mFopt

)(
nFopt × e

(
lFopt×RDVIfrac

))
(11)

α = αpeak×αfrac =
(
kα ×RDVIpeak+mα

)(
nα × e

(lα×RDVIfrac)
)
, (12)

where kFopt and kα are slopes and mFopt and mα are inter-
cepts of the linear regressions, giving Fopt_peak and αpeak, re-
spectively; lFopt and lα are coefficients and nFopt and nα are
intercepts of the exponential regressions, giving Fopt_frac and
αfrac, respectively. Equations (11) and (12) were inserted into
Eq. (10), and GPP was thereby estimated as

GPP=−
(
Fopt_peak×Fopt_frac

)
×

1− e

(
−(αpeak×αfrac)×PAR
Fopt_peak×Fopt_frac

)=
−
((
kFopt ×NDVIpeak+mFopt

)(
nFopt × e

(
lFopt×RDV Ifrac

)))
×

1− e

(
−(kα×RDVIpeak+mα)

(
nα×e

(lα×RDVIfrac)
)
×PAR(

kFopt×NDVIpeak+mFopt

)(
lFopt×RDVIfrac+nFopt

)
). (13)

A bootstrap simulation methodology was used when fitting
the least squares regression functions for parameterization of
the GPP model (Richter et al., 2012). For each of the itera-
tions, some of the EC site years were included and some were
omitted. The bootstrap simulations generated 200 sets of
kFopt , kα , mFopt , mα , lFopt , lα , nFopt , nα and coefficient of de-
termination (R2). Possible errors (e.g. random sampling er-
rors, aerosols, electrical sensor noise, filtering and gap-filling
errors, clouds and satellite sensor degradation) can be present
in both the predictor and the response variables. Hence, we
selected reduced major axis regressions to account for er-
rors in both predictor and response variables when fitting the
regression functions. The regression models were validated
against the omitted site years within the bootstrap simulation
methodology by calculating the RMSE and by fitting an or-
dinary least square linear regression between modelled and
independent variables.

Similarly, the MODIS GPP product (MOD17A2H; collec-
tion 6) was evaluated against independent GPP from the EC
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Figure 2. Evaluation of the MODIS-based GPP product
MOD17A2H (collection 6) against eddy-covariance-based GPP
from the six measurement sites (Fig. 1). The thick black line shows
the one-to-one ratio and the grey dotted line, the fitted ordinary least
squares regression.

sites by calculating the RMSE and by fitting an ordinary least
square linear regression.

3 Results

3.1 Evaluation of the MODIS GPP product

There was a strong linear relationship between the MODIS
GPP product (MOD17A2H; collection 6) and independent
GPP (slope= 0.17; intercept= 0.11 g C m−2 d−1;R2

= 0.69;
n= 598). However, MOD17A2H strongly underestimated
independent GPP (Fig. 2), resulting in a high RMSE
(2.69 g C m−2 d−1). It can be seen that some points for the
Kelma site were quite low for MOD17A2H, whereas they
were relatively high for the independent GPP (Fig. 2). Kelma
is an inundated Acacia forest located in a clay soil depres-
sion. These differentiated values were found in the beginning
of the dry season, when the depression was still inundated,
whereas the larger area was turning dry.

3.2 Intra-annual dynamics in photosynthetic capacity
and quantum efficiency

Intra-annual dynamics in Fopt and α differed in amplitude,
but were otherwise similar across the measurement sites in
the Sahel (Fig. 3). There was no green ground vegetation
during the dry season, and the low photosynthetic activity
was due to few evergreen trees. This resulted in low values

Figure 3. Time series of photosynthetic capacity (Fopt) and quan-
tum efficiency (α) for the six measurement sites. Also included are
time series of the vegetation indices with highest correlation with
Fopt (VIFopt) and quantum efficiency (VIα ; Table 2). The sites are
(a) Agoufou (ML-AgG), (b) Dahra (SN-Dah), (c) Demokeya (SD-
Dem), (d) Kelma (ML-Kem), (e) Wankama Fallow (NE-WaF) and
(f) Wankama Millet (NE-WaM).

for both Fopt and α during the dry season. The vegetation re-
sponded strongly to rainfall, and both Fopt and α increased
during the early phase of the rainy season. Generally, Fopt
peaked slightly earlier than α (average ±1 SD: 7± 10 days;
Fig. 3).

All vegetation indices described intra-annual dynamics in
Fopt reasonably well at all sites (Table 2). The vegetation in-
dex SIWSI12 had the highest correlation for all sites except
Wankama Millet, where it was RDVI. When all sites were
combined, all indices described seasonality in Fopt well, but
RDVI had the strongest correlation (Table 2).

Intra-annual dynamics in α were also closely coupled to
intra-annual dynamics in the vegetation indices for all sites
(Table 2). For α, RDVI was the strongest index describing
intra-annual dynamics, except for Wankama Fallow, where it
was EVI. When all sites were combined, all indices described
intra-annual dynamics in α well, but RDVI was still the index
with the strongest relationship (Table 2).
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Table 2. Correlation between intra-annual dynamics in photosynthetic capacity (Fopt; Fopt_frac for all sites), quantum efficiency (α; α_frac
for all sites) and the different vegetation indices for the six measurement sites (Fig. 1). Values are averages ±1 SD generated from 200
bootstrapping runs. The bold values are the indices with the strongest correlation. EVI is the enhanced vegetation index, NDVI is the
normalized difference vegetation index, RDVI is the renormalized difference vegetation index and SIWSI is the shortwave infrared water
stress index. SIWSI12 is based on the MODIS NBAR bands 2 and 5, whereas SIWSI16 is based on MODIS NBAR bands 2 and 6.

Fopt α

Measurement site EVI NDVI RDVI SIWSI12 SIWSI16 EVI NDVI RDVI SIWSI12 SIWSI16

ML-AgG 0.89± 0.02 0.87± 0.02 0.95± 0.01 −0.95± 0.01 −0.93± 0.02 0.92± 0.02 0.91± 0.01 0.96± 0.01 −0.94± 0.01 −0.88± 0.02
SN-Dah 0.92± 0.005 0.91± 0.01 0.96± 0.003 −0.96± 0.004 −0.93± 0.01 0.89± 0.01 0.90± 0.01 0.93± 0.01 −0.92± 0.01 −0.87± 0.01
SD-Dem 0.81± 0.01 0.78± 0.01 0.91± 0.01 −0.93± 0.01 −0.90± 0.01 0.76± 0.02 0.73± 0.02 0.86± 0.01 −0.82± 0.02 −0.79± 0.02
MA-Kem 0.77± 0.02 0.83± 0.02 0.95± 0.01 −0.95± 0.01 −0.90± 0.02 0.69± 0.05 0.73± 0.04 0.80± 0.03 −0.77± 0.03 −0.76± 0.03
NE-WaF 0.87± 0.02 0.81± 0.02 0.78± 0.02 −0.90± 0.01 −0.80± 0.02 0.89± 0.01 0.84± 0.01 0.85± 0.01 −0.88± 0.01 −0.79± 0.01
NE-WaM 0.41± 0.05 0.50± 0.04 0.72± 0.03 −0.55± 0.04 −0.43± 0.05 0.72± 0.02 0.76± 0.02 0.81± 0.01 −0.75± 0.01 −0.72± 0.01
All sites 0.86± 0.0 0.79± 0.0 0.90± 0.0 0.75± 0.0 0.70± 0.0 0.83± 0.01 0.80± 0.01 0.86± 0.01 0.62± 0.01 0.54± 0.01

Table 3. Statistics for the regression tree analysis. Regression tree analysis was used to study relationships between intra-annual dynamics in
photosynthetic capacity (Fopt; Fopt_frac for all sites) and quantum efficiency (α; α_frac for all sites) and explanatory variables. The pruning
level is the number of splits of the regression tree and an indication of complexity of the system.

Measurement site Explanatory variables Pruning R2

level

Fopt 1 2 3 4 5

ML-AgG SIWSI12 Tair PAR SWC 16 0.98
SN-Dah SIWSI12 SWC VPD Tair PAR 84 0.98
SD-Dem SIWSI12 VPD SWC Tair PAR 33 0.97
ML-Kem SIWSI12 PAR Tair VPD 22 0.98
NE-WaF SIWSI12 SWC VPD Tair 14 0.92
NE-WaM RDVI SWC VPD Tair 18 0.75

All sites RDVI SWC Tair VPD 16 0.87

α

ML-AgG RDVI 3 0.95
SN-Dah RDVI VPD SWC Tair PAR 21 0.93
SD-Dem RDVI SWC PAR Tair 16 0.93
ML-Kem RDVI Tair 4 0.75
NE-WaF EVI SWC VPD 10 0.90
NE-WaM RDVI SWC VPD Tair 15 0.86

All sites RDVI SWC VPD Tair 16 0.84

The regression trees used for gap-filling explained the
intra-annual dynamics in Fopt and α well for all sites (Ta-
ble 3; Fig. S2). The regression trees explained intra-annual
dynamics in Fopt better than in α, and multi-year sites were
better predicted than single-year sites (Fig. S2). The main ex-
planatory variables coupled to intra-annual dynamics in Fopt
for all sites across the Sahel were on the order of RDVI,
SWC, VPD, Tair and PAR. For α, they were RDVI, SWC,
VPD and Tair (Table 3). The strong relationship to SWC
and VPD indicates drought stress during periods of low rain-
fall. For all sites across the Sahel, incorporating hydromete-
orological variables increased the ability to determine intra-
annual dynamics in Fopt and α compared to the ordinary least
square linear regressions against vegetation indices (Table 2,
data given as r; Table 3; Figs. 3 and S2). For all sites, incor-

poration of these variables increased R2 from 0.81 to 0.87
and from 0.74 to 0.84 for Fopt and α, respectively.

3.3 Spatial and inter-annual dynamics in
photosynthetic capacity and quantum efficiency

Large spatial and inter-annual variability in Fopt_peak
and αpeak were found across the six measurement
sites; Fopt_peak ranged between 10.1 (Wankama Mil-
let 2005) and 50.0 µmol CO2 m−2 s−1 (Dahra 2010), and
αpeak ranged between 0.020 (Demokeya 2007) and
0.064 µmol CO2 µmol PAR−1 (Dahra 2010; Table 4).
The average 2-week running mean peak values of Fopt
and α for all sites were 26.4 µmol CO2 m−2 s−1 and
0.040 µmol CO2 µmol PAR−1, respectively. All vegetation
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Table 4. Annual peak values of quantum efficiency
(αpeak; µmol CO2 µmol PAR−1) and photosynthetic capacity
(Fopt_peak; µmol CO2 m−2 s−1) for the six measurement sites
(Fig. 1). The peak values are the 2-week running mean with highest
annual value.

Measurement site Year αpeak Fopt_peak

ML-AgG 2007 0.0396 24.5
SN-Dah 2010 0.0638 50.0

2011 0.0507 42.3
2012 0.0480 39.2
2013 0.0549 40.0

SD-Dem 2007 0.0257 16.5
2008 0.0327 21.0
2009 0.0368 16.5

ML-Kem 2007 0.0526 33.5
NE-WaF 2005 0.0273 18.2

2006 0.0413 21.0
NE-WaM 2005 0.0252 10.6

2006 0.0200 10.1

Average 0.0399 26.4

indices determined spatial and inter-annual dynamics well in
both Fopt_peak and αpeak (Table 5); Fopt_peak was most closely
coupled with NDVIpeak, whereas αpeak was more closely
coupled with RDVIpeak (Fig. 4). Fopt_peak also correlated well
with peak dry weight biomass, C content in the soil and RH,
whereas αpeak also correlated with peak dry weight biomass
and C content in the soil (Table 5).

3.4 Spatially extrapolated photosynthetic capacity,
quantum efficiency and gross primary production
across the Sahel and evaluation of the GPP model

The spatially extrapolated Fopt, α and GPP averaged
over the Sahel for 2001–2014 were 22.5± 1.7 µmol CO2
m−2 s−1, 0.030± 0.002 µmol CO2 µmol PAR−1 and
736± 39 g C m−2 yr−1, respectively. At a regional scale, it
can be seen that Fopt, α and GPP decreased substantially with
latitude (Fig. 5). The highest values were found in south-
eastern Senegal, western Mali, in parts of southern Sudan and
on the border between Sudan and South Sudan. The lowest
values were found along the northernmost parts of the Sahel
on the border to the Sahara in Mauritania, in northern Mali
and in northern Niger.

Modelled GPP was similar to independent GPP on aver-
age, and there was a strong linear relationship between mod-
elled GPP and independent GPP for all sites (Fig. 6; Table 6).
However, when separating the evaluation between measure-
ment sites, it can be seen that the model reproduced some
sites better than others (Fig. 7; Table 6). Wankama Millet
was generally overestimated, whereas on average the model
worked well for Demokeya but underestimated high values
(Fig. 7; Table 6). Variability of independent GPP at the other

Table 5. Correlation matrix between annual peak values of photo-
synthetic capacity (Fopt_peak) and quantum efficiency (αpeak) and
measured environmental variables: annual rainfall (P ); yearly av-
erages of air temperature at 2 m height (Tair), soil water content
measured at 0.1 m depth (SWC; % volumetric water content), rel-
ative humidity (Rh), vapour pressure deficit (VPD) and incoming
global radiation (Rg); soil nitrogen (N) and carbon (C) contents; and
annual peak values of the normalized difference vegetation index
(NDVIpeak), the enhanced vegetation index (EVIpeak), the renor-
malized difference vegetation index (RDVIpeak), the shortwave in-
frared water stress index based on MODIS NBAR bands 2 and 5
(SIWSI12peak), and the SIWSI based on MODIS NBAR bands 2
and 6 (SIWSI16peak). Sample size was 13 for all except the marked
explanatory variables.

Explanatory variable Fopt_peak αpeak

Meteorological data

P (mm) 0.24± 0.26 0.13± 0.27
Tair (◦C) −0.07± 0.25 −0.01± 0.25
SWC (%)a 0.33± 0.25 0.16± 0.27
Rh (%) 0.73± 0.16∗ 0.60± 0.19
VPD (hPa) 0.20± 0.26 0.15± 0.30
Rg (W m−2) −0.48± 0.21 −0.41± 0.24

Biomass and edaphic data

Biomass (g DW m−2)a 0.77± 0.15∗ 0.74± 0.14∗

C3 /C4 ratio −0.05± 0.26 0.06± 0.30
N cont. ( %)b 0.22± 0.11 0.35± 0.14
C cont. ( %)b 0.89± 0.06∗∗ 0.87± 0.07∗∗

Earth observation data

NDVI peak 0.94± 0.05∗∗ 0.87± 0.07∗∗

EVIpeak 0.93± 0.04∗∗ 0.87± 0.07∗∗

RDVIpeak 0.93± 0.04∗∗ 0.89± 0.07∗∗

SIWSI12peak 0.85± 0.08∗∗ 0.84± 0.08∗∗

SIWSI16peak 0.67± 0.12∗ 0.65± 0.15∗

Photosynthetic variables

Fopt – 0.94± 0.03∗∗

a Sample size equals 11. b Sample size equals 9. ∗ Significant at 0.05 level.
∗∗ Significant at 0.01 level.

sites was reproduced by the model reasonably well (Fig. 7;
Table 6). The final parameters of the GPP model (Eq. 13) are
shown in Table 7.

4 Discussion

Our hypothesis that vegetation indices closely related to SI-
WSI would be most strongly coupled with intra-annual dy-
namics in Fopt and α was not rejected for Fopt since this
was the case for all sites except for Wankama Millet (Ta-
ble 2). However, our hypothesis was rejected for α, since it
was more closely related to vegetation indices of chlorophyll

www.biogeosciences.net/14/1333/2017/ Biogeosciences, 14, 1333–1348, 2017



1342 T. Tagesson et al.: Modelling spatial and temporal dynamics of gross primary production

Figure 4. Scatter plots of annual peak values for the six measurement sites (Fig. 1) of (a) photosynthetic capacity (Fopt_peak) and (b) quantum
efficiency (αpeak) against peak values of normalized difference vegetation index (NDVIpeak) and renormalized difference vegetation index
(RDVIpeak), respectively. The annual peak values were estimated by taking the annual maximum of a 2-week running mean.

Table 6. Statistics regarding the evaluation of the gross primary production (GPP) model for the six measurement sites (Fig. 1). In situ and
modelled GPP are averages±1 SD. RMSE is the root mean square error, and slope, intercept and R2 are from the fitted ordinary least square
linear regressions.

Measurement In situ GPP Modelled GPP RMSE Slope Intercept R2

site (µmol CO2 m−2 s−1) (µmol CO2 m−2 s−1) (µmol CO2 m−2 s−1) (µmol CO2 m−2 s−1)

ML-AgG 5.35± 6.38 5.97± 5.80 2.48± 0.10 0.84± 0.003 1.46± 0.01 0.86± 0.002
SN-Dah 9.39± 10.17 8.87± 9.67 3.99± 1.34 0.88± 0.002 0.62± 0.01 0.85± 0.001
SD-Dem 4.26± 4.55 3.98± 3.90 3.15± 1.06 0.63± 0.003 1.31± 0.007 0.54± 0.02
ML-Kem 11.16± 8.02 10.52± 9.22 4.35± 1.23 1.02± 0.003 −0.82± 0.03 0.78± 0.002
NE-WaF 5.77± 4.17 6.63± 3.53 2.47± 1.05 0.70± 0.005 2.58± 0.02 0.69± 0.003
NE-WaM 3.04± 1.93 6.35± 3.47 4.12± 0.99 1.31± 0.004 2.37± 0.02 0.53± 0.003
Average 6.73± 7.72 7.02± 7.39 3.68± 0.55 0.83± 0.07 1.34± 0.82 0.84± 0.07

Figure 5. Maps of (a) peak values of photosynthetic capacity
(Fopt_peak) averaged for 2001–2014, (b) peak values of quantum
efficiency (αpeak) averaged for 2001–2014 and (c) annual budgets
of GPP averaged for 2001–2014.

Table 7. The parameters for Eq. (13) that were used in the final
gross primary production (GPP) model. RMSE is the root mean
square error, and R2 is the coefficient of determination for the re-
gression models predicting the different variables.

Parameter Value RMSE R2

kFopt 79.6± 6.3 5.1± 1.3 0.89± 0.05
mFopt −7.3± 3.2
lFopt 3.51± 0.19 0.15± 0.02 0.88± 0.06
nFopt 0.03± 0.006
α 0.16± 0.02 0.0069± 0.0021 0.81± 0.10
mFopt −0.014± 0.007
lFopt 3.75± 0.27 0.20± 0.02 0.80± 0.10
nFopt 0.02± 0.007

abundance (RDVI and EVI). In the Sahel, soil moisture con-
ditions in the early rainy season are important for vegetation
growth, and during this phase vegetation is especially vulner-
able to drought conditions (Rockström and de Rouw, 1997;
Tagesson et al., 2016a; Mbow et al., 2013). Photosynthetic
capacity (Fopt) peaked earlier than α did in the rainy sea-
son (Fig. 3), thereby explaining the close relationship of Fopt
to SIWSI. Leaf area index increased over the growing season
and leaf area index is closely coupled with vegetation indices
related to chlorophyll abundance (Tagesson et al., 2009). The
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increase in leaf area index increased canopy level quantum
efficiency (α), thereby explaining the closer relationship of
α with RDVI.

Our hypothesis that vegetation indices closely related to
chlorophyll abundance would be most strongly coupled with
spatial and inter-annual dynamics in Fopt and α was not re-
jected for either Fopt or α; NDVI, EVI and RDVI all corre-
lated with spatial and inter-annual dynamics in Fopt and α
(Table 5). However, it was surprising that NDVIpeak had the
strongest correlation with spatial and inter-annual variability
in Fopt (Table 5). Both EVI and RDVI should be less sensitive
to saturation effects than NDVI (Huete et al., 2002; Roujean
and Breon, 1995), and based on this it can be assumed that
peak values of these indices should have stronger relation-
ships with peak values of Fopt and α. However, vegetation
indices with a high sensitivity to changes in green biomass at
high biomass loads become less sensitive to green biomass
changes at low biomass loads (Huete et al., 2002). The peak
leaf area index for ecosystems across the Sahel is generally
∼ 2 m2 m−2 or less, whereas the saturation issue of NDVI
generally starts at a leaf area index of about 2–5 m2 m−2

(Haboudane et al., 2004).
The Fopt_peak estimates from Agoufou, Demokeya and the

Wankama sites were similar, whereas Dahra and Kelma val-
ues were high in relation to previously reported canopy-
scale Fopt_peak from the Sahel (∼−8 to −23 µmol m−2 s−1;
Hanan et al., 1998; Merbold et al., 2009; Moncrieff et al.,
1997; Boulain et al., 2009; Levy et al., 1997; Monteny
et al., 1997). These previous studies reported much lower
Fopt at canopy scale than at leaf scale (e.g. Levy et al.,
1997: 10 vs. 44 µmol m−2 s−1; Boulain et al., 2009: 8 vs.
50 µmol m−2 s−1). The leaf area index at Dahra and Kelma
peaked at 2.1 and 2.7, respectively (Timouk et al., 2009;
Tagesson et al., 2015a), and it was substantially higher than
at the above-mentioned sites. A possible explanation for high
Fopt estimates at Dahra and Kelma could therefore be the
higher leaf area index. Tagesson et al. (2016b) performed a
quality check of the EC data due to the high net CO2 ex-
change measured at the Dahra field site and explained the
high values by a combination of moderately dense herba-
ceous C4 ground vegetation, high soil nutrient availability
and a grazing pressure resulting in compensatory growth and
fertilization effects. Another possible explanation could be
that the West African monsoon brings a humid layer of sur-
face air from the Atlantic, possibly increasing vegetation pro-
duction for the most western part of the Sahel (Tagesson et
al., 2016a).

Our model substantially overestimated GPP for Wankama
Millet (Fig. 7f). Being a crop field, this site differed from the
other sites in its species composition and ecosystem struc-
ture, as well as land and vegetation management. Crop fields
in southwestern Niger are generally characterized by rather
low production, resulting from decreased fertility and soil
loss caused by intensive land use (Cappelaere et al., 2009).
These specifics of the Wankama Millet site may cause the

Figure 6. Evaluation of the modelled gross primary production
(GPP; Eq. 13) against in situ GPP from all six measurement sites.
The thick grey line shows the one-to-one ratio, whereas the thin
dotted grey line is the fitted ordinary least square regression.

model, parameterized with observations from the other study
sites without this strong anthropogenic influence, to overesti-
mate GPP at this site. Similar results were found by Boulain
et al. (2009) when applying an upscaling model using leaf
area index for Wankama Millet and Wankama Fallow. It
worked well for Wankama fallow, whereas it was less con-
clusive for Wankama Millet. The main explanation for this
difference was low leaf area index in millet fields because
of a low density of millet stands due to agricultural practice.
There is extensive savanna clearing for food production in the
Sahel (Leblanc et al., 2008; Boulain et al., 2009; Cappelaere
et al., 2009). To further understand impacts of this land cover
change on vegetation production and land–atmosphere ex-
change processes, there is an urgent need for more study sites
covering cropped areas in this region.

In Demokeya, GPP was slightly underestimated for 2008
(Fig. 7c) because modelled Fopt was much lower than the ac-
tual measured value in 2008 (the thick black line in Fig. 4).
An improvement of the model could be to incorporate some
parameters that constrain or enhance Fopt depending on en-
vironmental stress. Indeed, the regression tree analysis in-
dicated that incorporating hydrometeorological variables in-
creased the ability to predict both Fopt and α. Conversely, for
spatial upscaling purposes, it has been shown that including
modelled hydrometeorological constraints on LUE decreases
the ability to predict vegetation production due to the incor-
porated uncertainty in these modelled variables (Fensholt et
al., 2006; Ma et al., 2014). For spatial upscaling to regional
scales, it is therefore better to simply use relationships with
EO data. This is particularly the case for the Sahel, one of the
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Figure 7. Evaluation of the modelled gross primary production
(GPP; Eq. 13) against in situ GPP for the six sites across the Sahel
(Fig. 1). The thick black lines show the one-to-one ratios, whereas
the dotted thin grey lines are the fitted ordinary least square regres-
sions. The sites are (a) Agoufou (ML-AgG), (b) Dahra (SN-Dah),
(c) Demokeya (SD-Dem), (d) Kelma (ML-Kem), (e) Wankama Fal-
low (NE-WaF) and (f) Wankama Millet (NE-WaM).

largest dryland areas in the world, which includes only a few
sites of hydrometeorological observations.

The pattern seen in the spatially explicit GPP budgets
(Fig. 5c) may be influenced by a range of biophysical and
anthropogenic factors. The clear north–south gradient is ex-
pected given the strong north–south rainfall gradient in the
Sahel. The West African monsoon mentioned above could
also be an explanation of high GPP values in the western part
of the Sahel, where values were relatively high in relation
to GPP at similar latitudes in the central and eastern Sahel
(Fig. 5c). The areas with the highest GPP are sparsely popu-
lated woodlands or shrubby savanna with a relatively dense
tree cover (Brandt et al., 2016). However, the maps produced
here should be used with caution as they are based on upscal-
ing of data collected at only six EC sites available in the re-
gion, especially given the issues related to the cropped fields
discussed earlier. Still, the average GPP budget for the entire
Sahel 2001–2014 was close to an average annual GPP budget
estimated at these six sites (692± 89 g C m−2 yr−1; Tagesson
et al., 2016a). The range of GPP budgets in Fig. 5c is also
similar to previous annual GPP budgets reported from other

savannas across the world (Veenendaal et al., 2004; Chen et
al., 2003, 2006; Kanniah et al., 2010).

Although MOD17A2 GPP has previously been shown to
capture GPP in several ecosystems types well (Turner et
al., 2006, 2005; Heinsch et al., 2006; Sims et al., 2006;
Kanniah et al., 2009), it has been shown to underestimate
it in others (Coops et al., 2007; Gebremichael and Bar-
ros, 2006; Sjöström et al., 2013). Gross primary produc-
tion of Sahelian drylands have not been captured well by
MOD17A2 (Sjöström et al., 2013; Fensholt et al., 2006),
and as we have shown, this underestimation persists in the
latest MOD17A2H GPP (collection 6) product (Fig. 2).
The main reason for this pronounced underestimation is
that maximum LUE is set to 0.84 g C MJ−1 (open shrub-
land, Demokeya) and 0.86 g C MJ−1 (grassland; Agoufou,
Dahra, Kelma; Wankama Millet and Wankama Fallow) in
the BPLUT, i.e. much lower than maximum LUE mea-
sured at the Sahelian measurement sites of this study (av-
erage: 2.47 g C MJ−1; range: 1.58–3.50 g C MJ−1; Sjöström
et al., 2013; Tagesson et al., 2015a), a global estimate of
∼ 1.5 g C MJ−1 (Garbulsky et al., 2010) and a savanna site
in Australia (1.26 g C MJ−1; Kanniah et al., 2009).

Several dynamic global vegetation models have been used
for decades to quantify GPP at different spatial and temporal
scales (Dickinson, 1983; Sellers et al., 1997). These models
are generally based on the photosynthesis model of Farquhar
et al. (1980), a model particularly sensitive to uncertainty in
photosynthetic capacity (Zhang et al., 2014). This and several
previous studies have shown that both photosynthetic capac-
ity and efficiency (both α and LUE) can vary considerably
between seasons as well as spatially vary, and both within
and between vegetation types (Eamus et al., 2013; Garbul-
sky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a).
This variability is difficult to estimate using broad values
based on land cover classes, yet most models apply a constant
value, which can cause substantial inaccuracies in the esti-
mates of seasonal and spatial variability in GPP. This is par-
ticularly a problem in savannas that consist of several plant
functional types (C3 and C4 species, and a large variability
in tree and/or herbaceous vegetation fractions; Scholes and
Archer, 1997). This study indicates the applicability of EO as
a tool for parameterizing spatially explicit estimates of plant
physiological variables, which could improve our ability to
simulate GPP. Spatially explicit estimates of GPP at a high
temporal and spatial resolution are essential for environmen-
tal change studies in the Sahel and can contribute to increased
knowledge regarding changes in GPP, its relationship to cli-
matic change and anthropogenic forcing, and simulations of
ecosystem processes and hydro-biochemical cycles.

Data availability. The EC data are available from Fluxnet
(http://fluxnet.ornl.gov) and CarboAfrica (http://www.carboafrica.
net/indexen.asp). The ERA Interim PAR data are available from
ECMWF (http://apps.ecmwf.int/datasets/data/interim-full-daily/
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