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Abstract

Primary ciliary dyskinesia (PCD) is a rare and heterogeneous genetic
disorder that affects the structure and function of motile cilia. In the
airway epithelium, impaired ciliary motion results in reduced or
absent mucociliary clearance that leads to the appearance of chronic
airway infection, sinusitis, and bronchiectasis. Currently, there is no
effective treatment for PCD, and research is limited by the lack of
convenient models to study this disease and investigate innovative
therapies. Furthermore, the high heterogeneity of PCD genotypes is

likely to hinder the development of a single therapy for all patients.
The generation of patient-derived, induced pluripotent stem cells,
and their differentiation into airway epithelium, as well as genome
editing technologies, could represent major tools for in vitro PCD
modeling and for developing personalized therapies. Here, we
review PCD pathogenesis and then discuss how human induced
pluripotent stem cells could be used to model this disease for the
development of innovative, patient-specific biotherapies.
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Primary ciliary dyskinesia (PCD) is a rare,
genetically heterogeneous lung disease. The
disorder, first described by Siewert and
Kartagener (1) as a combination of chronic
sinusitis, bronchiectasis, and situs inversus
(Kartagener’s syndrome), was linked 40
years later to ciliary motility dysfunction
(2). Since then, PCD-symptomatic features
have been broadly studied and described,
and great effort has been made to improve
the diagnosis and characterization of the
disease (3). In humans, motile cilia line the
respiratory tract and provide the movement
necessary for mucus transport. Due to
impaired cilia motility and insufficient
mucociliary clearance, patients with PCD
present from infancy and throughout

their life a variety of sinopulmonary
symptoms, including chronic infections

that cause sinusitis, rhinitis, and, eventually,
bronchiectasis (3). As motile cilia

are also important for the determination
of the left-right asymmetry during
embryogenesis, ciliary motion defects lead
to situs inversus in approximately 50% of
patients (3). PCD diagnosis can be delayed
or missed, because most of the symptoms
overlap with those of other pathologies,
and no gold-standard diagnostic test is
available (4).

Furthermore, there are only
symptomatic treatments that are mostly
based on transposition of what is used for
patients with cystic fibrosis (CF) or with
non-CF bronchiectasis (4). Importantly,
despite the progress made in these past
years to better characterize PCD, research
on new therapeutics is limited. This

could be mainly explained by the lack of
convenient models to study the disease and
test new therapies. The currently

used model organisms do not exactly
recapitulate the specificity of the human
airway epithelium, and patient biopsies are
useful, but are limited in quantity and only
offer a short window of opportunities to
perform experiments (5). Moreover, PCD
is a rare disease with high clinical and
genotypic heterogeneity. Different genes
can be affected with a broad range of
mutations, leading to a spectrum of
phenotypes, from acute, life-threatening
conditions to mild symptoms. This
complexity is likely to be an obstacle to the
development of a single therapy to treat all
patients, and has probably led researchers
to focus on more common and defined




disorders to develop innovative therapies.
Finally, PCD suffer from a lack of general
public recognition compared with other
rare genetic disorders, which results in
fewer funding opportunities and less
research.

Human induced pluripotent stem
cells (hiPSCs) hold tremendous potential
for disease modeling and cell therapy
development. These cells, which are euploid,
can self-renew indefinitely, differentiate into
any cell type, and are amenable to genetic
manipulation (6). Owing to these properties,
several research teams have described the
successful hiPSC differentiation into airway
epithelium with multiciliated cells (7-11),
opening the way to model respiratory
diseases in a dish.

Here, after reviewing the structure of
cilia and recapitulating the most recent
knowledge about PCD, we discuss hiPSC
potential for modeling this disease. We then
explore different strategies that can be
applied for the development of innovative,
patient-specific biotherapies.

Cilia and PCD

Ciliary Structure and Function
Cilia are highly conserved organelles among
eukaryotes and are present on most cell
types in the human body. Their functions
vary, depending on their structure and
location. Nonmotile cilia are involved in
sensory and signaling functions, and are
generally present as a single appendage on
most cell types. Motile cilia are mainly
responsible for fluid movement and sperm
motility, but can also have sensory functions
(12). For instance, in the airway epithelium
that lines the respiratory tract, motile cilia
beat in a synchronized manner to generate
the flow necessary for mucociliary clearance
(13). Motile cilia are also localized on
ependymal cells where they drive
cerebrospinal fluid flow, and in the fallopian
tubes for egg transport (14). Moreover, they
are transiently present during embryogenesis
as a solitary structure on the cells of the
embryonic node, where they are involved
in the determination of the left-right
asymmetry pattern (1). Finally, the
flagellum, a specialized motile cilium,
governs spermatozoa motility (15).
During ciliogenesis, the axoneme
emanates from the basal body docked to the
apical cell membrane. This highly conserved
structure is the most prominent part of the

cilium, and consists of a cytoskeleton of
microtubules and multiprotein complexes.
In the axoneme, microtubules are arranged
ina 9+ 2 or 9+ 0 pattern, where a ring
of nine peripheral doublets surrounds, or
does not surround, a central pair of singlet
microtubules (16) (Figure 1).

In motile cilia, the ATP-dependent
motor function is regulated by two distinct
dynein complexes: the outer dynein arm
(DA) and the inner DA. These two
complexes generate the force necessary
for the sliding of adjacent microtubule
doublets relative to each other, which
results in cilium bending through the
regulation exercised by accessory axonemal
components (17). These associated structures
include the nexin-dynein regulatory
complexes (N-DRCs) that link adjacent
peripheral microtubule doublets, the
central apparatus formed by a sheath of
proteins surrounding the central pair, and
the radial spokes that link the outer

Airway motile cilia

microtubule doublets to the central
apparatus (16) (Figure 1). Axonemal
subunits can be preassembled in the
cytoplasm and are actively transported in
and out of the cilium by the intraflagellar
transport system. Moreover, all these
axonemal structures show a highly
conserved periodicity along the axoneme
(18).

In conclusion, cilia are highly complex
and regulated structures that involve
hundreds of proteins. Therefore, deleterious
mutations in any of the genes encoding
proteins with a role in ciliogenesis,
preassembly, axoneme structure, or ciliary
transport can potentially lead to a ciliopathy,
and to PCD when motile cilia are affected
(19).

PCD: Clinical Features and Diagnosis
PCD clinical presentation is heterogeneous,
and includes a broad range of symptoms
that are commonly found in other

w Outer dynein arm

Figure 1. Structure of the axoneme of airway motile cilia. Schematic representation of the axoneme
of airway epithelium motile cilia. Axonemal subunits are actively transported in and out of the cilium by
the intraflagellar transport (IFT). IFT forms trains of axonemal subunit cargos that are delivered to the
distal tip of the cilium for assembly and for protein turnover through the action of kinesin-Il
(anterograde transport). Recycling is mediated by the cytoplasmic dynein 2 motor that moves
axonemal particles out of the cilium (retrograde transport). Axonemes are formed by microtubules and
numerous multiprotein complexes repeated through the entire length of the structure.



diseases. However, several combined

and recurrent clinical features should
evoke PCD. Specifically, from infancy
and throughout their entire lives,
patients with PCD report a variety of
sinopulmonary symptoms with
progressive decline of lung functions.
These symptoms appear soon after birth,
and neonatal respiratory distress is
recorded in most cases (4). Most patients
present persistent nasal congestion and
recurrent cough, starting early during
infancy and lasting through adulthood.
Chronic infections of the upper and lower
respiratory tract lead to sinusitis, rhinitis,
and, eventually, bronchiectasis (4).
Recurrent acute otitis media also is
common during childhood, leading to
progressive hearing loss (3). Organ
laterality defects are observed in half

of the patients (Kartagener’s syndrome)
(4). Furthermore, dysfunction of ciliary
motility in the fallopian tubes and of the
sperm flagellum can lead to subfertility
or infertility (20).

The prevalence of the disease is difficult
to estimate, because PCD diagnosis can be
delayed due to its nonspecific symptoms and
absence of a screening test. Moreover, PCD
is highly heterogeneous, with a broad range
of possible mutations affecting many genes,
and, despite the considerable progress made
these past years, many other not-yet-
identified genes could be associated with
PCD. Thus, genetic testing remains expensive
and time consuming without the certainty
of a final diagnosis (21).

PCD Genetics

Recent advances in next-generation
sequencing technologies have accelerated
the discovery of PCD-associated genes.
To date, 41 genes have been linked to
PCD, among which 38 show an autosomal
recessive inheritance pattern, and three
are X linked (RPGR, OFDI, and PIHID3;
Table 1). However, recent data suggest
that PCD inheritance pattern and genetic
cause might be more complex than
thought, and could also be linked to
transheterozygous mutations in PCD-
associated genes (22). Most of the
described PCD-associated gene variants
are patient specific, with few recurring
mutations. Usually, patients present
compound heterozygous mutations with
the exception of individuals with a history
of consanguinity who harbor homozygous
mutations.

PCD-associated genes encode proteins
involved in various ciliary structures and
functions, such as ciliogenesis, cytoplasmic
preassembly of axonemal components,
axonemal structure, and/or motility, that
can lead to diverse ultrastructural defects
and phenotypes (Table 1).

The mutation variability and the large
number of genes that can be affected are
likely to hinder the development of a
single therapy for all patients with PCD.
Therefore, the development of personalized
treatments tailored to each individual
patient will certainly be required for PCD
management.

PCD Modeling

Model Organisms
To understand the molecular mechanisms
underlying PCD, much research has focused
on the study of cilia, and particularly the
functions and structures associated with
their motility. Despite their complexity, the
architecture of cilia and flagellar axonemes
are evolutionarily conserved among living
organisms (23). This has allowed their study
in many different model organisms, with
specific advantages and limitations (Table 2).
These models have also been essential for
the identification of many PCD-associated
genes and for the study of ciliopathies.
Pioneering studies were performed
using the green alga, Chlamydomonas
reinhardtii. In this biflagellate unicellular
organism, the axonemal structure and
protein composition of cilia show great
similarity with human motile cilia (24).
C. reinhardtii can be grown in large
quantities, and mutants are readily obtained.
Thanks to these features, this model has
proven useful for characterizing the global
protein composition of cilia, as well as
for identifying genes and their roles in
axonemal assembly, structure, and function.
This has allowed the identification of
homologous genes involved in PCD (25).
Other unicellular organisms, such as
Trypanosoma brucei and Tetrahymena
thermophila, have been used to study cilia
and to identify evolutionarily conserved
structures of motile cilia/flagella. However,
when compared with human motile cilia,
these unicellular organisms show key
differences in flagella structure and
function that make impossible to fully
recapitulate the specific ciliopathy phenotypes
in such models.

Larger multicellular organisms,
such as sea urchin, Caenorhabditis elegans,
Xenopus laevis, Drosophila melanogaster,
and Danio rerio, also have been used to
study cilia biology and for PCD modeling.
Investigations in the widely used D. rerio
(zebrafish) model have allowed the
identification and validation of PCD
candidate genes and their function in ciliary
motility. In this model, mutations in
axonemal motility components can
partially reproduce some of the effects
seen in ciliopathies, including situs
abnormalities. Nevertheless, all these
models are phylogenetically distant
from humans, and none of them fully
recapitulate the pleiotropic symptoms
observed in patients with PCD. Particularly,
in these model organisms, cilia have
unrelated functions with those of the
multiciliated airway epithelium, thus
limiting their use as PCD models. Indeed,
the possibility of modeling the coordinated
beating of cilia responsible for mucociliary
clearance is a prerequisite for testing potential
rescue therapies.

Therefore, various PCD mouse
models have been generated. They show
aspects of the disorder, such as ciliary
dyskinesia, defective mucociliary
clearance leading to rhinitis and sinusitis,
situs abnormalities, and fertility defects
(26). Mouse models can be used to
investigate, at the whole-organism level,
different aspects of PCD biology, and to
test novel therapies. Nevertheless, as
there are significant differences between
human and mouse lungs (27), the
phenotypes of many murine models are
different from those of patients with
PCD. For instance, severe hydrocephalus
and cardiac defects associated with
reduced viability are common outcomes
in various mouse models, but not in
patients with PCD. In addition,
bronchiectasis, a hallmark symptom in
patients with PCD, is not observed in
these mice.

Overall, these model organisms
are essential tools for deciphering
cilia biology, but are less suitable for the
development of novel PCD-therapeutic
approaches (Table 2).

Cell Culture Models

PCD can be modeled in vitro using
various protocols to obtain and
maintain human airway epithelial cell
(HAEC) cultures, and particularly
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Table 2. Advantages and Disadvantages of Primary Ciliary Dyskinesia models

Model

Unicellular
models (e.g.,
Chlamydomonas
reinhardtii)

Multicellular
organisms (e.g.,
Danio rerio)

Mammal models
(e.g., mouse)

HAEC lines

Primary HAECs

hiPSC-derived
epithelium

Advantages

Easy to culture/amplify

Mutants can be readily obtained

Phenotypically well characterized

Great models for basic research, candidate gene
discovery, and validation

Easy to culture/amplify

Mutants can be readily obtained

Phenotypically well characterized

Great models for basic research, candidate gene
discovery, and validation

Relatively easy to genetically manipulate

Cilia are highly similar in structure, protein composition,
and functions

Recapitulate most of the PCD phenotypes

Great models for basic research and candidate gene
validation

Good models to investigate potential PCD therapies at
the whole-organism level

Easy to culture/amplify

Recapitulate most of the airway epithelia complexity

Good models for basic and applied research

Relatively good models to investigate potential PCD
therapies

Recapitulate PCD genotype complexity/heterogeneity
Recapitulate most of the airway epithelia complexity
Good model for basic and applied research

Good model to investigate potential PCD therapies

Recapitulate PCD genotype complexity/heterogeneity
Recapitulate most of the airway epithelia complexity
Unlimited amount of material

Relatively easy to genetically manipulate

Great model for basic and applied research

Great model to investigate potential PCD therapies

Disadvantages

Differences in ciliary structure, protein composition,
and functions compared with humans

Recapitulate only few PCD phenotypes

Poor models to investigate potential PCD therapies

Differences in ciliary structure, protein composition,
and functions compared with humans

Recapitulate only some of the PCD phenotypes

Poor models to investigate potential PCD therapies

Differences between human and other mammal
lungs

Do not fully recapitulate PCD pleiotropic phenotypes

Additional phenotypes can be observed

Difficulties to transpose results from therapeutic
preclinical trials to humans

Genotypes, karyotypes, and phenotypes can differ
from those of wild-type cells
Relatively difficult to genetically manipulate

Require invasive sampling methods
Difficult to culture and to amplify
High heterogeneity

Difficult to genetically manipulate

Differentiation protocols to be optimized for each cell
line

Differentiation protocols remain time consuming and
expensive

Genomic stability needs to be monitored

Definition of abbreviations: HAECs = human airway epithelial cells; hiPSC = human induced pluripotent stem cell; PCD = primary ciliary dyskinesia.

List of the models that can be used to study PCD and investigate potential therapies. The advantages and disadvantages of each model are described to
allow researchers to choose the best system for a specific question. iPSC-derived airway epithelium presents many advantages, making it an interesting
platform to study PCD and evaluate personalized medicine.

multiciliated cells. Cultures can be

performed using either cell lines
(immortalized or engineered) or primary
HAECs directly obtained from patient
biopsies. Different culture conditions
can be employed to induce differentiation
of ciliated cells by growing cells in
submersion, in an air-liquid interface
(ALI), by allowing them to form 3D
structures, or by using microfluidic
systems, such as “airway-on-a-chip” (28).
The use of immortalized or engineered
cell lines is convenient, because these
cultures can be easily scaled up for multiple
experiments. However, they are not
genetically and physiologically entirely

comparable with primary HAECs that give
more realistic models, but have major
limitations. Indeed, primary cells are
obtained from donors using invasive
techniques and have reduced dividing
capacities when cultured in vitro, limiting
the amount of available material. In
addition, primary cells are patient specific,
and might be sampled with pathogens, thus
making them highly variable and not
always viable for culture. Finally, it is still
difficult to genetically manipulate primary
cells.

Nevertheless, HAECs cultured in
ALI and 3D systems present the major
advantage of closely recapitulating the

in vivo state, with the presence of specific
cell types (progenitor basal cells, functional,
multiciliated cells, mucus-producing goblet
cells, and club cells) organized in a
functional tissue. Moreover, recent
progress in culture conditions has
improved the in vitro expansion of
HAECs and, consequently, the range of
their applications (29-31).

Therefore, HAEC cultures are
commonly used for the study of airway
epithelium biology in physiological and
pathological conditions, such as chronic
obstructive pulmonary disease (32), asthma
(32), CF (33), and PCD (34). Importantly,
these in vitro models allow testing new



therapies directly in the relevant human
tissue.

Differentiation of Human Induced
Pluripotent Stem Cells into Proximal
Airway Epithelium

Differently from primary HAECs, hiPSC
obtained from selected individuals offer
the possibility to work with an unlimited
source of cells that have a defined genotype
and/or engineered mutations. Moreover,
by inducing their differentiation into
airway epithelium, hiPSC can be used as a
model that could overcome the inherent
limitations of HAEC cultures for developing
and testing personalized PCD treatments.
The in vitro recapitulation of the successive
steps of embryonic development (35) is the
most straightforward strategy to develop a
robust protocol for the differentiation of
hiPSC into airway epithelium containing
functional multiciliated cells. However, this
has proved challenging, because knowledge
on human embryonic lung development
remains partial, and has been mainly
transposed from mouse studies. Nevertheless,
various protocols to differentiate pluripotent
stem cells into multiciliated airway
epithelium have been published (7-11).
They result in the generation of functional,
beating cilia characterized by the correct
9 + 2 microtubule doublet arrangement
with the associated DAs (10). It is worth
noting that, although there is consensus
about the key steps required for the direct
differentiation of hiPSC into multiciliated
airway epithelium, the protocols and yields
described in the literature are quite
heterogeneous (36). Here, we summarize
the key consensual steps necessary to
direct differentiation toward multiciliated
airway epithelium.

Briefly, the first stage of differentiation
includes the dual induction of transforming
growth factor-f and wingless-intl (WNT)
signaling by incubating hiPSC with high
concentrations of activin-A and low
concentrations of CHIR99021 (a glycogen
synthase kinase inhibitor that acts as a
WNT pathway activator), respectively. This
leads to the production of anterior primitive
streak cells that can be further differentiated
into definitive endoderm, characterized by
the expression of the transcription factors,
FOXA2 and SOX17, and the surface protein,
CXCR4 (37). Then, the simultaneous
inhibition of the BMP and transforming
growth factor-f3 signaling pathways with
Noggin and the small molecule, SB431542,

respectively, allows definitive endoderm
differentiation into anterior foregut
endoderm cells that express FOXA2 and
SOX2. Activation of the WNT, BMP, and
FGF signaling pathways will next induce
lung lineage specification, as indicated by the
generation of progenitor cells that express
NKX2.1, the master regulator of lung
development (38). The final differentiation
into proximal airway epithelium progenitor
cells that express NKX2.1 and SOX2 is
initiated using ALI or 3D culture conditions
and a cocktail of factors (FGF7, FGF10,
BMP4, RA, and WNT3A) that includes
Notch signaling inhibitors to promote
ciliation (9, 10, 39). This leads to the
formation of a functional epithelium with
basal cells, multiciliated cells, goblet cells,
and club cells (10, 11). The identification
of the fetal and adult lung epithelium

gene expression program by single-cell
mRNA sequencing (40), and advances

in understanding human embryonic lung
development (41), should help improve the
protocols for in vitro differentiation of hiPSC
into airway epithelium.

This is important, because the ability to
efficiently differentiate hiPSC into airway
epithelium allows the modeling of patient-
specific conditions. This system can then be
used as a multifunction platform to investigate
the pathogenicity of suspected mutations, to
study disease mechanisms, to perform high-
throughput drug screens, and to evaluate the
feasibility, efficacy, and safety of new therapies
(Figure 2). Nonetheless, the use of hiPSC also
comes with inherent constraints. Specifically,
hiPSC can develop genetic abnormalities
during prolonged cell culture. Therefore,
hiPSC genome integrity must be routinely
monitored to ensure the genotype—
phenotype correlation, and also to confirm
their safety if used in therapy (42).
Moreover, the current protocols remain time
consuming, and usually result in epithelia
containing variable proportions of the
different cell populations that can be
significantly different from what is observed
in normal bronchial epithelium. The precise
stage of maturation also needs to be better
studied, because hiPSC differentiation can
result in cells blocked in a fetal-like state
(43). Finally, reprogramming hiPSC comes
with its own ethical considerations that
should not be underestimated (44).

Personalized Medicine
To date, there is no effective therapy to
manage PCD. Therefore, there is a great

need to develop therapies to directly address
the cause of the disease and rescue airway
ciliary function. Moreover, due to PCD
genetic and phenotypic heterogeneity,
research should focus on developing specific
strategies for each subset of patients with
common features, or even individual
patients.

To our knowledge, only four studies
have evaluated approaches to restore the
motility of airway cilia. Three of them used
gene therapy approaches (45-47), whereas
the last one assessed aminoglycosides to
stimulate the readthrough of premature
termination codons (48). These proof-of-
concept studies showed partial rescue of
ciliary beating in vitro and in a mouse
model, proving the feasibility and therapeutic
potential of such approaches.

In this context, hiPSC differentiation
to multiciliated airway epithelium
represents a valuable in vitro model to
investigate these personalized approaches
to rescuing mucociliary clearance
(Figure 2).

Genome Engineering and Cell
Therapies

Gene and cell therapies, whereby the
relevant cells are corrected in vivo or ex
vivo, are among the most promising and
attractive approaches to treat inherited
genetic disorders, such as PCD.

Despite the limited research in the field
of PCD, the development of therapies can
benefit from the extensive work done over
the past decades to develop efficient gene
and cell therapies for other lung diseases,
such as CF, alpha-1 antitrypsin, asthma,
and cancer (49). These researches have
highlighted the difficulties to genetically
engineer a sufficient number of lung
epithelial cells to correct the disease
phenotype (49, 50). This is due to
the presence of various physical and
immunological barriers in the lung, as well
as the difficulty in identifying stem cell
populations in the bronchial epithelium.
Currently, the development of lung cell or
gene therapies is limited by two major
obstacles: 1) it is still unclear which cell
type is the most appropriate for gene
engineering or cell therapy; and 2) the
delivery of enough genetic material without
inducing adverse effects remains a major
bottleneck (50).

Two main gene therapy strategies
are available to restore sufficient protein
function. The first approach, which has been
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Figure 2. Potential pipeline to investigate personalized primary ciliary dyskinesia (PCD) therapeutics using airway epithelium—-derived human induced
pluripotent stem cells (hiPSCs). Schematic diagram describing a possible pipeline using patient-specific or genetically engineered hiPSCs and a
differentiation protocol to generate an airway epithelium model of PCD. The obtained hiPSCs can be differentiated by providing stimuli that recapitulate
in vitro the successive steps of embryonic lung development. Specifically, hiPSCs are first differentiated into anterior primitive streak (APS) cells to generate
definitive endoderm (DE) cells. This is followed by DE differentiation into anterior foregut endoderm (AFE) cells to generate lung progenitor cells. Lung
progenitors are finally differentiated into airway epithelium containing multiciliated cells by using appropriate culture conditions (air-liquid interface or three

dimensional) and a cocktail of cytokines.

the strategy of choice in the past decades
(49, 50), consists of inserting an exogenous
transgene to provide a functional copy

of the mutated gene. This approach is
attractive, because it is not mutation
specific, and a single design can be used for
all patients with mutations in a given gene.
The second approach relies on the specific
engineering of the endogenous mutated
alleles using gene editing technologies, such
as the clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-
associated protein (Cas) system (51). These
technologies, particularly the CRISPR/Cas9
approach, are still in their early days, but
already show great promise for the efficient
correction of pathogenic mutations.

The in vivo application of these
different approaches requires the
vectorization of the material used for the
genetic manipulation. The community has
acquired extensive experience using various
vectorization systems for transgene delivery

(49), but the delivery of gene editing tools
is still a work in progress. The available
vectors include recombinant viral

vectors derived from adenoviruses, adeno-
associated viruses and lentiviruses, as

well as nonviral vectors based on lipids,
nanoparticles, and synthetic polymers
(49). Each of these vectors has its specific
advantages and disadvantages for gene
delivery. Moreover, they need to be
optimized for the appropriate cell model
to overcome the many drawbacks that
have emerged in previous clinical trials
(49). In this context, developing an in vitro
platform based on hiPSC differentiation
into multiciliated airway epithelium
might accelerate the development of

new therapies by allowing scientists to
investigate and optimize new strategies
directly in the relevant tissue. Such a
platform would enable the early assessment
of the efficacy (i.e., number of corrected
cells) and safety (i.e., specificity/genome-

wide effect, effect on untargeted cells,
inflammation, etc.) of personalized treatments
before performing costly and time-
consuming in vivo experiments.

Ex vivo gene modification is also a
promising strategy, because it provides
optimal conditions for defect correction
without the obstacles that hinder the
in vivo approaches, such as the patient
innate immune system response and the
accessibility of distal airways. On the other
hand, the debate is still open on the most
suitable cell source(s) for ex vivo gene
modifications: autologous versus allogeneic
cells and differentiated hiPSC versus adult
cells. Likewise, the cell population to be
transplanted for long-term correction
remains to be determined. Basal cells are
progenitor cells, and a likely candidate
for regenerative medicine, because they
can self-renew and differentiate into
more differentiated bronchial epithelium
cells, including multiciliated cells (40).



Nonetheless, further investigations are
required to better characterize stem cell
populations and to identify the most
appropriate cell type(s) for such treatments.
Finally, the mode of administration of

the corrected cells is also a critical issue.
However, the finding that fetal lung

cells can be engrafted in the lung by
intravenous infusion after progenitor
ablation suggests that this difficulty may be
overcome (52).

Pharmacological Screens and Drug
Discovery

The ability to produce, at will, hiPSC-
derived airway epithelium with defined
genotypes can also be exploited to perform
drug screens at the patient level and in a
high-throughput setting. Depending on the
mutations found in each patient with PCD,
different strategies could be studied to
restore protein production and/or function,
as already extensively done for CF (53). For
nonsense mutations, which are common
in patients with PCD, the propriety of
molecules that allow the readthrough

of premature termination codons, as
described for aminoglycosides (54), could
be investigated. Likewise, for specific
mutations, screenings could be performed
to identify small molecules, including
antisense oligonucleotides, that can correct

mis-splicing or compensate for the missing
protein. For patients with hypomorphic
mutations that allow the production of
abnormal proteins with partial function,
drug screening to find small molecules to
compensate or restore the protein function
could be envisaged.

Conclusions

PCD is a highly heterogeneous disorder
primarily characterized by severe
respiratory symptoms. Although PCD
diagnosis and characterization have
improved in recent years, the surge of
interest seen in the clinic has yet to be
translated to research laboratories. In fact,
until now, only limited work has been done
to develop innovative therapies for this
disorder. This can in part be explained by
the lack of reliable models to evaluate
new approaches. In this review, we have
described the potential of hiPSC-derived
airway epithelium as a versatile platform
to study PCD biology and investigate new
therapeutics.

Genetically manipulated or patient-
derived hiPSCs are now routinely generated
in laboratories, and can be used as an
unlimited source of human cells. Their
differentiation into airway epithelium is still

under study, but its feasibility and efficacy
have already been demonstrated. Such a
model will allow working directly on the
relevant tissue without the need for
additional invasive procedures to be
performed on the patients, and should
facilitate the development of PCD
treatments. Using this platform, researchers
will have the possibility to recapitulate the
genetic heterogeneity seen in patients with
PCD, opening the way toward the
development and testing of personalized
biotherapies.

Therefore, this platform offers great
opportunities to assess the feasibility,
efficacy, and safety of a wide range of
approaches, from gene therapy to ex vivo
cell engineering for transplantation and
drug screening. Given the advantages
offered by hiPSC-derived airway epithelium,
we anticipate that this model, in
association with gene editing techniques,
will become an essential platform for the
development of new strategies for PCD
management. ll
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