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Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS)
generate reactive oxygen species (ROS) through mitochondrial activity. To limit the deleterious effects of excess
ROS, certain gene promoters contain antioxidant response elements (ARE), e.g. the genes NQO-1 and HO-1. ROS
induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo
that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and
also the MAPK ERK5 and decreases KEAPT mRNA. ERK5 activates the transcription factor MEF2, which binds to
the promoter of the miR-23a-27a-24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding
to its 3'UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1.
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miR-23 Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant
ERK5 response to protect themselves from ROS.
MEF2 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

Antioxidant response elements (ARE)

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Eukaryotic cells perform oxidative phosphorylation (OXPHOS),
which uses the energy released by the mitochondrial oxidation of cer-
tain metabolites, i.e. glucose, to produce adenosine triphosphate
(ATP). OXPHOS is an efficient way of releasing energy, however it pro-
duces reactive oxygen species (ROS) through mitochondrial activity.
In fact, ROS and mitochondria are functionally linked in several ways
(Willems et al., 2015). Most cancer cells change their metabolism
from respiration/OXPHOS to anaerobic glycolysis and, hence, do not
completely oxidize glucose. This is called the Warburg effect. This met-
abolic change is not absolute and tumor cells continue, at least partially,
to perform OXPHOS (Jose and Rossignol, 2013; Obre and Rossignol,
2015; Villalba et al., 2014). Tumor cell metabolism depends on the
tumor origin, patient and period, with several waves of gene regulation
that modify it (Smolkova et al., 2011). In addition, tumor cell

* Corresponding author at: INSERM U1183, Institute of Regenerative Medicine and
Biotherapy (IRMB), 80, Av. Augustin Fliche, 34295, Montpellier Cedex 5, France.
E-mail address: martin.villalba@inserm.fr (M. Villalba).
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metabolism is a dynamic process with a wide remodeling of the meta-
bolic pathways that likely occurs during tumorigenesis (Jezek et al.,
2010; Bellance et al., 2009; Jose and Rossignol, 2013; Villalba et al.,
2013). During these waves cells can increase OXPHOS and need to pro-
tect themselves from ROS production. In fact, low ROS levels could facil-
itate tumorigenesis while excessive levels are deleterious
(Devasagayam et al., 2004). Therefore, they should be tightly regulated
before high levels are produced.

Why most tumor cells continue performing a certain degree of
OXPHOS, in spite of the dangers of high ROS levels, is still an enigma.
However, it is plausible that cells possess an anti-ROS mechanism
when performing OXPHOS. The MAPK extracellular signal-regulated
kinase-5 (ERKS5) is essential for mitochondrial function and for generat-
ing efficient antioxidant responses in leukemic cells (Charni et al., 2010;
Lopez-Royuela et al.,, 2014). In fact, several types of oxidative stress ac-
tivate ERK5 (Zhao et al., 2011), which can be considered a redox
MAPK. Nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2)
binds to anti-oxidant response elements (ARE) in gene promoters and,
consequently, regulates oxidative stress (Kensler and Wakabayashi,
2010). In endothelial cells, steady laminar blood flow (s-flow) activates

2352-3964/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ERK5 that induces up-regulation of NRF2-dependent gene expression,
although the mechanism is not fully elucidated (Kim et al., 2012;
Nigro et al., 2011). Therefore, ERK5 could link OXPHOS and the antiox-
idant response.

MicroRNAs (miRNAs), a class of short, non-coding RNA molecules,
regulate multiple physiological processes through regulating posttran-
scriptional gene expression by annealing to the 3’ untranslated regions
of target mRNAs to generally promote mRNA degradation or transla-
tional repression (Chhabra et al., 2010). The microRNA-200a (miR-
200a) activates Nrf2 transcriptional activity by degrading Kelch-like
ECH-associated protein 1 (Keap1) mRNA (Eades et al., 2011). The de-
crease in Keap1 allows Nrf2 to escape ubiquitination and subsequent
proteolysis, thus inducing its nuclear translocation. Another miR that
has been linked to regulation of metabolism and the production of
ROS is miR-23 (Rathore et al., 2012; Gao et al., 2009; Kulshreshtha
et al., 2007). The unconventional promoter region of the miR-23a-
27a-24-2 cluster lacks common promoter elements (Chhabra et al.,
2010), but it contains several putative MEF2 binding sites (Rathore
et al., 2012). This transcription factor mediates several ERK5 functions,
including metabolic regulation (Lopez-Royuela et al., 2014) and acti-
vates a reporter plasmid driven by the 2.4 kb upstream of the miR-
23a-27a-24-2 cluster promoter (Rathore et al., 2012).

We performed transcriptome analysis of Jurkat cells expressing a
small hairpin RNA for ERK5 (ShERK5) and compared the genes down
regulated in shERK5 expressing cells with the predicted targets of
miR-23a. We identified KEAP1 as a possible candidate to mediate the
antioxidant response in cells performing OXPHOS. We next tested this
hypothesis; the results elucidated the molecular mechanism. ERK5-
mediated miR-23 upregulation controls the antioxidant response dur-
ing OXPHOS by decreasing KEAP1T mRNA independently of ROS.

2. Materials & Methods
2.1. Reagents and Antibodies

RIPA buffer to prepare protein extracts was from Euromedex. The
complete protease inhibitor cocktail (Complete EDTA-free) and the
phosphatase inhibitor cocktail (PhosSTOP) were from Roche. H,0,
was from SIGMA and DCA from Santa Cruz Technologies. Galactose
and glutamine were from GIBCO. The antibody against KEAP1 and
MEF2 (E-17) were from Santa Cruz Biotechnology. ERK5 antibody was
from Cell Signaling Technology. The antibody against 3-Actin and
HRP-labeled secondary antibodies were from Sigma.

2.2. Cell lines and Culture Conditions

The leukemic T Jurkat TAg and the OCI-AML3, NB4 and MOLM-13
AML human cell lines were grown in RPMI 1640-GlutaMAX (GIBCO)
supplemented with 5% (Jurkat) or 10% (AML) FBS. In certain experi-
ments cells were grown in RPMI 1640 without glucose (GIBCO 11879)
with the addition of 2 mM glutamine and 10 mM galactose (OXPHOS
medium). The Jurkat TAg cells carry the SV40 large T Ag to facilitate
cell transfection.

2.3. Primary Leukemic Cells

Data and samples from patients with different hematological
cancers were collected at the Oncology and Clinical Hematology Depart-
ment of the CHU Montpellier, France, after patient's informed consent
(Allende-Vega et al., 2015; Krzywinska et al., 2015). Patients were
enrolled in two independent clinical programs approved by the
“Comités de Protection des Personnes Sud Méditerranée I (ref 1324)”
and ID-RCB: 2011-A00924-37. All samples from cancer patients were
collected at diagnosis.

2.4. ChIP Analysis

Jurkat cells growing exponentially were cross-linked in situ and sub-
jected to nuclear isolation, DNA shearing, preclearing, and immunopre-
cipitation. Procedures used were modified from the ChIP-IT kit (Active
Motif) using enzymatic DNA shearing as described previously in detail
(Ramachandran, 2008; Rathore et al., 2012). The Pol Il (8WG16 mono-
clonal) ChIP antibody was from Covance. The MEF2 antibody was
from Santa Cruz Technologies and the histone H3 (D2B12) XP® Rabbit
mAD (ChIP Formulated) from Cell Signaling Technology.

2.5. Transient Transfection

Jurkat cells in logarithmic growth phase were transfected with the
indicated amounts of plasmid by electroporation (Garaude et al.,
2006; Garaude et al.,, 2008). In each experiment, cells were transfected
with the same total amount of DNA by supplementing with empty vec-
tor. Cells were incubated for 10 min at RT with the DNA mix and
electroporated at 260 mV, 960 mF in 400 pl of RPMI 1640. Expression
of the different proteins was confirmed by Western blot. In all experi-
ments related to luciferase measurement, cells were transfected with
a 3-Galactosidase reporter plasmid as previously described (Garaude
et al,, 2008). The relative luciferase units (RLU) were calculated by di-
viding the luciferase values between the (3-Galactosidase values to
avoid differences in transfection. The transfection efficiency in Jurkat
TAg cells is between 60 and 80%.

2.6. Plasmids

The 3'-UTR of KEAP1 was a generous gift of Dr. Qun Zhou, University
of Maryland School of Medicine (Eades et al., 2011). The sequence
corresponding to the miR-23a/24-2 promoter (2046 bp upstream
miR-23a precursor) was cloned into the Bglll/HindIIl and Nhel/Xhol
restriction sites of pGL3-basic vector (Saumet et al., 2009). The wild
type miR-23a/24-2 locus was cloned into the EcoRl/BamHI sites of the
MIE retroviral vector (containing the IRES-GFP cassette) using the
following primers: sense, ggaattcgccatgcaagttgctgtage and antisense,
cgggatccggctgctaggaaggtgeg. The locus expressing only miR-24 and
miR-27a (miRD23) was similarly cloned using the primers
ggaattcctgagetctgecaccgagga (sense) and cgggatccggetgetaggaaggtgeg
(antisense). The locus expressing only miR-23a (miRD24-27) was
cloned using the primers ggaattcgccatgcaagttgctgtage (sense) and
cgggatccgcecaggeacaggettcgg (antisense) (Rathore et al, 2012).

The MEF2C constructs were a generous gift from Dr. T. Gulick and
has been previously used (Lopez-Royuela et al., 2014). The expres-
sion vectors for ERK5, a constitutively active MEK5 mutant (S313D/
T317D, termed MEK5D), B-galactosidase, the pSUPER expression
vector for GFP alone or GFP plus shERK5 and the pSiren-retroQ-
puro (BD Biosciences) retroviral vectors for shERK5 and control
have been previously described (Garaude et al., 2006). The expression
vectors for the catalytically inactive ERK5 mutant (ERK5KM: K84 mu-
tated to M) in pLZR (Garaude et al., 2006) was a generous gift of Dr.
Atanasio Pandiella (Centro de Investigacion del Cancer, IBMCC/CSIC-
Universidad de Salamanca, Spain).

2.7. Counting and Determination of Cell Viability

Cell number, viability and cell death were analyzed with the Muse
Cell Analyzer (Millipore) by incubating cells with Muse Count &
Viability and Annexin V and Dead Cell kits respectively, following
the manufacturer's instructions.

2.8. Induction of Oxidative Stress and ROS Measurement

Cell lines were plated at 300,000 cells/ml and treated with different
H,0, concentrations for the indicated times, harvested and counted to
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Fig. 1. Different ROS production by cells performing OXPHOS. Different cell lines growing in glucose (control cells) were treated with H,0, (100 uM) for 1 h or DCA (20 mM ) for 12 h or
were kept in OXPHOS medium for at least 1 month. Cells were labeled with CelROX® Deep Red Reagent and analyzed by FACs.

perform further analysis. To evaluate ROS levels, we labeled cells with
CellROX® Deep Red Reagent or with CH-H2DCFDA (Life Technologies)
for 30 min and analyzed them by FACs following manufacturer's

instructions.
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9. Immunoblotting

Protein analysis by immunoblotting was performed essentially as
previously described (Garaude et al., 2006; Garaude et al., 2008). Briefly,
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Fig. 2. Cells performing OXPHOS activate an antioxidant response. A) Different cell lines were grown in OXPHOS medium for at least 1 month before mRNA extraction. mRNA expression
was quantified by qPCR and represented as the % of mRNA compared to control cells. B) Cells were treated with 20 mM DCA for 24 and 48 h and KEAP1 and NQO1 mRNA levels were
quantified by gPCR. C) The expression of different proteins was analyzed in cells growing in OXPHOS medium or treated with DCA as described above. The data represent means 4+
SD; *p < 0.05, **p < 0.01, ***p < 0.001 Student's t-test compared to control cells or as depicted in the graphic.
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samples were collected, washed out with PBS and lysed with RIPA buff-
er. Protein concentration was determined by BCA assay (Pierce) before
electrophoresis in 4-15% TGX gels (BioRad) and equal amount of pro-
tein was loaded in each well. Protein transfer was performed in
TransTurbo system (BioRad) in PVDF membranes. After blocking for
1 h with 5% non-fat milk, membranes were incubated overnight at
4 °C in agitation with primary antibodies, washed three times with
TBS-Tween 0,1% and incubated with the appropriate HRP-labeled sec-
ondary antibody for 1 h. Membranes were washed out three times
with TBS-Tween 0,1% and developed with Substrat HRP Immobilon
Western (Millipore). Band quantification was performed using the
“ImageLab” software from BioRad and represented as the ratio between
the protein of interest and a control protein i.e. actin. The value of 1 is
arbitrarily given to control cells. One blot representative of several ex-
periments is shown.

2.10. In Vivo Mouse Experiments

In vivo experiments were carried out using 6 to 8 week/old NSG
mice. Mice were bred and housed in pathogen-free conditions in the an-
imal facility of the European Institute of Oncology-Italian Foundation
for Cancer Research (FIRC), Institute of Molecular Oncology (Milan,
Italy). All animal experiments were carried out in accordance with na-
tional and international laws and policies. For induction of acute leuke-
mia in mice, 1 million AML cells were injected intravenously (i.v.)

A) 250 1

B)aoo :

through the lateral tail vein in non-irradiated mice. At day 80, when
human cells reached 1% in blood, mice were separated into two groups
of four mice: control and DCA (50 mg/kg, 1 dose/day by gavage, starting
at day 1 for 16 consecutive days). At day 140 post-graft, bone marrow
and spleen were collected and mRNA isolated for analysis. We used
the following human primers that did not recognize mouse mRNAs:

ERK5: Forward: (5’-CGCTACTTCCTGTACCAACTGC-3") Reverse: (5'-
AGCCATACCAAAGTCACCAATC-3"), KEAP1: Forward: (5-GAGCGCCTGG
ACGTAGAACCG-3’) Reverse: (5'-GCTGCGAGTCCGAGGTCTTCC-3'),
NQO-1: Forward: (5’-CCT CTA TGC CAT GAA CTT-3’) Reverse: (5'-TAT
AAG CCA GAA CAG ACTC-3'), HO-1: Forward: (5’-ACA AGG AGA GCC
CAG TCT TC-3’) Reverse: (5-AGA CAG GTC ACC CAG GTA GC-3'),
Actin: Forward: (5'-GAGGGAAATCGTGCGTGACA-3’) Reverse: (5'-
AATAGTGATGACCTGGCCGT-3').

2.11. Statistical Analysis

The statistical analysis of the difference between means of paired
samples was performed using the paired t test. The results are given
as the confidence interval (*p <0.05, **p <0.01, ***p < 0.005). All the ex-
periments described in the figures with a quantitative analysis have
been performed at least three times in duplicate. Other experiments
were performed three times with similar results. We used actin as a
loading control and the histograms represent the ratio (value of protein
of interest)/(value of actin).
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Fig. 3. Cells performing OXPHOS activate an antioxidant response in vitro and in vivo in primary leukemic cells. A) Tumor cells from 4 hematological cancer patients (2 MM, 1 B-CLLand 1T
cell lymphoma) were treated with various concentrations of DCA for 24 h and mRNA was analyzed by qPCR. B) NSG mice were engrafted with primary human AML cells. At day 80 post-
graft, they were treated with DCA (n = 4) or left untreated (n = 4). At day 140 mRNA from AML tumor cell from bone marrow or spleen was isolated and the expression of different

proteins was quantified by qPCR. The data represent means + SD; *p < 0.05, **p < 0.01, ***p < 0.001 Student's t-test compared to non treated cells or mice.
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3. Results
3.1. OXPHOS-Induced Increase in ROS Levels is Cell Type Dependent

Leukemic cells performing OXPHOS increase ERK5 levels (Charni
et al,, 2010). This enzyme is essential for the antioxidant response that
keeps ROS under control (Lopez-Royuela et al., 2014). To investigate if
leukemic cells stably performing OXPHOS showed higher ROS levels,
we incubated cells in a glucose-free culture medium with a final gluta-
mine concentration of 4 mM and 10 mM galactose. Glutamine was
used to drive mitochondria to utilize OXPHOS and galactose allowed
cells to synthesize nucleic acids through the pentose phosphate path-
way (Reitzer et al., 1979; Rossignol et al., 2004; Charni et al., 2010;
Lopez-Royuela et al., 2014). We called it ‘OXPHOS medium’, because it
forced leukemic cells to use OXPHOS as primary ATP source (Charni
et al., 2010; Rathore et al., 2012; Allende-Vega et al., 2015). Three out

A) Jurkat Cells

250 1

B) ocI-AML 3 Cells
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of four leukemic cell lines cultured in OXPHOS medium for several
weeks showed increased ROS levels (Fig. 1 and Supplemental Fig. 1A
and B). The exception was the acute promyelocytic leukemia (APL)
NB4 cell line. We also treated cells with dichloroacetate (DCA), a PDK1
inhibitor that induces OXPHOS through PDH activation in all of these
leukemic cell lines (Charni et al., 2010; Allende-Vega et al., 2015). OCI
and MOLM-13 AML cell lines responded by increasing ROS levels
whereas NB4 did not. Jurkat, a T cell leukemia cell line, showed a
minor increase. H,0,, which served as a positive control, increased
ROS in all cell lines. Hence, not all leukemic cell lines increased ROS
levels when performing OXPHOS.

3.2. OXPHOS Induces an Antioxidant Response

All cell lines performing OXPHOS increased ERK5 mRNA levels
(Fig. 2A). This was associated with decreased KEAP1 mRNA and
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Fig. 4. Increase in ROS levels is not essential for KEAP1 downregulation. A) Jurkat cells were treated with increasing concentrations of H,0, for 1 h and mRNA expression was analyzed.
B) OCI-AMLS3 cells (left) or primary tumor cells from a BCL patient (right) were treated with 1.5 mM NAC 1 h before adding DCA (20 mM) for 24 h. Cells were labeled with CH-H2DCFDA
and analyzed by FACs for ROS production. Keapl mRNA and protein were analyzed as described in Fig. 2. C) Primary tumor cells from 2 BCL patients were treated as in (B) before analyzing
KEAP1 mRNA expression, results represent the means 4= SD of these two patients in triplicate. The data represent means + SD; *p < 0.05, **p < 0.01, ***p < 0.001 Student's t-test compared

to non-transfected cells.
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increased mRNA levels for the antioxidant genes NQO-1 and HO-1.
Induction of OXPHOS with DCA also caused a decrease in KEAP1 and
increase in NQO-1 mRNA (Fig. 2B). This was concentration and time-
dependent (Supplemental Fig. 2). Interestingly, NB4 and Jurkat cells,
which did not increase ROS after DCA treatment, still produced this an-
tioxidant response. Protein expression correlated with mRNA levels in
cells performing OXPHOS (Fig. 2C).

3.3. OXPHOS Induces an Antioxidant Response in Primary Leukemic Cells
In Vitro and In Vivo

We validated these results in primary leukemic cells derived from 4
patients with hematological neoplasias (Fig. 3A). These cells also in-
creased ERK5 and NQO-1 and decreased KEAP1 mRNAs, on average, fol-
lowing DCA treatment.

To test this in vivo, we engrafted AML primary cells in non-obese
diabetic/severe combined immunodeficient (NOD/SCID)-interleukin-2
receptor y null (NSG) mice, as previously described (Allende-Vega et al.,
2015). Mice with established tumors (day 80 post-graft) were treated
with DCA (Fig. 3B). The treatment was not toxic and did not show any no-
table effect on cell survival (Allende-Vega et al., 2015). Human tumor
AML cells gather in mouse spleen and bone marrow, hence we isolated
mRNA from these organs. We used human-specific primers to analyze
the expression of the selected mRNAs and found an increase in ERK5
and NQO-1 and a decrease in KEAP1 mRNAs (Fig. 3B).

3.4. OXPHOS-Induced Antioxidant Response was ROS Independent

NB4, and partially Jurkat, cells did not increase ROS when
performing OXPHOS, although they mounted an antioxidant response
similar to other cell lines (Figs. 1 and 2). To investigate further if ROS
were essential for the antioxidant response, we induced oxidative stress
with H,0, in Jurkat cells and observed similar effects to those produced
by OXPHOS: increase in ERK5 and NQO-1 and decrease in KEAP1
mRNAs (Fig. 4A and Supplemental Fig. 1). Hence, the increase in ROS
levels could also mediate this antioxidant response. To explore this pos-
sibility, we blocked DCA-induced ROS production with the antioxidant
N-acetyl-cysteine (NAC). We focused in OCI-AML3 (Fig. 4B left panels),
in which DCA significantly increased ROS levels (Fig. 1). To firmly estab-
lish that DCA had a significant effect, we used a different dye to monitor
ROS from that in Fig. 1. While NAC efficiently blocked the DCA-induced
increase in ROS (Fig. 4B, upper left panel and Supplemental Fig. 1B), it
failed to affect DCA effects on KEAP1 mRNA or protein (Fig. 4B, bottom
left panels). As described above, DCA ineffectively induced ROS in Jurkat
cells but decreased KEAP1 expression (Figs. 1 and 2). NAC blocked the
former but not the latter effect, that is the decrease in KEAP1 expression
(Supplemental Fig. 3). Next we used tumor cells from a BCL patient
(BCL-P2) that could be maintained in vitro for several weeks. NAC effec-
tively blocked the DCA-induced ROS increase (Fig. 4B right top panel
and Supplemental Fig. 1B). However, in contrast to cell lines, NAC de-
creased KEAP1T mRNA levels without affecting protein expression
(Fig. 4B right bottom panels). In any case, NAC did not affect DCA-
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induced decrease in either KEAP1 mRNA or protein. This was confirmed
in freshly primary leukemic cells of another two BCL patients (Fig. 4C).

3.5. ERK5 Controls Keap1 Expression

We investigated the molecular mechanisms responsible for the de-
crease in KEAP1 expression. Overexpression of ERK5 in Jurkat cells de-
creased KEAP1 mRNA and this correlated with an increase in NQO-1
(Fig. 5A and B). Conversely, expression of a small hairpin RNA for
ERK5 (shERK5), which decreased ERK5 protein levels (Fig. 5B), in-
creased KEAP1 and decreased NQO-1 mRNA levels (Fig. 5A). KEAP1 pro-
tein levels corresponded to those of its mRNA (Fig. 5B). The shERK5-
mediated increase in KEAP1 protein occurred after the decrease in
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ERKS5 (Fig. 5C), showing that ERK5 was necessary and sufficient to acti-
vate this antioxidant response.

We next investigated the effect of shERK5 on cells performing
OXPHOS by growing shERK5-transfected Jurkat cells in OXPHOS
media or by treating them with DCA. We could not transfect cells grow-
ing in OXPHOS media because the survival rate was very low. The
OXPHOS-induced increase in ERK5 levels was totally abrogated in
shERK5-expressing cells, which actually showed a time-dependent de-
crease (Fig. 6A and B). In contrast to cells transfected with empty vector,
KEAP1 mRNA levels did not decrease in shERK5-expressing cells. The
level of NQO-1 showed a much lower increase in these cells. ShERK5-
expressing cells failed to down regulate KEAP1 and up regulate NQO-1
after H,0, treatment (Fig. 6C). This showed that ERK5 could mediate
several antioxidant responses.
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3.6. ERK5 Mediated OXPHOS-Induced miR-23a Up Regulation

As previously described, the decrease in KEAP1 mRNA could be due
to miR-23-mediated inhibition. In fact, cells growing in OXPHOS up reg-
ulate miR-23 by an unknown mechanism (Rathore et al., 2012). The
promoter of the miR-23a-27a-24-2 locus contains consensus sites for
the transcription factor MEF2, which increases expression of a reporter
plasmid driven by the miR-23a-27a-24-2 locus proximal promoter
(Rathore et al., 2012). Chromatin immunoprecipitation (ChIP) assays
showed that MEF2 bound to the miR-23a-27a-24-2 locus promoter in
Jurkat cells (Fig. 7A). Anti-Histone-3 and an irrelevant IgG antibody
were used as positive and negative controls. CHIP assays also showed
that RNA Pol Il bound to this promoter (Fig. 7A). In summary, we con-
cluded that MEF?2 also activated its transcription.

To further study the role of the ERK5/MEF2 pathway in miR-23
expression, we overexpressed either ERK5 WT, the inactive ERK5 mu-
tant ERK5 KM, or shERK5 and investigated the effect on the activity of
areporter plasmid driven by a 2.4 kb fragment of the miR-23a promoter
(Fig. 7B). ERKS5 increased expression of the promoter. Both ERK5 KM,
which functions as a dominant negative construct in Jurkat cells
(Charni et al., 2009), and shERK5 decreased the expression of the
reporter (Fig. 7B). As previously described (Rathore et al., 2012), cells
performing OXPHOS increased expression of this reporter (Fig. 7B).
Inhibition of the ERK5 pathway inhibited OXPHOS-induced reporter
activation and ERKS5 overexpression increased it. Strong activation of
the ERK5 pathway by co-overexpression of a constitutively active mu-
tant of MEK5 (MEK5D), the upstream kinase of ERK5, and ERK5 induced
a greater response (Fig. 7C). This was enhanced by cotransfection with
MEF2C, which alone also significantly increased the expression of the
reporter. In contrast, expression of a dominant negative form of
MEF2C (MEF2C-DN) decreased the effect of ERK5 and MEK5D on cells
in OXPHOS medium (Fig. 7C). Thus, ERK5 controls miR-23a expression
through MEF2. We then investigated if miR-23a regulates KEAP1
mRNA levels.

3.7. miR23a Targets KEAP1 mRNA

We used transcriptomic data of Jurkat cells expressing shERK5 and
compared the genes downregulated by shERK5 with the predicted tar-
gets of the miR-23a-27a-24-2 cluster (compiling miRBase/microcosm
and TargetScan predictions). This identified KEAP1 as a potential target
of miR-23a (according to miRBase/microcosm). To investigate this pos-
sibility, we overexpressed the miR-23a locus in leukemic Jurkat T cells.
This construct also expressed GFP as a control for transfection
(Rathore et al., 2012). To evaluate the role of individual miRNAs in
this locus, we used mutants of the miR-23a-27a-24-2 cluster: one mu-
tant deleted of the pre-miR-24 and pre-miR-27 (miR-23A24-27) and
one mutant deleted of the pre-miR-23a (miR-23A23). All these con-
structs significantly overexpressed the encoded miRNAs (Rathore
etal, 2012).

Full miR-23a-27a-4-2 locus and mutant miR-23 A24-27, but not
miR-23 A23 mutant, reduced expression of KEAP1 mRNA and protein
(Fig. 8A and B), suggesting that this mRNA was a genuine target of
miR-23a. To prove it, we used a reporter plasmid containing the 3’'UTR
of KEAP1 mRNA fused downstream of the luciferase gene (Eades et al.,
2011). We transfected it into Jurkat cells together with the different
constructs of the miR-23a-27a-24-2 locus. miR-23a overexpression
led to a statistically significant decrease in luciferase expression, show-
ing that KEAP1 mRNA was a direct miR-23a target (Fig. 8C). This regula-
tion was physiologically relevant, because cells that overexpressed miR-
23a increased expression of endogenous NQO-1 mRNA (Fig. 8D).

4. Discussion

A wide remodeling of the metabolic pathways is likely to occur dur-
ing tumorigenesis (Jezek et al., 2010; Bellance et al., 2009; Jose and

Rossignol, 2013; Villalba et al., 2013; Smolkova et al., 2011). During
this process, cells adapt in different ways to obtain energy, including
OXPHOS. In this case, they must protect themselves from excessive
ROS production, preferably before this occurs. While we have only
investigated this using leukemic cells, it is possible that all cells, trans-
formed and non-transformed, have this pathway. In the future, it will
be important to investigate this idea, although this requires knowing
the “initial” metabolic status of the selected cells in order to be able to
alter it.
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We describe here a mechanism that regulates the antioxidant
response in cells performing OXPHOS in the absence of ROS increase.
Mitochondria are the first source of ROS, although it is also the main
organelle that assures their removal. ERK5 is essential for OXPHOS in
leukemic cells (Charni et al., 2010), but also for protecting cells from ex-
cessive ROS (Lopez-Royuela et al., 2014). The last function involves
NREF2 activation (Kim et al., 2012; Nigro et al., 2011), which can be
mediated through SIRT1 expression (Lopez-Royuela et al., 2014) or by
decreasing KEAP1 levels, as we describe here. How OXPHOS activates
ERK5 is uncertain, but ERK5 translocates to mitochondria in cells
performing OXPHOS (Charni et al., 2010), from where it could regulate
activation of nuclear respiratory factors NRF1 and NRF2. NRF1 can regu-
late MEF2 expression, leading to expression of mitochondrial genes
(Ramachandran, 2008). But ERK5 can also regulate mitochondrial activ-
ity by directly regulating MEF2, which mediates several mitochondrial
functions (el Azzouzi et al., 2010; Ramachandran, 2008).

The mechanism described here involved miR-23a. Its expression
must be finely regulated because high levels induce cell death through
impairment of glutamine metabolism and mitochondrial activity and
hence also affect ROS control (Gao et al., 2009; Rathore et al., 2012;
Chhabra et al., 2011; Safdar et al., 2009; Kulshreshtha et al., 2007). In
fact, transient overexpression of the whole locus is toxic in lymphocytes
several days post-transfection (Rathore et al., 2012). In contrast, too low
a level could also originate an impaired antioxidant response, as we il-
lustrated here. In addition, miRNAs have multiple targets and their
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effects depend on the relative expression of their targeted mRNAs in
each specific tissue. miR-23 expression is cell-dependent: miR-23a is
downregulated during lymphoid development and upregulated during
myeloid development (Jin et al., 2008); and it promotes myeloid devel-
opment and blocks lymphoid development (Kong et al., 2010). This sug-
gests that miR-23a differentially affects different tissues, although it can
promote the same pathways in different cell types.

In this work we have developed a leukemic cell model for investigat-
ing the antioxidant response in cells performing OXPHOS. Understand-
ing the mechanism(s) should facilitate the development of novel
therapeutic approaches for leukemia (Villalba et al.,, 2014). In fact, me-
tabolism is now seen as a good candidate for specifically targeting
tumor cells (Obre and Rossignol, 2015), although expression or muta-
tion of proteins regulating metabolism, e.g. p53, could greatly affect
the efficacy of anti-metabolic tumor treatments (Allende-Vega et al.,
2015). Leukemic cells show high ROS levels that can contribute to dis-
ease development and progression. However, high levels can be delete-
rious for cells and hence, leukemic cells also express increased levels of
antioxidant proteins, which detoxify ROS (Rushworth and MacEwan,
2011; Rushworth et al., 2012). Although initially NRF2 can protect non-
malignant cells from malignant transformation, after that NRF2 can pro-
tect the tumor cells from oxidative stress and chemotherapy-induced
cytotoxicity (Rushworth and MacEwan, 2011; Hayes and McMahon,
2009). In AML, high NRF2 expression is driven by NF-xB (Abdul-Aziz
et al,, 2015). Interestingly, ERK5 activates NF-xB (Garaude et al., 2006)
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Fig. 8. miR-23a targets KEAP1 mRNA. A) Jurkat cells were transfected with the whole miR-23a-27a-24-2 locus or with the constructs miR-23 A24-27 and miR-23 A23. The expression of
KEAP1 mRNA was analyzed by qPCR and represented as the % of mRNA compared to cells transfected with the control vector. B) Expression of KEAP1 protein and the quantification.
C) Jurkat cells were transfected with the different constructs together with a reporter plasmid containing the 3’UTR of KEAP1 mRNA downstream of the luciferase mRNA. Data are
represented as the % of luciferase expression in cells transfected with the empty vector. D) The expression of NQO-1 mRNA was analyzed by qPCR in cells transfected as in (A). The
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*p <0.05, “p < 0.01, “*p < 0.001 Student's t-test compared to empty vector transfected cells or as depicted in the graphic.
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and also controls miR-23 expression (Rathore et al., 2012). Moreover,
ERK5 protects AML cells from oxidative stress (Lopez-Royuela et al.,
2014). In summary, the ERK5/MEF2/miR-23/KEAP1 pathway represents
a potential target for therapeutic intervention. Moreover, our results
help explain how NRF2 supports leukemogenesis: it would reinforce
leukemic cell survival under different metabolic conditions.

DCA can induce an antioxidant response through NRF2 activation,
which can drive cytoprotective gene expression. However, DCA has
other effects on cell biology: it changes metabolism and induces p53 ac-
tivation (Allende-Vega et al., 2015; Charni et al., 2010). Moreover, DCA
synergizes with genotoxic drugs, such as doxorubicin or vincristine, to
activate p53. Hence, we cannot attribute the effect of DCA on tumor
cells uniquely to its role in NRF2 activation. DCA has been used to
treat several types of cancer with some positive results, including leuke-
mia. Therefore, we believe that its anti-tumorigenic activity is higher
than its pro-tumorigenic action.

During tumorigenesis, the immune system exerts additional pres-
sure that likely contributes to the selection of certain tumor clones.
Hence, the immune system may be a factor in selecting tumor cells
with a defined metabolic state (Villalba et al., 2013; Catalan et al.,
2015). Notably, ERK5 is an important factor in both tumor immune eva-
sion and tumor cell metabolism (Charni et al.,, 2009; Charni et al., 2010).
The fact that ERKS5 is involved in several phenomena described here,
namely tumor cell evasion, metabolism and antioxidant response,
shows that several phenomena converge to generate a specific pheno-
type in a clinical tumor.
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