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Abstract. A shallow ice core was extracted at the sum-
mit of Mera Peak at 6376 m a.s.l. in the southern flank of
the Nepalese Himalaya range. From this core, we recon-
structed the seasonal deposition fluxes of dust and refrac-
tory black carbon (rBC) since 1999. This archive presents
well preserved seasonal cycles based on a monsoonal pre-
cipitation pattern. According to the seasonal precipitation
regime in which 80 % of annual precipitation falls between
June and September, we estimated changes in the con-
centrations of these aerosols in surface snow. The analy-
ses revealed that mass fluxes are a few orders of magni-
tude higher for dust (10.4± 2.8 g m−2 yr−1) than for rBC
(7.9± 2.8 mg m−2 yr−1). The relative lack of seasonality in
the dust record may reflect a high background level of dust
inputs, whether from local or regional sources. Over the
10-year record, no deposition flux trends were detected for
any of the species of interest. The data were then used
to simulate changes in the surface snow albedo over time
and the potential melting caused by these impurities. Mean

potential melting caused by dust and rBC combined was
713 kg m−2 yr−1, and for rBC alone, 342 kg m−2 yr−1 for
rBC under certain assumptions. Compared to the melting rate
measured using the mass and energy balance at 5360 m a.s.l.
on Mera Glacier between November 2009 and October 2010,
i.e. 3000 kg m−2 yr−1 and 3690 kg m−2 yr−1 respectively, the
impact of rBC represents less than 16 % of annual potential
melting while the contribution of dust and rBC combined to
surface melting represents a maximum of 26 %. Over the 10-
year period, rBC variability in the ice core signal primarily
reflected variability of the monsoon signal rather than varia-
tions in the intensity of emissions.

1 Introduction

Emissions of long-lived greenhouse gases, short-lived re-
active trace gases and particles from natural and anthro-
pogenic sources strongly affect atmospheric composition and
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impact climate, air quality and, indirectly, the evolution of the
cryosphere. Quantifying emissions is one of the major chal-
lenges for the development of air quality and climate poli-
cies (Fowler et al., 2009; Isaksen et al., 2009) and quantifi-
cation should account for different changes in human-related
emissions and natural emissions over time as well as changes
in their geographical distribution. Major uncertainties in past
and current global inventories of anthropogenic and natural
emissions limit the establishment of a reliable framework of
emission inventories that is required for realistic emission
scenarios. This is especially true for the Indian subconti-
nent where reliable estimates of past and current emissions
are crucially lacking. India is one of the two largest anthro-
pogenic aerosol generating countries in the world (Lu et al.,
2011). In the past decade, India has been identified as a hot
spot in terms of high aerosol optical depth (AOD) observed
from space (Prasad and Singh, 2007) with components such
as sulfate, organic carbon (OC) or black carbon (BC) playing
a very active role. India on its own contributes 10 to 20 % of
all current aerosol emissions worldwide (Bond et al., 2007)
and has therefore received the greatest attention from com-
pilers of emission inventories.

Recent works performed as part of the “atmospheric
brown cloud” and the “SHARE” projects (http://www.
evk2cnr.org) indicated that the south-facing side of the Hi-
malayas is particularly affected by emissions from the Indo-
Gangetic plains (Bonasoni et al., 2010). Unique atmospheric
observations performed at the global GAW (Global Atmo-
sphere Watch) site of the Nepal Climate Observatory Pyra-
mid (NCO-P) facility located at 5079 m a.s.l. in the south-
ern foothills of Mt. Everest (Bonasoni et al., 2010), docu-
mented the efficient transport of short-lived climate pollu-
tants (SLCPs) to high altitudes for the first time. Continuous
observations over a period of more than 7 years revealed very
high concentrations of SLCPs, and in particular black carbon
(Marinoni et al., 2010) and ozone (Cristofanelli et al., 2010)
especially in the pre-monsoon season. The presence of light
absorbing material affects the radiative balance of the atmo-
sphere at both local (Marcq et al., 2010) and regional scales.
Source areas of aerosols for the high Himalaya have been
clearly identified by (Cristofanelli et al., 2010) and are lo-
cated in the Indo-Gangetic plains for most of the year. The
origin of aerosol species is likely linked to biofuel combus-
tion (Decesari et al., 2010). Desert dust events are also reg-
ularly observed at NCO-P, either mixed with anthropogenic
pollution from Pakistan and/or directly from the Gobi desert
(Bonasoni et al., 2010). Black carbon and dust are efficiently
scavenged to the snow/ice surface by dry and wet deposition
(Yasunari et al., 2010, 2013; Nair et al., 2013; Ménégoz et al.,
2014); these impurities can reduce surface albedo, especially
in visible wavelengths, thereby increasing heating and accel-
erating melting of both ice and snow (e.g. Xu et al., 2009).

Ice cores contain information about past temperatures,
precipitation and past deposits of many important species,
both short-lived (reactive gases, particulate matter and semi-

volatile species) and long-lived (CO2 and other greenhouse
gases) and have been used to provide independent records
of past aerosol load and composition, for example by (Pre-
unkert and Legrand, 2013) for Europe. For the Himalayas,
most studies were performed over the Tibetan plateau (i.e.
Thompson et al., 1989, 1990, 2000) where the impact of
emissions from the Indo-Gangetic plains is reduced because
of the dominant westerlies. The southern margin of the Hi-
malayan range is influenced by the seasonal alternation of the
westerlies and the Indian monsoon: ice cores extracted from
the Mount Everest East Rongbuk glacier (28◦ N, 87◦ E) have
used this alternation for example, to determine seasonal cy-
cles even though this glacier is situated on the northern flank
of the Himalaya range. The East Rongbuk site has provided
a wide range of climatic and environmental records includ-
ing chemistry and isotopes (Kang et al., 2002; Kaspari et al.,
2009; Zhang et al., 2009; Lee et al., 2011), dust (Xu et al.,
2010) and the first profile of BC (Ming et al., 2008; Kas-
pari et al., 2011; Jenkins et al., 2013). The southern flank of
the Himalaya range, where the Mera Glacier drilling site is
located, is more influenced by monsoon and by southern pol-
lution events than the Rongbuk site.

Radiative forcings of BC in snow and associated enhanced
melting have attracted the attention of the scientific com-
munity in recent years. Several experimental and modelling
studies came to the conclusion that this impact is measur-
able in Himalayan regions (Ménégoz et al., 2014; Flanner
et al., 2012; Sterle et al., 2013; Ming et al., 2009). For ex-
ample, the atmospheric concentration of BC at NCO-P sta-
tion was converted into possible changes in albedo by (Ya-
sunari et al., 2010), who concluded that BC deposition may
increase glacier water runoff by between 70 and 204 mm an-
nually. However, the effective impact of increased BC de-
position flux in terms of glacier melting is still highly un-
certain. While some studies using simulated snow/ice cover
from aerosol emission inventories attributed the decline in
the simulated Himalayan snow/ice cover for the 1990–2000
period to increased BC emissions from India (Menon et al.,
2010), a recent study by Bond et al. (2013) pointed to very
large uncertainties associated with such studies.

Part of this uncertainty is linked to the lack of observa-
tions for the Himalayan region, from glacier mass balance
to atmospheric composition data at high altitudes, i.e. over
6000 m a.s.l., where glaciers are covered with snow all year
round. In order to study a site mainly influenced by the In-
dian monsoon, we selected a site on the southern slope of
the Himalayas. Here, we present the first results from an ice
core extracted from Mera Glacier (6376 m a.s.l., 27◦43′ N,
86◦52′ E) in Nepal. Together with radiation modelling, we
investigated the impact of refractory black carbon (rBC) and
dust on seasonal changes in surface albedo and the melting it
may have caused over the last decade.
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2 Site description and experimental methods

2.1 Local climatology

The site is located about 30 km south of NCO-P, a GAW site
that has undergone continuous observations of meteorolog-
ical parameters and atmospheric composition since March
2006. The meteorological characteristics and air mass circu-
lation that affect NCO-P and the Mera Glacier drilling site
are well described in Bonasoni et al. (2010); and in agree-
ment with the local weather regime, we define the seasons
as pre-monsoon from March to May, monsoon from June to
September, post-monsoon from October to November and
winter from November to January. Large-scale Asian mon-
soon circulation and the local mountain wind system control
the atmospheric conditions in Himalayan high-altitude val-
leys, where 80 % of the annual precipitation is concentrated
between June and September (Wagnon et al., 2013; Bona-
soni et al., 2010) and is influenced by the summer monsoon
(Bonasoni et al., 2010; Ueno et al., 2008; Bookhagen and
Burbank, 2006). Hence, Mera Glacier is a summer accumu-
lation type glacier with peak accumulation and ablation oc-
curring simultaneously. At NCO-P, temperatures are highest
from June to August. Large scale circulation affecting the
Himalayan southern slopes can be described as a balance be-
tween eastward travelling disturbances during the cold sea-
son (October to May), and monsoon depressions from the
northern Gulf of Bengal during the rest of the year. The syn-
optic origins of the air masses reaching this region are related
to these circulation patterns. During the monsoon, 96 % of
the air masses are regional or originate from the Gulf of Ben-
gal, whereas during winter (December to March) and post
monsoon (October to November), the westerlies favour trans-
port from northwestern India, Pakistan and the Middle East
(Bonasoni et al., 2010; Barros and Lang, 2003). During the
pre-monsoon period (April to May), high concentrations of
aerosols have been reported by atmospheric observations and
linked to the direct transport of brown cloud pollutants to the
Himalayas (Hindman and Upadhyay, 2002; Bonasoni et al.,
2010). The concentration of particles in the atmosphere mea-
sured at NCO-P showed two maxima during the pre- and
post-monsoon seasons, while the minima during monsoon
corresponded to the efficient washout of particles by rain be-
fore they reached the Himalayas (Sellegri et al., 2010).

2.2 Field campaign

Only a few glaciers on the southern slopes of the Himalayas
with the expected characteristics in terms of temperature, ge-
ometry, accumulation rates, access and safety are suitable
for ice core investigations. One site was identified in the ac-
cumulation zone of Mera Glacier (6376 m a.s.l., 27◦43′ N,
86◦52′ E) in Nepal, in the Himalayan south range, a glacier
that has been studied since 2007 in the framework of SOERE
(Systèmes d’Observation et d’Expérimentation au long terme

Figure 1. (a)Mera Glacier picture with the position of the drilling
site and Naulek weather station,(b) Map of Nepal and border coun-
tries showing the location of Mera Peak,(c) Satellite image of the
high Dudh Koshi basin where the Mera Glacier and NCO-P sites
are located.

pour la Recherche en Environnement) GlacioClim/Himalaya
for mass/energy balance (Fig. 1). The selection was also
based on the monsoon paths and source areas of natural
and anthropogenic compounds, in order to provide reliable
records for the monsoon record study.

A 19.8 m long firn core was extracted using an electrome-
chanical FELICS (Fast Electromechanical Lightweight Ice
Coring System) small drill (Ginot et al., 2002) on 11 Novem-
ber 2010. Borehole temperatures were−5.7◦C at a depth
of 20 m, −5.0 at 15 m and−3.2 at 10 m corresponding to
a site mean annual temperature below−5◦C. Core density
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and stratigraphic markers were measured during drilling. The
drill core container was a solid aluminum barrel pre-cleaned
with ultrapure water before the campaign. Since testing had
been carried out previously, sampling in the field, i.e. cut-
ting the core directly into pre-cleaned vials when extracting
it from the barrel, did not require any additional decontam-
ination procedure for major ions, stable isotopes, dust and
BC. The core was immediately logged and sub-sampled in
the field. A total of 276 samples, with an average length of
6.6 cm (between 4 and 16 cm) were stored in 276 sealed pre-
cleaned polypropylene vials and kept in an insulated core
box for transport. Since it was impossible to be sure the cold
chain would be maintained from the glacier to the laboratory,
i.e. the samples would probably melt during shipment, a few
drops of formaldehyde solution were added to the samples
in order to limit the bacteriological development in the vials.
Temperature logger in the box recorded that samples were
melted during 18 days of shipment before being refrozen in
the laboratory.

2.3 Sample description and analyses

The core stratigraphy was composed of low density small
grains from the surface to 1.5 m water equivalent (m w.e.q.),
with a small increase in density to a depth of 2.07 m w.e.q.
Large grain firn was observed below. Ice layers were ob-
served at 1.47–1.57 m w.e.q., between 1.78 and 2.07 m w.e.q.,
and at 4.02 m w.e.q. (illustrated in Fig. 2).

Analyses of major and organic chemical species were per-
formed using a Dionex© ICS3000 dual ion chromatography
system at the LGGE laboratory. The chromatography system
was used for the analyses of cations (Li+, Na+, NH+

4 , K+,
Mg2+, Mn2+, Ca2+ Sr2+) and anions (F−, Cl−, NO−

2 , Br−,
NO−

3 , (CH2)2C2O2−

4 , SO2−

4 , C2O2−

4 ) down to sub-ppb level
and with a high level of accuracy (6 standard calibrations, rel-
ative standard deviation < 2 %). The determination of other
species was disturbed by the formaldehyde spiking. Insol-
uble dust measurements were performed using a micropar-
ticle counter (Coulter Counter© Multisizer III) for particles
with a diameter ranging from 1.0 to 30 µm, divided in 300
equivalent size channels. The total mass of dust was calcu-
lated from the volume size distribution, assuming a density
of 2.5 g cm−3 (Delmonte et al., 2002). The analytical sys-
tems are in the class-100 clean room at the LGGE labora-
tory, Grenoble, France. Detailed analytical procedures and
accuracy are described in Delmonte et al. (2002).

The 18O content of the ice was measured at the Hy-
droSciences LAMA laboratory, Montpellier, France, on an
Elementar Isoprime Mass Spectrometer coupled with an
Aquaprep module, using the classical CO2 equilibration
technique. The results are expressed inδ18O on the V-
SMOW scale with an overall uncertainty of±0.06 ‰. Half
the samples whose chemical composition was analyzed were
used for measurement ofδ18O, which corresponds to a reso-
lution of approximately 12 cm of snow.

Figure 2. Firn core profiles with depth for water stable isotope
(δ18O), ammonium, fluoride, calcium, sulfate, nitrate, dust and re-
fractory black carbon (M rBC in gray and rBC in black) on Mera
Glacier. The scale on the right vertical axis corresponds to the an-
nual dry season. The stars correspond to the observed ice layers.

SP2 uses a laser-induced incandescence technique to
measure the mass of individual refractory BC (rBC) inde-
pendently of rBC particle morphology and light-scattering
coating materials (Petzold et al., 2013; Cross et al., 2010;
Moteki and Kondo, 2007, 2010; Schwarz et al., 2006).
A single rBC particle passing through the laser beam
intra-cavity absorbs light, reaches a vaporization temper-
ature at which it incandesces, and emits visible thermal
radiation. The incandescence signal is proportional to the
mass of the individual rBC particle. Fullerene soot was
used for calibration of the incandescence signal. The use
of SP2 for liquid samples requires nebulization which was
performed by an APEX-Q system (EPOND, Switzerland).
The efficiency of the APEX/SP2 system was accounted
for by applying a correction factor of 0.56 to rBC mass
concentration to all samples (Lim et al., 2014). The neb-
ulization factor was measured every analytical day and
the correction was used to obtain the “measured” rBC
concentration (MrBC) as done by (Kaspari et al., 2013).
In order to calculate the “absolute” rBC concentration, a
second correction corresponding to the fraction of rBC lost
during handling of the samples (melting/refreezing cycles
principally) had to be applied. In this study, the proce-
dure used comprised two melting/refreezing cycles (Sam-
pling/Melting/Freezing/Melting/Freezing/Melting/Analysis),
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the rBC loss reached 59± 8 % (Lim et al., 2014). The cor-
responding measured (MrBC) and absolute values (rBC)
are used hereafter. For rBC particles, we used the sum of
individual rBC particle mass from ~50 to 600 nm mass
equivalent diameter to obtain the rBC mass concentration of
each sample. Over the whole record, the highest number of
particles appeared between∼ 50 and 90 nm mass equivalent
diameters (Lim et al., 2014).

The measurement of equivalent BC in the atmosphere,
resulting from the measured aerosol absorption coefficient,
was obtained at NCO-P by MAAP (Multi-Angle Absorption
Photometer,©Thermo): it measures the transmission and the
back scattering of a light beam (Petzold and Schönlinner,
2004) incident on a fiber filter where aerosol particles are
deposited by sampling flow. The detection limit (3σ of blank
measurements) was calculated as 11 ng m−3, with an integra-
tion time of 30 min (Marinoni et al., 2010).

3 Ice core records

3.1 Dating

The firn core was dated annually between 2010 and 1999
based on seasonal cycles of stable isotopes and chemical
proxies. In this region, the stable isotope composition of pre-
cipitation is mostly controlled by the rainout effect associated
with Indian monsoon activity (Araguás-Araguás et al., 1998;
Zhang et al., 2001; Vuille et al., 2005). Precipitation data
collected over a period of 1 year at the high altitude GNIP
Lhajung station (27◦53′42′′ N; 86◦49′30′′ E; 4420 m a.s.l.,
Nepal) (International Atomic Energy Agency/World Meteo-
rological Organization, 2006), showed depleted values (min
δ2H = −130.4 ‰) related to the monsoon rain season (June),
while enriched values (maxδ2H = −18.9‰) corresponding
to pre-monsoon season (March–May), resulted in a seasonal
amplitude of 111.5‰ forδ2H (≈ 13.9‰ for δ18O consid-
ering the slope of the Global Meteoric Water Line). The
clear variation inδ18O recorded along the core, about 10‰
in amplitude (Fig. 2) can be safely attributed to seasonal
cycles, with the depleted phase corresponding to the mon-
soon season and the enriched peaks to inter-monsoon peri-
ods. Since precipitation is reduced during inter-monsoon sea-
sons at high altitude, part of the enriched events may be miss-
ing from the record due to wind erosion of the snow (Wagnon
et al., 2013) resulting in a reduced seasonal amplitude com-
pared to drain water values.

The variation in chemical tracers in the ice core was used
to complete the stable isotope records for dating purposes.
In order to observe the highest seasonal variability in the
chemical composition, we focused on species subjected to
a combination of deposition processes like scavenging and
post-deposition enrichment (Ginot et al., 2001). The differ-
ence between the wet monsoon and the dry inter-monsoon
and their related aerosol sources and deposition processes is

amplified with this approach. Ammonium ions (NH+

4 ) are
a good indicator. The potential sources of ammonia in this
region are biomass burning, farming and soil emissions re-
sulting from the use of nitrogen fertilizers (Sun et al., 1998).

As observed in the atmospheric record at NCO-P (Dece-
sari et al., 2010), NH+4 undergoes strong seasonal variability
in the same way as the main aerosol chemical constituents.
The atmospheric concentration of ammonium ranged from
a minimum of < 0.023–0.14 µg m−3 in the afternoon during
the monsoon to a maximum of 0.40 µg m−3 in the afternoon
in the pre-monsoon period with minima during the monsoon
and maxima during the pre-monsoon period. In the monsoon
season, NH+4 is efficiently washed out by precipitation and
does not reach the high Himalayas leading to annual min-
ima (Decesari et al., 2010; Carrico et al., 2003). During the
post-monsoon period and winter, which correspond to drier
conditions, a rise in NH+4 concentration is observed in the at-
mosphere and a clear strong peak is usually recorded during
the pre-monsoon season. Dry and wet deposition processes
of both particulate NH+4 and gaseous NH3 result in high
concentration peaks on the surface snow, which may subse-
quently be amplified by post-depositional processes such as
snow sublimation (Ginot et al., 2001) or reaction with HNO3
absorbed on the snow layers (Marinoni et al., 2001; Shrestha
et al., 2002). In winter, westerly circulation associated with
distant or reduced sources may generate low NH+

4 concen-
tration in the snow layers; but these layers are usually scarce
(very dry conditions in winter) and often not preserved in
the snow column (snow remobilized into the atmosphere due
to strong winds at high elevations in winter, Wagnon et al.,
2013). The ammonium core profile was therefore used for
dating, with high concentration peaks corresponding to the
annual dry season (Fig. 2).

Stable isotopes were consequently used to identify each
annual cycle between November 2010 and the year 2000
from the annual enriched peak (dashed lines in Fig. 2).
The section between two consecutive enriched peaks was
used to calculate an annual mean. Because accumulation
is not linear with time, we used the isotopic cycle to split
the year into two seasons. For each year, the section with
more depleted values than the annual mean were identified
as monsoon precipitation and their borders were dated using
the monsoon onset and withdrawal dates provided by the
Department of Hydrology and meteorology (Government of
Nepal, Katmandu:http://www.dhm.gov.np/uploads/climatic/
535305507monsoon%20onset%20n%20withdrawal.pdf).
The additional sections were identified as inter-monsoon
season. Each core sample was dated using a linear depth
versus time trend between the two monsoon onset and
withdrawal dates. The use of the annual mean isotopic value
as the seasonal border may induce some uncertainties in
the dating at the monthly resolution but also in the seasonal
accumulation distribution and the seasonal concentration.
However, annual values are not sensitive to this dating
method.

www.the-cryosphere.net/8/1479/2014/ The Cryosphere, 8, 1479–1496, 2014
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Isotopic and chemical dating methods resulted in a sea-
sonally resolved dated profile from November 2010 to the
year 2000 (Fig. 2). The lowest NH+4 concentration layer
observed between the surface and 1.19 m water equivalent
(w.e.) depth, also corresponded to the most depletedδ18O
over the whole profile; it was atypical of the profile and
was related to the temporary preservation of early snow from
September to November 2010. This layer was composed of
cold small loose snow grains in contrast to the deeper part of
the core, which was composed of more compact, larger and
transformed snow crystals and ice layers. No other early win-
ter snow layer was preserved elsewhere in the profile prob-
ably because of strong wind erosion and remobilization of
loose snow during winter, as systematically observed on-site
by (Wagnon et al., 2013) since 2007.

The profile was divided into three seasonal patterns. As
mentioned above, only a single winter event was identified
between the surface and 1.19 m w.e. depth. The snow frac-
tion related to monsoon and inter-monsoon conditions was
attributed according to theδ18O composition. Along the pro-
file, 46 % of the core was attributed to “monsoon”, 47 % to
“inter-monsoon” and 7 % to “winter” layers.

Accumulation measured close to the drilling site for the
time frame 2008–2013 (Wagnon et al., 2013) ranged between
0.38 and 1.25 m w.e.q. with a mean of 0.83 m w.e.q. The core,
with 12.47 m w.e.q. and spanning 2000–2010 corresponded
to a mean net accumulation of 1.13 m w.e.q. Two years accu-
mulation 2008–2009 and 2009–2010 are compared and re-
veals higher accumulation from the ice core study with re-
spectively 2.14 and 1.26 m w.e.q. from the core and 0.72 and
0.83 m w.e.q. from Wagnon et al. (2013) study. In compari-
son, at NCO-P site at 5035 m a.s.l., annual mean precipitation
for 2007–2012 was 389± 44 mm but solid precipitation was
likely underestimated (Wagnon et al., 2013).

3.2 Observed concentration profiles, deposition
processes and seasonal variations

The ice core record was characterized by strong seasonal-
ity that can be sub-divided into three distinct patterns cor-
responding to winter, monsoon and inter-monsoon. Table 1
summarizes the concentrations of major ions, dust and rBC
for the whole core and for the three distinct periods. The
“winter” column is only based on data from the available
layer covering September to November 2010.

Whereas the concentrations of major ions (NH+

4 , NO−

3 ,
SO2+

4 , Ca2+, F−) were in the same order of magnitude as
those observed by Ming et al. (2007) at the East Rong-
buk Glacier on the northern side of the Himalayas, the
aerosol sources or deposition processes at our study site,
characterized with species ratios, differed from elsewhere.
In our study, Ca2+ was the major ion in agreement with
the high dust concentrations observed in the atmosphere at
NCO-P (Decesari et al., 2010). The mean concentration ratio
[Ca2+] / [SO2−

4 ] was 4.33, as opposed to only 0.23 recorded

in the aerosol/snow study at the East Rongbuk Glacier site
on the Northern Himalayan slope (Ming et al., 2007). Ac-
cording to the ionic balance (6 cations –6 anions), which
were mostly negative, and the high [Ca2+] / [SO2−

4 ] ratio, cal-
cium appears to be mostly in the form of calcium carbonate
(CaCO3) rather than gypsum (CaSO4).

The rBC averaged level in the ice core was
7.43± 15.07 µg L−1, with a higher mean concentration
during the inter-monsoon season (13.50± 20.00 µg L−1)

and a lower mean concentration in the monsoon season
(2.15± 3.45 µg L−1). The maximum rBC concentration
measured in the 10 year profile was 116.83 µg L−1 (Table 1).
These values can be compared with previous studies on ice
cores in Tibetan Plateau, such as Ming et al. (2008) and
Kaspari et al. (2011), although the different techniques and
corrections used means they are not directly comparable
(Petzold et al., 2013). The concentrations measured at Re-
pula Col by Ming et al. (2008) using thermal-optical methods
for present conditions were higher (20.3± 9.2 µg L−1) but
lower than those analyzed at East Rongbuk glacier using the
SP2 method (Kaspari et al., 2011): only 0.7± 1.0 µg L−1

of MrBC. At the Mera Glacier, the concentration reported
by (Kaspari et al., 2013) for the sample taken in a snow
pit on Mera Col (6400 m a.s.l.) were compared with those
measured in this study. Maximum and meanMrBC values
are in the same order of magnitude with respectively
8.4 µg L−1 and 1.0 µg L−1 in the snow pit and 47.90 µg L−1

and 3.04 µg L−1 in this core study. The higher maximum
value of the ice core is the result of a longer time record with
higher resolution and greater temporal variability.

The mean concentration of insoluble dust was high
(10.1 mg L−1), with only few spikes up to 66.9 mg L−1 be-
fore the 2003 monsoon layer. This is much higher than the
mean concentration (0.465 mg L−1) measured in the ice core
taken from the opposite slope of Mount Everest, in the cen-
tral Himalayas (Xu et al., 2010). The relative lack of season-
ality in both the overall quantity and the size distribution in
the dust record is surprising but may reflect the impact of a
high background level of dust inputs, whether from a local
or a regional source. Figure 3 shows the mean size distribu-
tion of dust for the three periods of interest. The presence
of large particles (> 10 µm) was confirmed for all three pe-
riods as was the similar modal size distribution of dust be-
tween winter, monsoon and inter-monsoon seasons, with a
mean mass equivalent diameter of 5.7, 6.0 and 6.4 µm respec-
tively. Mean dust concentrations showed some seasonal dif-
ferences with a lower concentration in winter (7.2 mg L−1)

and higher concentrations during the monsoon (10.1 mg L−1)

and inter-monsoon (11.1 mg L−1) periods. These values are
in agreement with observations made by (Gobbi et al., 2010)
using a sun photometer but contradict observations made at
NCO-P by Marinoni et al. (2010). The layer with the highest
concentration of dust (66.9 mg L−1) (Fig. 2) was recorded at
8.9 m w.e. depth with a larger mean mass equivalent diameter
of 10 µm. This event could be associated with the major dust
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Table 1.Summary data: EOF analysis parameters and aerosol concentrations and fluxes obtained from the Mera Glacier ice core.

All/annual Inter-monsoon Monsoon Winter

samples 276 130 (47 %) 127 (46 %) 19 (7 %)
ice core 19.8 m 8.37 m 7.80 m 2.03 m

12.47 m,w.e.q. 5.28 m w.e.q. 4.94 m w.e.q. 0.99 m w.e.q.
PC1 Variance 37 % 41 % 38 % 50 %
PC2 variance 20 % (58 %) 19 % (60 %) 20 % (59 %) 18 % (68 %)
PC3 variance 13 % (71 %) 15 % (75 %) 10 % (69 %) 12 % (78 %)
δ18O mean composition −17.21± 2.95 −14.62± 2.11 −18.63± 1.38 −21.98± 1.15 (‰)
NH+

4 mean concentration 1.69± 0.84 2.03± 0.94 1.52± 0.44 0.30± 0.13 (µEq. L−1)

F− mean concentration 0.070± 0.060 0.091± 0.078 0.055± 0.024 0.027± 0.014 (µEq. L−1)

Ca2+ mean concentration 4.52± 2.77 4.63± 2.89 4.46± 2.68 4.12± 2.85 (µEq. L−1)

SO2−

4 mean concentration 1.05± 1.28 1.10± 1.34 0.95± 1.26 0.90± 1.08 (µEq. L−1)

NO−

3 mean concentration 1.07± 0.97 1.31± 1.13 0.85± 0.74 0.64± 0.32 (µEq. L−1)

M rBC max. concentration 47.90 47.90 8.15 1.20 (µg L−1)

mean concentration 3.04± 6.11 5.53± 8.20 0.88± 1.41 0.34± 0.23 (µg L−1)

deposition flux 3.2± 1.2 (87 %± 10 %) (13 %± 10 %) (mg m−2 y−1)

rBC max. concentration 116.83 116.83 19.88 2.92 (µg L−1)

mean concentration 7.43± 15.07 13.50± 20.00 2.15± 3.45 0.84± 0.56 (µg L−1)

deposition flux 7.9± 2.8 (87 %± 10 %) (13 %± 10 %) (mg m−2 y−1)

Dust max. concentration 66.9 66.9 26.5 15.4 (mg L−1)

mean concentration 10.1 10.6± 6.6 10.1± 4.0 7.6± 3.2 (mg L−1)

deposition flux 10.4± 2.8 (54 %± 20 %) (46 %± 20 %) (g m−2 y−1)

outbreak over south Asia in June 2003 described by (Gau-
tam et al., 2013). The process by which dust is deposited
onto snow at Mera Glacier is uncertain, but concentrations
are clearly higher than would be expected according to at-
mospheric measurements made at NCO-P.

As dust deposition fluxes were high in all three seasons,
we used the available data to track changes in the sources
of dust. Soluble species analyzed by ion chromatography, in-
cluding calcium, magnesium, manganese, lithium and stron-
tium, were used to calculate the ratios of soluble ionic species
to dust. The negative ionic balance was attributed to the car-
bonate load. These ratios and carbonate were used to identify
changes in the sources of dust. The ionic balance was nega-
tive throughout the record (−6.7 µEq L−1 mean value); the
lowest values were lower for winter snow (−4.5 µEq L−1)

and some spikes reached between−20 and−40 µEq L−1.
The calcium : dust ratio remained relatively stable throughout
the record. The two dustiest layers located in inter-monsoon
periods, at depths of 4.1 and 8.9 m w.e., are atypical (Fig. 2).
These layers had the highest carbonate concentration and
high ratios of manganese and magnesium, which may have
been characteristics of a different dust source we were not
able to identify. A third source, with high a lithium ratio as-
sociated with sea salt, with or without carbonate, appeared in
the most recent part of the record (winter and the monsoon
season in 2010), and could represent inputs of aerosols from
salt flats or salt lakes located on the Tibetan plateau.

Using SO2−

4 as a reference, the snow was clearly en-
riched in NO−

3 and NH+

4 compared with the atmosphere.
While NO−

3 / SO2−

4 and NH4+ / SO2−

4 rarely exceed 1 (aver-
age= 0.42 and 0.50 respectively) in the atmosphere (Dece-
sari et al., 2010), they were much higher in our ice samples
(average= 1.32 and 2.89, respectively). This is certainly due
to negative artifacts on the filters leading to loss of NO−

3
(and to a lesser extent of NH+4 ) but also to efficient scav-
enging (wet and dry) of highly soluble NH3 and HNO3 gases
to snow surfaces.

Empirical Orthogonal Function (EOF) can be used to an-
alyze the behaviour of the different species. Variance analy-
sis of all the samples was first performed. Not surprisingly,
most of the variability (PC1= 37 %, all species: rBC,δ18O,
dust and major ions) was mainly controlled by the deposition
processes that were used for dating purposes. All the con-
centrations of ions, dust and rBC correlated with low (high)
concentrations during the wet (dry) season. Low concentra-
tions were due to dilution during the wet season, high con-
centrations corresponded to post-deposition processes (dry
deposition and sublimation) during the dry season.δ18O and
soluble ionic species were in phase with depleted (enriched)
isotopic values with low (high) concentrations. The seasonal
variation in dust does not appear clearly in Fig. 2 and the as-
sociation of PC1 is driven by sporadic peaks during the inter-
monsoon period. PC2 and PC3 explained limited variance
(20 and 13 % respectively) but, as observed in the projection
(Supplement), can be used to differentiate sources containing
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Figure 3.Dust andM rBC size distribution for the different seasons:
inter-monsoon (empty circles), monsoon (black squares) and winter
(gray triangles, for dust alone) and lognormal fit forM rBC distribu-
tion (dashed lines).

salts such as Cl−, Na+, K+ and Li+ on the one hand, possibly
linked to emissions from salt lakes located in Tibet (Zheng
and Liu, 2009), or containing terrigenous material such as
Ca2+, Mg2+, Mn2+ and dust on the other hand.

The maxima observed during the inter-monsoon period
were due to dry deposition processes when impurities accu-
mulate on the snow surface, amplified by snow sublimation
(Ginot et al., 2001). This effect was particularly strong for
rBC and fluoride deposition and revealed a thin layer with
high concentrations in the inter-monsoon peaks throughout
the record, up to 47.90 µg L−1 for rBC. Moreover, the anal-
ysis of transport data at the NCO-P site, showed that max-
imum transport of pollutants and dust occurred outside the
monsoon season. Higher BC post-deposition enrichment was
also observed on the snow pack surface of the Tibetan glacier,
but during summer (Xu et al., 2012).

In Fig. 2, no obvious trend can be detected from the overall
10 year ice core record for any of the species of interest. Us-
ing the ECCAD portal (http://eccad.sedoo.fr) and the MAC-

City (MACC/CityZEN EU projects) inventories (Granier et
al., 2011; Lamarque et al., 2010; Diehl et al., 2012; Van der
Werf et al., 2006), we calculated the temporal variability of
anthropogenic and natural emissions for the area of north-
ern India/Pakistan that most influence the high Himalayan
regions (area selected: India+). During the 1999–2010 pe-
riod, anthropogenic emissions of SO2, NOx and BC were es-
timated to have increased by 56, 45 and 20 %, respectively.
No trends emerged for anthropogenic NH3 emissions, or for
biomass burning emissions of rBC, sulfate, nitrate and am-
monium. Also in Fig. 2, no trend can be detected in the ice
core record for any of the species concerned over the last
10 years. Emission intensity peaks occurred during the win-
ter period, but not associated with the highest concentrations
in the ice core record as the winter snow layers were not
preserved. Thermal breezes or weak convective processes
limited efficient transport from the Indo-Gangetic plains to
higher altitudes during that period as observed at the NCO-P
site (Marinoni et al., 2010; Bonasoni et al., 2010). Compared
in terms of fluxes over the 10-year period, the variability of
the ice core signal rather reflects the variability of the mon-
soon signal than that of emission intensity in the India+ area.
This is an important result for studies connecting BC emis-
sions to their impact on the cryosphere.

3.3 Comparison with the aerosol record at NCO-P

Atmospheric composition has been continuously measured
at NCO-P since March 2006 (Fig. 4). We were consequently
able to compare the atmospheric observations recorded at
NCO-P with the signal recorded in the Mera ice core during
the overlap period, i.e. from 2006 to 2010. NCO-P and Mera
Glacier are located 27 km apart and their difference in eleva-
tion is 1300 m. However, because the ice core signal intensity
is a complex mixture of wet scavenging, dry deposition, and
post-depositional processes, it is therefore difficult to directly
link intensity with an atmospheric signal. In addition, the
techniques used to reconstruct the ice core signal generally
differ from those used in the atmosphere and cannot be eas-
ily compared. At NCO-P, PM10 filters are regularly sampled
and analyzed, and elemental and organic carbon as well as
major ion concentrations are measured. Black carbon is mea-
sured by single-particle incandescence, correlated with black
carbon mass in the snow, and derived from the aerosol ab-
sorption coefficient in the atmosphere. Very few comparisons
of these two techniques are available. Dust in the ice core
sample was measured with a Coulter Counter© and approxi-
mated by the PM10–PM1 signal of the optical particle counter
(OPC) in the atmosphere at NCO-P. Similarly, without addi-
tional information on shape, density, and the refractive index,
the two records cannot be compared quantitatively. However,
similarities and differences can be pointed out.

Comparisons between the ice core signal at Mera Glacier
and the atmospheric observations at NCO-P are shown in
Fig. 4 for black carbon and dust. To reconstruct the two
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Figure 4. Atmospheric BC and dust (red lines, scales on the right
vertical axis) measured monthly at the NCO-P site, and changes in
surface snow concentrations of rBC (black bar, scales on the left
vertical axis) and dust (drown bar) reconstructed from dated firn
core data.

signals along the same temporal axis, we used the continu-
ous observations made at NCO-P, and for the firn core, we
converted the depth scale to a time scale using the following
procedure. The seasonally resolved record made it possible
to reconstruct changes in concentrations of rBC and dust in
surface snow. The monsoon onset and withdrawal date tie
points identified along the core were used for dating and lin-
ear dating with depth was used between the points as de-
scribed above (Fig. 4).

Both atmospheric and ice core records showed strong sea-
sonality with the lowest values during the monsoon season
and the highest values during the inter-monsoon (or pre-
monsoon) season. The conjunction of emission, transport and
deposition (wet or dry) processed favoured the presence of
short-lived species (particularly BC) in the snow during the
period from February to June. The variability of the dust sig-
nal was much less pronounced in the ice core signal than in
the atmospheric signal, as can be seen in Figs. 2 and 4. The
ratio mass of dust to rBC in the ice core signal was much
higher than that of (PM10–PM1) to the equivalent BC in the
atmosphere. This is an additional confirmation of the pres-
ence of a local dust source, formed by coarse particles not
sampled in the PM10 inlet at NCO-P.

3.4 Dust and rBC deposition fluxes

Annual deposition fluxes can be compared at the two sites
with a few assumptions for the overlap period 2006–2010.
Here we limited the calculation to BC from atmospheric
measurements using the deposition velocities derived by Ya-
sunari et al. (2010, 2013). For the pre-monsoon season 2006,
(Yasunari et al., 2010) obtained a total BC deposition of
0.266 mg m−2 at NCO-P. Changes in concentrations in the
surface snow over time were simulated using the firn core
data and the dating procedure described previously and il-
lustrated in Fig. 4. This reconstruction was used to simulate
the impact of surface snow impurities on the glacier energy
balance and on melting (Sect. 4.3).

Deposition fluxes for rBC and insoluble dust were calcu-
lated from the ice core data. Annual mean deposition fluxes
(from 1 October to 30 September) over the last 10 years were
7.9± 2.8 mg m−2 y−1 for rBC and 10.4± 2.8 g m−2 y−1 for
dust. The rBC value is in the upper range of fluxes mod-
elled by Yasunari et al. (2013) for this region of the Hi-
malayas, and one order of magnitude higher than that cal-
culated from measurements made at the NCO-P site in the
pre-monsoon season (Yasunari et al., 2010). Furthermore,
these fluxes were calculated between monsoon and inter-
monsoon regimes. When we split the seasonal fluxes be-
tween “monsoon” and “inter-monsoon”, rBC and dust dis-
played different behaviours. The mean dust concentration re-
mained stable over all the seasons with 10.6± 6.6 mg L−1

during the inter-monsoon period and 10.1± 4.0 mg L−1 dur-
ing the monsoon. The deposition flux in the inter-monsoon
period accounted for 54 % of the annual flux. In contrast, the
rBC deposition flux was concentrated in the inter-monsoon
period and accounted for 87 % of the annual deposition, and
with a larger difference in mean concentration between the
seasons (13.5 µg L−1 during the inter-monsoon period, and
2.15 µg L−1 during the monsoon).

4 Impact of dust and rBC on surface albedo and glacier
melting

4.1 Changes in albedo due to BC and dust deposition

For this study, we used the reconstructed aerosol concentra-
tion based on the ice core to investigate the impact of dust
and rBC contents of the snow surface on its energy balance
through changes in surface albedo. Our approach was to sim-
ulate the changes in albedo produced by different concentra-
tions of impurities, dust and rBC, measured in the ice core.
To this end, we used the radiative transfer model DISORT
(Discrete Ordinate Radiative Transfer Model) (Stamnes et
al., 1988) with several simplistic assumptions, since our aim
was just to estimate the order of magnitude of the effects of
impurities on the snow radiation balance.

As shown in Fig. 2, rBC concentration peaks built up dur-
ing the drier period between each annual monsoon event. Ac-
cording to observations made at the NCO-P site (Marinoni
et al., 2010), the highest atmospheric concentration of BC
occurred during the pre-monsoon season (February to May)
transported both by valley breezes from the Indo-Gangetic
Plain (India, Nepal) and by longer range air masses from
Middle Eastern and European sources. The difference in the
deposition of BC and other tracers of anthropogenic activ-
ities, like ammonium and fluoride, confirmed the regional
source of the “brown cloud”.

Snow grains were considered to be spherical and we used
Mie theory to compute their single scattering properties. The
refractive index of ice was taken from Warren and Brandt
(2008). The refractive index of BC and its density was taken
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from Flanner et al. (2012) whereas the refractive indices
and density of dust with different hematite contents were
taken from Balkanski et al. (2007). The DISORT model was
used to simulate the spectral albedo of an external or inter-
nal mixture of impurities and snow as detailed in Flanner
et al. (2012). In the absence of any measurement, the snow
grain size was chosen as constant in preference to the profile
(optical radius (r_opt) of 0.16 mm or 0.65 mm) and the impu-
rities were equally distributed within the snowpack (internal
or external).

Dust and BC contents were computed from the season-
ally dated core record. Dust was considered as being external
to the snow grains given its size (mass equivalent diameter
ranging from 6 µm when deposited with precipitation up to
10 µm when transported dry). BC was assumed to be external
during the dry season (dry deposition) and internal during the
monsoon (wet deposition). The mean diameter used for BC
was 90 nm for all seasons as shown by SP2 measurements.

The simulated spectral albedo using DISORT for 1 March
2003 and 1 April 2005 and for diffuse irradiance is illus-
trated in Fig. 5. These two dates were chosen as they rep-
resent extreme values of dust and rBC concentrations in
the record at the end of the simulated post-monsoon sea-
son. For March 2003,MrBC content was 23.97 ppb and dust
content was 57.1 ppm, whereas for April 2005,MrBC con-
tent was 42.38 ppb and dust content was 10.69 ppm. The
solid blue line corresponds to the albedo of pure fine snow
(r_opt= 0.16 mm) while the black solid line corresponds to
the albedo of fine snow containing both rBC and dust. Differ-
ent hematite content were simulated. The two light blue lines
in the right panel correspond to the spectral albedo of pure
and contaminated snow for coarser grains (r_opt= 0.65 mm).
For these simulations, we chose a hematite content of 1.5 %
for the dust refraction index which corresponds to the av-
erage content determined by Balkanski et al. (2007). In the
350-500 nm range for fine grains, impurities caused a de-
crease of 0.1 point in the value of the albedo for March 2003
whereas dust alone caused a decrease of 0.05 for April 2005
(0.1 for 2003) and rBC alone caused a decrease of 0.05 for
the 2 years. These figures explain why the impurities have a
non-linear effect on the value of the albedo. Indeed rBC and
dust combined have less effect than the sum of the effects
of rBC alone and dust alone. This can be easily explained
by the fact that a mixture of impurities and snow has a much
higher absorption coefficient (imaginary part of the refractive
index) than pure snow. Thus, adding one type of impurity to
the snow reduces the impact of the other impurity compared
to the impact of the same amount of the impurity on pure
snow. In other words, the higher the absorption coefficient,
the lower the impact of supplementary impurities will be.
The effect of snow grain size is also noticeable in this fig-
ure 5 when comparing the simulations. The same amount of
impurities has more effect on coarse grain snow than on fine
grain snow. Indeed, the decrease in albedo due to impurities
in the visible range is at least two times higher for coarse

grains than for fine grains since photons generally travel a
greater distance in the snow pack for coarser grains (War-
ren and Wiscombe, 1980). Different hematite contents were
tested, minimum (0.9 %) and maximum (2.7 %) according to
Balkanski et al. (2007), and are illustrated in Fig. 5, show-
ing the impact on the albedo of the refractive index of dust
chosen in the simulation. In the following, we only use the
average value of 1.5 % for hematite content.

4.2 Additional absorbed energy

To evaluate the amount of additional solar energy absorbed
by the snowpack due to the presence of impurities, we es-
timated mean solar irradiance and its characteristics. Solar
irradiance was computed using the radiative transfer model
SBDART (Santa Barbara DISTORT Atmospheric Radiative
Transfer Model) (Ricchiazzi et al., 1998). SBDART is based
on the same computation rules as DISORT. It considers an
atmosphere made up of different plane-parallel layers. The
characteristics of the atmospheric profiles (aerosols, water
vapour, ozone, etc.) were set according to the location of the
site. The solar zenith angle was selected according to loca-
tion and time of day. The sky was assumed to be clear for
all the days in the clear sky simulation and cloudy for all the
days in the cloudy simulation. Simulations were run for the
1st and the 15th of each month for the 11 years of the study.
For each simulation day, the absorbed energy was calculated
at 05:00 a.m., 08:00 a.m., 10:00 a.m., 12:00 p.m., 02:00 p.m.
and 04:00 p.m. local time and the daily absorbed energy was
computed from these simulations. The absorbed energy was
then interpolated from these simulations on a daily basis for
the whole period.

Figure 6 shows the mean daily surface forcing due to im-
purities for the year 2003. These daily values correspond
to the difference between the solar energy absorbed by
a pure snowpack and the energy absorbed by a contam-
inated snowpack. The simulation shows that the radiative
forcing of impurity reached maximum in the pre-monsoon
season, up to 27 W m−2 for clear sky and coarse grain
snow, as also observed in a MODIS investigation (Gautam
et al., 2013). For 2003, 75 % of the radiative forcing was
attributed to the presence of dust in the snowpack. Fig-
ure 6 also shows that radiative forcing was almost twice
higher for coarse snow (r_opt= 0.65 mm) than for fine snow
(r_opt= 0.16 mm). These results are comparable with those
of Sterle et al. (2013) in the Sierra Nevada. The cloudy sky
simulation halved the radiative forcing of the clear sky sim-
ulation (maximum radiative forcing of 16 W m−2 for coarse
snow grains).

The whole period covered by the ice core, 2000–2010 was
then simulated (Fig. 7) and clearly revealed high dust con-
tent to be mainly responsible for most of the additional ab-
sorbed energy. Kaspari et al. (2013) study on Mera Glacier
also suggest that BC contributes little forcing when large dust
concentration is present. Except for some high peaks in rBC
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Figure 5. Simulated spectral albedo 1 March 2003 for different grain sizes, for different hematite content (0.9, 1.5 and 2.7 %), for pure snow
and for different concentration and characteristics of impurities(a, b), and for the 1 April 2005(c, d).

concentration (e.g. June 2006), the effect of rBC was indeed
much lower that the effect of dust. Over the whole period,
total impurities were responsible for a 5.6 % increase in ab-
sorbed energy in the case of fine snow, with 4.4 % related to
dust and 1.4 % to BC, compared to pure snow. In the case of
coarse snow, the impact was higher with a 10.4 % increase of
absorbed energy.

4.3 Evaluation of potential melting

The impurities deposited on the glacier surface increase the
absorbed energy and can induce glacier melting under some
assumption. The radiative forcing has two effects on the
glacier: increasing the snow temperature for cold snow in
the accumulation area, and melt the snow that reaches melt-

ing temperature close to the equilibrium area. In the ablation
area, the impurities load is unknown and we can’t calculate
the forcing. Here we only estimated a potential excess melt
rate attributed to impurities deposited on snow in the glacier
accumulation area or close to the equilibrium altitude, for
each season (dry or monsoon) during the experimental pe-
riod. The melt rate was calculated using the mean value for
clear sky and cloudy sky simulations and for the average ra-
diative forcing for coarse snow and fine snow. To represent
the melt caused by the impurities on any given day, the fol-
lowing assumptions had to be made, (a) all other terms of
the surface energy budget corresponding to turbulent fluxes
and long wave net radiation remained unchanged and, (b)
the snowpack was at fusion temperature. The resulting val-
ues are shown in Fig. 8. At this point, it is important to
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Figure 6. Daily mean forcing due to impurities under(a) clear sky(b) cloudy sky conditions in 2003 and for different combinations of
impurities (dust with 1.5 % hematite content) and snow grain sizes.

note that almost no melt occurs in the highest part of the
glacier and at the location of the ice core drilling, because,
except for some exceptional events, the firn temperature is
always below melting point, as confirmed by analyses of the
core that showed very limited refreezing layers. Neverthe-
less, this study can be considered as a theoretical approach
that helps evaluate additional melt due to the presence of the
same quantity of impurities in the lower part of the glacier
where melt does occur in summer, as those at the drilling site.
According to observations made by Kaspari et al. (2013) in
the accumulation area of Mera Glacier, the deposition fluxes
of BC and dust increase with a decrease in altitude but the
gradient was not quantified. For the lower part of the abla-
tion area, where the concentration of surface impurities is not
known, our approach is limited. As in this study, we used the
concentrations and fluxes reported for the high drilling site
(6376 m a.s.l.), we are aware that the simulated melting is an
approximation.

Although it is well demonstrated that the impact of dust on
potential melt is much higher than the impact of BC on Mera
Glacier, it is interesting to observe that this impact does not
change much over seasons, with moderately higher values
during the dry season (with higher concentrations of impuri-
ties) than during the monsoon season (Fig. 8). This is mainly
due to lower solar irradiance during part of the dry season
(winter) than in the summer. These results might differ if the
effect of clouds is taken into account during the monsoon and
may also differ as a function of aspect and shading depending
on the location of the glacier.

4.4 Comparison with glacier energy and mass balance

As is true of more than 85 % of all glacierized areas in Nepal
(Bajracharya et al., 2014), Mera Glacier is debris free. Dust
and rBC particles concentrated in the surface snow increase
the absorption of solar radiation, and in turn enhance melt-
ing in certain areas where surface temperatures may reach
the melting point, where snowfalls are not voluminous or fre-
quent enough to systematically cover the whole surface of the
glacier, and in areas with debris, it not too dense to mask its
influence. Therefore, the mid-upper part of the ablation area
is usually the most affected area of a glacier, as observed in
the Tien Shan Gregoriev glacier (Fujita et al., 2011). Con-
sidering that the mean ELA (Equilibrium Line Altitude) for
a zero glacier-wide mass balance is at 5550 m a.s.l. on Mera
Glacier (Wagnon et al., 2013), the area concerned is at about
this elevation and represents 38 % of the total area in the
5400–5700 m a.s.l. altitudinal range. The changes in the con-
centration of impurities over time (Fig. 4) are representative
of the highest part of the accumulation area, where the effect
is less considering that regular snowfalls during the monsoon
period bury the impurities. Nevertheless, the impurities trig-
ger additional energy transfer to the surface, and increase the
temperature of the superficial layers, and very occasionally
melt the snow when the surface temperature reaches 0◦C.
As observed by Kaspari et al. (2013), the deposition of the
impurities measured at the drilling site can be considered
as the lower limit for impurity deposition of the mid-upper
part of the ablation area. Consequently, our study provides
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Figure 7.Daily mean radiative forcing of impurities in the clear sky
simulation. The solid red and black lines represent the additional en-
ergy due to the presence of dust andM rBC for coarse and fine snow.
The black dotted line represents dust only and the blue dotted line
representsM rBC only for fine grain snow. The pink line represents
absolute rBC concentration, dust and for coarse grain. The hematite
content of dust is 1.5 % in all simulations.

a theoretical quantification of the lowest expected induced
melting triggered by the effect of impurities.

As illustrated in Fig. 8, the impact of impuri-
ties was estimated at an annual mean melting of
1.93 kg m−2 d−1 for dust and rBC (1.56 kg m−2 d−1 for
dust and MrBC), with the fraction related to rBC
only of 1.19 kg m−2 d−1 and 0.39 kg m−2 d−1 during
the inter-monsoon and monsoon periods, respectively
(0.54 kg m−2 d−1 and 0.14 kg m−2 d−1 respectively for
MrBC). These rates correspond to 713 kg m−2 yr−1 annual
melting associated with dust and rBC, and 342 kg m−2 yr−1

for rBC alone (573 kg m−2 yr−1 annual melting associated
with dust andMrBC, and 149 kg m−2 yr−1 for MrBC alone).

To evaluate this impact on Mera Glacier, we compared
these values with the mass-balance and energy-balance mea-
surements made on the glacier since 2007 and 2009, respec-
tively. Using meteorological data collected on Naulek glacier
by the automatic weather station (AWS) at 5360 m a.s.l.
(Fig. 1), the surface energy balance was calculated at point
scale to derive local melting and sublimation from Novem-
ber 2009 to October 2010, following the method of Wagnon
et al. (2003). The four components of the radiative balance
were measured directly in the field using a CNR1 Kipp &
Zonen sensor. The sensible and latent heat fluxes were com-
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puted with the bulk aerodynamic approach including stability
correction, using one level of measurements of air temper-
ature, relative humidity and wind speed. During the melt-
ing season, the other terms of the surface energy balance
(heat supplied by precipitation, and conductive heat flux in-
side the glacier) are negligible compared to the other fluxes.
At an hourly time step, when surface temperature reaches
0◦C, the sum of the radiative and turbulent heat fluxes, when
positive, gives the amount of energy available for melting.
When directed away from the surface, the turbulent latent
heat flux is a sublimation flux. Consequently, it was possi-
ble to compute melting and sublimation at an hourly time
step. Between November 2009 and October 2010, the total
annual ablation at 5360 m a.s.l. was 3690 kg m−2 yr−1, in-
cluding 3550 kg m−2 yr−1 of melting and 140 kg m−2 yr−1 of
sublimation (only 4 % of the annual ablation, which is thus
insignificant compared to melting). Only 11 % of this abla-
tion (390 m kg m−2) occurs during the 3 months of the pre-
monsoon season (March, April and May).

The specific mass balance is calculated annually from
a stake network and topographical data derived from
the Pleiades satellite image acquired in 2012 (Wagnon
et al., 2013). For the year 2009–2010 at 5360 m a.s.l.,
stake readings gave an annual point-mass balance of
−2280 kg m−2 y−1 (= accumulation− ablation). Annual ac-
cumulation is not known at 5360 m a.s.l., but is likely to be
higher than net accumulation measured at the highest part
of the glacier (6330 m a.s.l.) which undergoes only limited
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ablation through sublimation and wind erosion, and in turn
collects almost all the annual snow accumulated at the glacier
surface. In 2009–2010, net accumulation was 720 kg m−2

(Wagnon et al., 2013). As a consequence, annual abla-
tion at 5,360 m a.s.l. would be higher than 3000 kg m−2 yr−1

(= 2280+ 720 kg m−2 yr−1). Given that for annual abla-
tion, sublimation is insignificant compared to melting, the
true melting value would in turn be between the 3000 and
3550 kg m−2 previously obtained with the mass balance mea-
surements and the energy balance approach respectively.
Melting related to impurities calculated in this study for the
same year 2009–2010 was 523 kg m−2 y−1 annual melting
for dust andMrBC combined, and 215 kg m−2 y−1 for MrBC
alone (777 kg m−2 y−1 annual melting for dust and rBC com-
bined, and 468 kg m−2 y−1 for rBC alone).

Comparing these values, it is clear that, with all our as-
sumptions and considering a site where firn is close to 0◦C,
dust and rBC are responsible for a maximum of 26 % of
melting, while rBC alone accounts for a maximum of only
16 % at 5360 m a.s.l. (17 % for dust andMrBC, 7 % forMrBC
alone). Intuitive considerations for a spatial distribution ex-
trapolated to the whole glacier would conclude on a much
smaller impact of impurities on glacier melting. In addition,
this study reinforces Kaspari et al. (2013) suggestion that the
small fraction of land at elevations greater than 6000 m com-
bined with minimal surface melt and relatively low BC and
dust concentrations suggest that light absorbing impurities in
the high Himalaya does not affect water resources and radia-
tive forcing to the degree that is likely at lower elevations.
The specific mass balance of Mera Glacier measured be-
tween 2007 and 2012 was−80± 280 kg m−2 yr−1 (Wagnon
et al., 2013). The impact of rBC on the mass balance is esti-
mated to be in the same order than its inter-annual variability
(annual standard deviation of glacier-wide mass balance of
510 kg m−2 between 2007 and 2012).

4.5 Limits of the simulations

The simulations presented in this section rely on a range
of simplistic assumptions. These assumptions were used to
circumvent certain difficulties: the exact profile of impurity
content in the snowpack was not transformed into changes
in surface concentrations, meteorological conditions (clouds,
precipitation, etc.) were not taken into account, nor were
the conditions over the whole surface of the glacier. Snow
metamorphism was not taken into account either, and in the
simulation, ice grains were assumed to be spherical (Libois
et al., 2013). However, the results presented here were de-
duced from the difference between the solar radiation budget
for pure snow and contaminated snow, for which these as-
sumptions are not critical. At glacier scale, our modelling ap-
proach based on the comparison of different concentrations
of impurities in the surface snow and based on theoretical
considerations regarding incident solar radiation or surface
conditions (melting or not) cannot provide accurate results

on the effect of impurities on glacier melting, but it is still
useful to roughly quantify it, at least for the debris-free abla-
tion zone.

5 Conclusions

In this study, a 20 m firn core extracted from Mera Glacier in
Nepal was used to reconstruct 10 years of aerosol deposition
fluxes at 6376 m a.s.l. on the southern flank of the Himalayas.
Some species, like water stable isotopes, rBC, ammonium
or fluoride deposition are consistent with the precipitation
patterns related to the monsoon, with higher or spiking con-
centrations during the dry season. rBC concentrations were
compared with BC atmospheric measurements made at the
NCO-P site. Both records agree on timing but with different
concentrations in accordance with the difference in altitude
between the two sites. The other proxy, dust, revealed con-
sistently high fluxes throughout the year. The quality of these
glacio-chemical profiles and the englacial temperature make
this site a good candidate for environmental and climatic re-
construction based on ice core studies.

The dust and rBC aerosols present on the snow sur-
face increase potential snow melting by increasing surface
albedo. With this study using aerosol fluxes reconstructed
from Mera Glacier firn core analyses combined with atmo-
spheric measurements made at the Nepal Climate Observa-
tory – Pyramid site, we estimated their impact on glacier
melting. Analyses revealed that mass fluxes are a few or-
ders of magnitude higher for dust (10.4± 2.8 g m−2 y−1)

than for rBC (7.9± 2.8 mg m−2 y−1), and that dust depo-
sition is distributed evenly over the year but that rBC de-
position is concentrated in the pre-monsoon period when
valley breezes transport Atmospheric Brown Cloud pollu-
tants that accumulate over the Himalayan foothills and North
Indo-Gangetic Plains up to Himalayan glaciers. rBC con-
centrations and model applications appear to be more rep-
resentative of regional and large scale transport, while the
dust flux at Mera Glacier is probably influenced by a strong
local source. When compared in terms of fluxes, the vari-
ability of the ice core signal over the 10-year period rather
reflects the variability of the monsoon signal than that of
emission intensity in the India+ area. According to aerosol
concentrations reconstructed for the snow surface between
2000 and 2010 and using a modelling approach to calculate
their impact on snow albedo and additional energy absorp-
tion, after several assumptions, we estimated the potential
melting induced by these impurities. Under some assump-
tions that are verified around the equilibrium altitude (snow
and ice around 0◦C), the potential annual melting (mean
values for 10 years) generated by combined dust and rBC
can reach+713 kg m−2 y−1, or +342 kg m−2 y−1 for rBC
alone. The comparison with direct mass balance measure-
ments, which provided ablation point-mass balance values
of about 3000 kg m−2 y−1 at 5360 m a.s.l. for the 2009–2010
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period, and with melting derived from energy balance mod-
elling (3550 kg m−2 y−1), revealed that the estimated contri-
bution of rBC alone to glacier melting is not more than 16 %
and that the combined contribution of dust and rBC to sur-
face melting is at the most 26 %.

The concentrations of impurities were measured only at
one point in the accumulation area, based on an ice core.
An additional field campaign will provide information on the
spatial variability of the surface dust and rBC concentrations,
not only in the accumulation area as a function of aspect
or elevation, but also in the ablation area, where impurities
can be highly concentrated due to year-to-year melting, or
washed out by running melt water.

Further investigations now need to be conducted to test the
assumptions used for the simulations. Simulations using the
detailed snow model Crocus (Vionnet et al., 2012) and re-
analysis data for past meteorological forcing can be used to
investigate the effect of snow metamorphism and local mete-
orological conditions. Remote sensing data such as MODIS
images can be used to infer the daily radiative forcing due to
impurities (Dumont et al., 2012; Painter et al., 2012) and its
spatial distribution over the Mera Glacier.

The Supplement related to this article is available online
at doi:10.5194/tc-8-1479-2014-supplement.
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