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Abstract. Precipitation forcing is usually the main source of
uncertainty in hydrology. It is of crucial importance to use
accurate forcing in order to obtain a good distribution of the
water throughout the basin. For real-time applications, satel-
lite observations allow quasi-real-time precipitation monitor-
ing like the products PERSIANN (Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks, TRMM (Tropical Rainfall Measuring Mission) or
CMORPH (CPC (Climate Prediction Center) MORPHing).
However, especially in West Africa, these precipitation satel-
lite products are highly inaccurate and the water amount can
vary by a factor of 2. A post-adjusted version of these prod-
ucts exists but is available with a 2 to 3 month delay, which
is not suitable for real-time hydrologic applications. The pur-
pose of this work is to show the possible synergy between
quasi-real-time satellite precipitation and soil moisture by
assimilating the latter into a hydrological model. Soil Mois-
ture Ocean Salinity (SMOS) soil moisture is assimilated into
the Distributed Hydrology Soil Vegetation Model (DHSVM)
model. By adjusting the soil water content, water table depth
and streamflow simulations are much improved compared
to real-time precipitation without assimilation: soil moisture
bias is decreased even at deeper soil layers, correlation of
the water table depth is improved from 0.09–0.70 to 0.82–
0.87, and the Nash coefficients of the streamflow go from
negative to positive. Overall, the statistics tend to get closer

to those from the reanalyzed precipitation. Soil moisture as-
similation represents a fair alternative to reanalyzed rainfall
products, which can take several months before being avail-
able, which could lead to a better management of available
water resources and extreme events.

1 Introduction

Surface soil moisture, as well as soil properties and precipi-
tation intensity, is involved in the partitioning of rainfall into
surface runoff and infiltration (water cycle), and also in the
partitioning of the incoming solar and atmospheric radiations
into latent, sensible and ground heat fluxes (energy cycle). It
is therefore essential to correctly represent this amount of
water contained in the soil in hydrological models.

Ground measurements of soil moisture are broadly used
to monitor the hydrological cycle of a specific region. Like
all in situ stations, the soil moisture probes need to be main-
tained and are most of the time installed for a limited amount
of time. Moreover, the number of in situ measurements stays
scarce, especially in tropical regions where the maintenance
is even more complicated. Soil moisture monitoring from
space has thus been developed for a larger/wider spatial cov-
erage and assures continuity in time as long as the space mis-
sion is still operating. These two types are very complemen-
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tary with in situ stations being able to directly measure soil
moisture profiles at different depths and also used for satellite
soil moisture validation.

In order to take advantage of these dedicated space mis-
sions, the hydrological model simulations can be merged
with available observations through data assimilation. This
technique has already been widely used by weather forecast
models at regional and global scales, using remote sensing
observations and ground measurements to improve weather
forecasting.

Numerous studies have been devoted to use soil mois-
ture assimilation into hydrological and land surface models
for various applications. With the availability of more than
35 years of soil moisture at the global scale derived from
a series of satellites (SMMR, SSM/I, TRMM-TMI, AMSR-
E, ASCAT, Windsat; Liu et al., 2011, 2012; Wagner et al.,
2012), the soil moisture CCI (Climate Change Initiative by
ESA; Hollmann et al., 2013) has been assimilated in many
models for hydrological purposes such as streamflow simu-
lation (Pauwels et al., 2001, 2002), flood events prediction
via runoff simulation (Brocca et al., 2010, 2012), drought
prediction (Kumar et al., 2014) and root zone soil moisture
simulations (Draper et al., 2012; Renzullo et al., 2014; Par-
rens et al., 2014) for a better prediction of agricultural yields
(Chakrabarti et al., 2014). Han et al. (2012) voluntarily de-
graded the precipitation input and showed that soil moisture,
water table depth (WTD) and evapotranspiration simulations
could be improved by assimilating surface soil moisture. As
in most of the soil moisture assimilation studies, Ridler et al.
(2014) have also found that it improves the distribution of the
soil moisture simulations.

More recently, Wanders et al. (2014) and Lievens et al.
(2015) assimilated the Soil Moisture Ocean Salinity (SMOS)
soil moisture product into hydrological models. The first
study assessed the impact of the joint assimilation of re-
motely sensed soil moisture (ASCAT (Advanced SCAT-
terometer), AMSR-E (Advanced Microwave Scanning Ra-
diometer - Earth observing system) and SMOS (Soil Mois-
ture and Ocean Salinity)) on the flood predictions over the
upper Danube basin using the distributed hydrological LIS-
FLOOD model for operational services. They showed that
soil moisture observations improved the quality of flood
alerts, both in terms of timing and of peak heights. They
also reduced the number of false flood alarms. Lievens et al.
(2015) assimilated the SMOS soil moisture product into the
VIC (Variable Infiltration Capacity) model over the Murray–
Darling basin, Australia, which is around 1 million km2.
While the model was calibrated using 169 discharge stations,
the streamflow simulations were good at the monthly scale
but poor on a daily basis. Assimilation of soil moisture im-
proved the soil moisture simulations, and hence the runoff
generation, which finally had a positive impact on the stream-
flow simulations, especially during the runoff peak time pe-
riods.

Assimilation is of particular interest for regions where wa-
ter management is vital, whereas in situ hydrological data
are scarce. This is the case in the West African region, which
faces major water-related risks (drought, floods, famine, dis-
eases) threatening the population safety and slowing down
the economical development. At the same time, the region
is notoriously known to be lacking in in situ hydrological
data, which limits the possibility to properly address the wa-
ter management issues.

For operational applications, real-time hydrological mod-
eling is needed and this requires one to have real-time obser-
vations and information. Various real-time observations exist
but may lack accuracy with biases that will impact all the hy-
drologic variables, and reanalyzed versions are made avail-
able several weeks to months after the actual observations.
Precipitation forcing is the main source of uncertainty in hy-
drological modeling.

We propose a methodology to correct for the inaccurate
amount of water brought by the real-time precipitation forc-
ing by assimilating the SMOS soil moisture products. They
are available within 10 days after the observations, and could
be used for hydrological applications until the reanalyzed
precipitation are released. This work will focus on the Ouémé
catchment located in Benin, West Africa, which is presented
in the first part along with the rainfall and soil moisture
satellite products. The second part describes the hydrologi-
cal model and the data assimilation method. Then the impact
on the simulations of the soil moisture, the water table depth
and the streamflow is discussed.

2 Study area and satellite data

2.1 The Ouémé catchment and the in situ
measurements

The Ouémé catchment is located in Benin, West Africa, and
is part of the AMMA-CATCH observatory (African Mon-
soon Multidisciplinary Analysis – Coupling the Tropical At-
mosphere and the Hydrological Cycle; Lebel et al. (2009);
http://www.amma-catch.org), whose objective is to study the
hydrological impact of climate and anthropogenic changes.
With a size of 12 000 km2, the Ouémé catchment is mainly
covered by savanna, forests and cultures. The rainy sea-
son spreads from April to October for an annual amount
of around 1250 mm. Streamflow is permanent from July to
November. The basin is on basement. The hard-rock aquifer
is unconfined and its recharge is annual. This basin is highly
instrumented in order to monitor the water cycle and the veg-
etation dynamic in this sub-humid region.

Soil moisture is measured at three locations indicated by
red crosses in Fig. 1: Nalohou, Belefoungou and Bira. Every
hour, time-domain reflectometry sensors measure the soil re-
sponse to an electric pulse at various depths (from 5 cm to
1.2 m). Soil moisture values can be retrieved after correc-

Hydrol. Earth Syst. Sci., 20, 2827–2840, 2016 www.hydrol-earth-syst-sci.net/20/2827/2016/

http://www.amma-catch.org


D. J. Leroux et al.: SMOS assimilation in hydrological model over the Ouémé catchment, Benin 2829

Figure 1. The Ouémé catchment is located in Benin, West Africa. Indicated on the right panel is the location of three soil moisture stations
in the northwestern part (red crosses) where water table depth is also measured, and two streamflow sensors installed in the southern part
(red circles, the outlet total streamflow being the sum of the two stations measurements).

tion for the soil temperature impact and by using wet and
dry samples from the different ground sites. For two of these
sites, flux stations are also installed measuring the evapotran-
spiration every 30 min using eddy correlation sensors.

The water table, which is defined as the interface between
unsaturated and saturated soil, is measured manually every
2 days on a network of observation wells close to the soil
moisture sites (Seguis et al., 2011).

Water levels from the rivers are measured every hour at
two locations (indicated by the two red circles in Fig. 1)
representing the outlets of the two sub-basins of the Ouémé
catchment: Cote 238 and Beterou. For each site, a calibration
has been realized to convert the water level into a streamflow
value using an acoustics Doppler current profiler. The total
streamflow is supposed to be the sum of the measurements at
these two points as the contribution between the real outlet of
the whole basin and the points of measurement is negligible.

The rainfall monitoring is ensured by a dense network of
rain gauges (tipping bucket). For the study of years 2010–
2012, 33 evenly distributed rain gauges were operating. Their
measurements have been treated in order to produce 1 h rain-
fall series that have then been spatially interpolated over a
regular 0.05◦ resolution grid based on Lagrangian kriging
(Vischel et al., 2011). Since the rain gauge network is dense
enough, the use of interpolated rain fields to force hydrologi-
cal models is relevant and can help to produce simulations of
reference (Vischel and Lebel, 2007; Gascon et al., 2015).

2.2 Satellite rainfall products

In most cases and more particularly for tropical and semi-
arid regions, there are not enough rain gauges to cover the
entire basin and precipitation observed by satellite can be
used. Many satellite products are available and three have
been used in this study.

The PERSIANN (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks, v. 300
and 301; Hsu et al., 1997; Sorooshian et al., 2000) product is

an estimation of the rainfall rate, used here at a 0.25◦ reso-
lution every 3 h, based on infrared satellite observations cou-
pled to ground observations from gauges and radars operat-
ing at various frequencies. Some studies have already shown
that this rainfall product does not perform well everywhere
(Ward et al., 2011; Thiemig et al., 2012).

A second satellite product has been used for precipitation
forcing data: the TRMM (Tropical Rainfall Measuring Mis-
sion) Near-Real-Time 3B42RT (v7; Huffman et al., 2007),
which combines microwave and infrared satellite observa-
tions and is available at a 0.25◦ resolution and a 3 h time
step. This product has been widely used in various hydrolog-
ical studies (Khan et al., 2011; Li et al., 2012) and has the
advantage to combine two sources of data compared to the
PERSIANN product. For the sake of simplicity, the TRMM
Near-Real-Time 3B42RT product is referred as the TRMM
product in the following.

CMORPH (CPC MORPHing from NOAA; Joyce et al.,
2004) is the third precipitation product used here. This
method uses rainfall estimates that have been derived from
low-orbit satellite microwave observations, and infrared ob-
servations from geostationary satellites in order to produce a
merged and unique rainfall data set. The CMORPH product
that has been selected is available at a 0.25◦ resolution and a
3 h time step.

PERSIANN, TRMM and CMORPH are the quasi-real-
time precipitation forcing products used in this study (ref-
erenced as RT). They usually are available within a few
hours after the actual observations. Their post-adjusted
or reanalyzed versions (PERSIANN-CDR, TRMM-v7 and
CMORPH-v1) are generated by adding external information
like in situ rain gauge measurements or soil radar observa-
tions (referenced as RE). They are generally more accurate
but are only available 2 to 3 months after the actual obser-
vations, which is not compatible with real-time applications
most of the time. Figure 2 shows the cumulative amounts of
water brought by the different satellite products compared to
the in situ measurements in average over the whole basin.
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Figure 2. Cumulative average precipitation amount over the whole basin from the in situ network (black) and the three satellite product from
quasi-real-time versions (left panel) and their reanalyzed versions (right panel): PERSIANN (blue), TRMM (green) and CMORPH (red).

While the RT products (left panel) overestimate the precip-
itation amount, the reanalyzed products slightly underesti-
mate (right panel). The largest difference between in situ and
satellite rainfall occurs in the second quarter of the year for
the PERSIANN and CMORPH products, which is just before
the monsoon period and might saturate the soil earlier than
it should, leading to high values of runoff and discharge. For
all the RT products, the dry season is not well represented
even if the rainfall amount is much lower than during the
rainy season. These positive biases were already identified in
Gosset et al. (2013) and Casse et al. (2015). The distribution
of the precipitation of the reanalyzed products is, however,
much improved in the reanalyzed products (not shown here).

2.3 SMOS soil moisture product

The SMOS mission has been producing soil moisture prod-
ucts for more than 5 years, observing the entire globe ev-
ery 3 days at a resolution of around 40 km. Thanks to the
multi-angular observations and the sensitivity of the L-band
frequency to the soil water content, the soil moisture is re-
trieved with a target accuracy of 0.04 m3 m−3. More details
can be found about the soil moisture retrieval algorithm in
Kerr et al. (2012).

The SMOS level 3 soil moisture product (second repro-
cessing, v. 2.7, 1-day product; Jacquette et al., 2010) used
in this study is provided by CNES-CATDS (Centre Aval
de Traitement des Données SMOS) on the EASE-Grid 2.0
(Equal-Area Scalable Earth) at 25 km resolution. This prod-
uct is usually available within 10 days. In Louvet et al.
(2015), it was found that the SMOS L3 product is the
most suitable and available satellite soil moisture product
compared to in situ measurements collected in West Africa
from 2010 to 2012.

3 Model and data assimilation

3.1 DHSVM model

For the Ouémé catchment, Seguis et al. (2011) shows a major
contribution of lateral water flows in the hydrological pro-
cesses, especially during the spring season. The Distributed
Hydrology Soil Vegetation Model (DHSVM, developed at

the University of Washington; Wigmosta et al., 1994) has
been selected for its capability of water lateral redistribution
from and to the neighboring pixels.

DHSVM solves the energy and water balances at each grid
cell and time step with a physically based model represent-
ing the effect of topography, soil and vegetation. The outputs
are the soil moisture, the snow quantity (not used nor showed
here), the streamflow, the evapotranspiration and the runoff.
This model has already been used in many previous studies
(Whitaker et al., 2003; Cuo et al., 2006; Cuartas et al., 2012;
Du et al., 2014; Gascon et al., 2015) showing its capabil-
ity to simulate various hydrological components such as the
snowpack, the streamflow, the water table depths or the soil
moisture. All these studies also emphasized the importance
of the model parameter calibration step and the accuracy of
the meteorological input data.

DHSVM has been used in this study at a resolution of 1 km
with an hourly time step and four soil layers at the follow-
ing depths: 1, 5, 40 and 80 cm. The first layer has been set
for numerical reasons, the second is used for the assimila-
tion, and the two deeper layers are used for validation with
in situ measurements. It also needs meteorological inputs for
the following variables: relative humidity, air temperature,
wind speed, pressure, shortwave and longwave radiation. The
reanalysis MERRA (Modern-Era Retrospective analysis for
Research and Applications) products from NASA have been
used in this study (Rienecker et al., 2011). These products are
available hourly at a 1/2 and 2/3◦ resolution in latitude and
longitude, and have been produced using the Goddard Earth
Observing System Model (GEOS-5, version 5) and the At-
mospheric Data Assimilation System (ADAS, version 5.2.0).

The DHSVM model has many parameters, which could be
measured in situ or, if no measurement is available, can be
estimated based on soil characteristics and vegetation cov-
ers. Previous studies (Whitaker et al., 2003; Cuo et al., 2006;
Cuartas et al., 2012; Du et al., 2014) described precisely
their DHSVM model parameter values using in situ radia-
tion, soil moisture and streamflow measurements for cali-
bration. It was often noticed that it was difficult to obtain
good soil moisture and streamflow simulations simultane-
ously, and that streamflow simulations could be improved
at the expense of the soil moisture simulations (Cuo et al.,
2006).

Hydrol. Earth Syst. Sci., 20, 2827–2840, 2016 www.hydrol-earth-syst-sci.net/20/2827/2016/
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Table 1. DHSVM soil and vegetation parameter values (understory and overstory) after calibration. The marker ∗ indicates the parameters
that have been re-estimated for the whole basin compared to Gascon et al. (2015).

Soil parameters Vegetation parameters

Under. Over.

Lateral saturated hydraulic 5× 10−2 Canopy coverage [fraction] 0.9
conductivity∗ [m s−1

] trunk space [fraction] 0.4

Exponential decrease rate 2 Aerodynamic extinction 3.5
of lateral saturated factor for wind through
hydraulic conductivity∗ [–] overstory [fraction]

Max. infiltration rate∗ [m s−1
] 2× 10−4 Radiation attenuation by 0.5

Soil surface albedo [–] 0.1 Vegetation [fraction]

Porosity∗ [fraction, 4 layers] 0.5, 0.5, 0.5, 0.5 Vegetation height [m] 0.5 6

Bulk density 1485, 1485, Fraction of shortwave 0.108 0.108
[kg m−3, 4 layers] 1485, 1485 radiation photosynthetically
Field capacity∗ 0.15, 0.20, active (Rpc)
[m3 m−3, 4 layers] 0.25, 0.35 Root zone depths [m] 0.01, 0.05, 0.40, 1.0

Wilting point∗ 0.02, 0.04 SM threshold above which 0.10 0.30
[m3 m−3, 4 layers] 0.08, 0.12 transpiration is not

Vertical saturated hydraulic 10−7, 10−6, Restricted [m3 m−3
]

conductivity∗ [m s−1, 4 layers] 10−6, 10−6 vapor pressure deficit 3000 2500

Thermal conductivity 7.114, 7.114, Threshold above which
[W m−1 K−1, 4 layers] 7.114, 7.114 stomatal closure occurs [Pa]

Thermal capacity 1.4× 106, 1.4× 106,
[J m−3 K−1, 4 layers] 1.4× 106, 1.4× 106

In Gascon et al. (2015), DHSVM parameterization was re-
alized using in situ streamflow measurements at the Cote 238
station for 2005, which represents 25 % of the whole basin
(Beterou station being on the main course of the Ouémé
river). This parameterization has been used as a starting
point for this study. Here, the model has different soil lay-
ers and has been calibrated using in situ measurements
from 2010 (soil moisture from the three stations, stream-
flow at the outlet, and evapotranspiration from one sta-
tion). In order to ingest the correct amount of water for
the calibration process, the interpolated in situ rainfall data
have been used. Table 1 represents the main soil and veg-
etation characteristics used in this study for the DHSVM
model after calibration for the whole basin. These param-
eter values have been optimized using a semi-automatic
protocol; i.e., multiple sets of values have been tested
and the one giving the best performance has been cho-
sen. Model outputs have been evaluated at different loca-
tions in the basin (from various stations) using soil moisture
(R= 0.81, RMSE= 0.084 m3 m−3), streamflow (R= 0.94,
RMSE= 81.7 m3 s−1, Nash= 0.87) and evapotranspiration
(R= 0.81, RMSE= 166.7 W m2) in situ measurements.

As mentioned in Bitew and Gebremichael (2011), calibrat-
ing a model using biased satellite precipitation will lead to
a set of parameters that will compensate for the modified
runoff generated by the under or overestimated volume of
water brought by the satellite product compared to the in situ
measurements. Adjusting the model parameters can compen-
sate for the rainfall errors but the global water budget will be
deteriorated and the other hydrological processes will be dis-
turbed. For this reason, the model calibration has only been
performed with the in situ precipitation, which leads to a
correct partitioning of the precipitation between infiltration
and runoff. Similar results were found when adjusted satellite
products were used and close statistic scores were obtained
(see Fig. 3 for water table depth and Fig. 4 for streamflow
simulations). The term open-loop refers to simulations with
no assimilation.

One of the five outputs of DHSVM is the water table
depth. Groundwater is an important resource, especially in
West Africa where most of the drinking water comes from
the ground. Moreover, the precipitation interannual variabil-
ity can be important (1560 mm in 2010 followed by only
1100 mm in 2011 and 1450 mm in 2012 from the in situ rain
gauge measurements), which has a strong impact on ground-
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Figure 3. Open-loop (OL) water table depth simulations using the RT (top panel) and reanalyzed (bottom panel) satellite precipitation prod-
ucts as forcing compared to in situ measurements at Nalohou. For comparison, the water table depth simulations using in situ precipitation
as forcing (not shown here) lead to a correlation of 0.76.

Figure 4. Open-loop (OL) streamflow simulations using the RT and reanalyzed satellite precipitation products as forcing. Statistics are given
on the right panel. For comparison, the streamflow simulations using in situ precipitation as forcing (not shown here) lead to a correlation
of 0.92 for a bias of 32 m3 s−1.

water recharge. The water table depth can vary between the
soil depth and the ground surface (in the latest case, an exfil-
tration or a flooding can happen). Sensitivity tests have been
realized for the Ouémé catchment with many years of spin-
up for various soil depth values and the maximum water table
depth was always found around 1.90 m. After these yearly
spin-ups, water was filling the soil until its natural equilib-
rium. The water table depth does not depend on the soil depth
but on the ability of the model to evacuate this saturated wa-
ter through the defined hydrological network, the root den-
sity and the topography (physical processes are explained in
Seguis et al., 2011).

Figure 3 shows the simulations of the water table depth
using the different precipitation products at Nalohou (sta-

tion selected for the availability of its measurements along
the three years of study, and can be compared to simulations
from the closest model 1 km2 pixel). Simulated water table
depths and water levels from wells are not quite comparable
but they should follow the same time evolution (certainly be-
cause of the difference in porosity values set in the model and
what is observed in reality). In order to compare both quan-
tities, they are represented on the same graph but not at the
same scale. The left y axis represents the depth of the water
as simulated by the model, whereas the right y axis repre-
sents the in situ water level as measured in the observation
well with a maximum of 5.40 m. Correlation scores are not
impacted by scaling and they are indicated directly on the
figure.
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Using the RT precipitation (top panel), the water table
depth is correctly simulated until the first rainfalls when the
soil is quickly saturated due to the inaccurately high amount
of water brought by the RT products, which then percolates
to the deep soil layers. The soil is completely saturated in
early May with a simulated water table reaching the sur-
face. The correlation scores are very low for PERSIANN
and CMORPH (0.09 and 0.33), whereas the TRMM prod-
uct gives fair simulations with a correlation of 0.70. Us-
ing the reanalyzed precipitation (bottom panel), the time
evolution is improved and most of the early peaks are
smoothed. The correlations are higher for PERSIANN (0.79)
and CMORPH (0.84), whereas it is lower for TRMM (0.48)
due to inaccurate precipitation event in spring 2011 and in
winter–spring 2012.

Figure 4 shows the simulations of the streamflow at the
outlet of the basin compared to the in situ measurements. Us-
ing the RT precipitation (top panel), the streamflow is highly
impacted by the runoff caused by the saturated soil from the
inaccurate rainfall events, and it becomes very sensitive to
any additional amount of water. This is the reason for these
high and quick changes in the streamflow time series. When
the reanalyzed precipitation is used (bottom panel), the time
evolution is much closer to the in situ measurements. The
simulations are a bit underestimated in 2010, but then cor-
rect for 2011 and 2012. PERSIANN and CMORPH sim-
ulations are improved by the reanalysis with a correlation
from 0.39 and 0.64 to 0.78 and 0.88, respectively, with a bias
divided by 10. Correlation using TRMM is a bit lower us-
ing the reanalyzed product (from 0.86 to 0.82) but the bias is
still divided by 3. The simulations using the in situ precipi-
tation (not shown here) give a correlation of 0.92 for a bias
of 32 m3 s−1, which is a bit higher than the reanalyzed pre-
cipitation products for the correlation but a bit lower for the
bias. The statistics’ performances from the reanalyzed prod-
ucts and from the in situ precipitation are about the same,
showing that the parameterization of the model is adequate
for both forcing.

It is not expected from the RT precipitation products to
generate simulations as good as the reanalyzed precipitation,
but Figs. 3 and 4 show the room for improvement that can be
realized between the two versions of the satellite precipita-
tion products by the assimilation.

3.2 Assimilation method: the optimal interpolation

SMOS soil moisture is assimilated into the DHSVM model
using an optimal interpolation method (simplification of the
Kalman filter where the errors are assumed to be known).
In this study, the “3D-Cm” method proposed in De Lannoy
et al. (2010) and successfully used in Sahoo et al. (2013), is
applied here. The “3D-Cm” scheme consists in assimilating
multiple coarse-scale observations (25 km), which implies
an aggregation of the model from the fine scale (1 km) to
the SMOS scale but avoids artificial transitions at the pixel

boundaries by using multiple coarse-scale observations to
update the finer-scale simulations. Some of the key equa-
tions of the assimilation method are detailed in this article but
more information can be found in De Lannoy et al. (2010) or
in Sahoo et al. (2013).

Based on the difference between the simulations and the
observations, the model background predictions are updated
depending on their respective error covariances. Ensem-
ble methods can estimate these error covariances from a
Monte Carlo ensemble generation but in this study, a sim-
pler method has been applied and fixed values of the error
covariances are used.

Before being assimilated and for an optimal analysis (Yil-
maz and Crow, 2013), the SMOS soil moisture product has
been rescaled to remove any systematic bias using the open-
loop model simulations. In this study, a CDF (cumulative
density function) matching at SMOS scale has been applied
for each pixel independently for each year according to the
open-loop variability. Also, the ascending (06:00 LST – lo-
cal solar time) and the descending (18:00 LST) observations
have been treated separately.

At each time step i a SMOS observation is available, the
forecast state vector x̂−i including the soil moisture at the four
model soil depths (1, 5, 40 and 80 cm) is mapped from the
fine model scale (1 km) to the coarse SMOS scale (25 km)
to calculate the prediction at the observation scale H x̂−i ,
where H is called the observation operator. As in De Lan-
noy et al. (2010) or Sahoo et al. (2013), a simple spatial
mean is applied here. The difference between the observa-
tion and the prediction at the coarse scale, called the innova-
tion (yi −H x̂−i ), is used to update the finer model pixels x̂+i
called the analysis using a gain matrix K. The update equa-
tion at time step i for a given fine-scale pixel k is as follows:

x̂k+
i = x̂k−

i +Kk
i

[
yi −H x̂−i

]
, (1)

where the gain matrix K depends on the model error co-
variance B and the observation error covariance after rescal-
ing R:

K=
BH T

HBH T +R
. (2)

The model error covariance matrix B is calculated sepa-
rately for each pixel of the model grid based on the DHSVM
open-loop simulations (Bij =Cov(SMi , SMj )). The average
B matrix is as follows:

B=


0.022 0.015 0.010 0.003
0.015 0.019 0.011 0.003
0.010 0.011 0.012 0.005
0.003 0.003 0.005 0.006

(m3 m3
)2

. (3)

The SMOS observation error covariance matrix R is eval-
uated for each node of the SMOS grid using all the available
SMOS observations. R is supposed to be diagonal and repre-
sents the variance of the observations. The average variance
of the SMOS observations is 0.017 (m3 m−3)2.

www.hydrol-earth-syst-sci.net/20/2827/2016/ Hydrol. Earth Syst. Sci., 20, 2827–2840, 2016



2834 D. J. Leroux et al.: SMOS assimilation in hydrological model over the Ouémé catchment, Benin

Finally, the observation matrix H consists of four columns
(for the four soil layers) times the number of available obser-
vations for the number of lines. Since the assimilation is per-
formed on the second soil layer, the second column H should
be filled with the same equal value if all SMOS observations
had the same influence on the model grid point of interest
(sum of these values equal to 1). For this reason, a weigh-
ing function is used depending on the distance between the
SMOS observation and the concerned model point such as
shown in Fig. 5.

Here, yi contains as many SMOS observations as are
within a given radius (60 km) and those observations have a
larger impact if they are closer to the considered model pixel
to update. As in Reichle and Koster (2003) and De Lannoy
et al. (2010), a fifth-order polynomial function (Eq. (4.10) of
Gaspari and Cohn, 1999) based on the distance between two
points and on a compact support radius is applied to weigh
the influence of SMOS observations in H (Gaspari function,
red line in Fig. 5). This equation is really close to the SMOS
mean weighting function used to model the antenna pattern
in the SMOS retrieval algorithm (Kerr et al. (2015), blue line
in Fig. 5).

The SMOS observations are assimilated in the second soil
layer of the model (1–5 cm) since it is more representative
of what is observed by the SMOS instrument (Kerr et al.,
2012). The correlations between the different soil layers be-
ing contained in K , the other soil layers (1, 40 and 80 cm) are
also updated during the same time step but with a lower in-
fluence from the SMOS observations. The other model vari-
ables such as the evapotranspiration and the streamflow are
not updated through the assimilation step but are updated
with the propagation of these modifications in the model,
i.e., if water is removed from the ground, the lateral subsur-
face flow and the streamflow should decrease too.

3.3 Statistics metrics

In order to quantify the performances of the model sim-
ulations and the impact of the SMOS soil moisture as-
similation, five statistics metrics have been chosen in this
study: the temporal correlation R, the bias, the standard de-
viation of the difference between the simulations and the
in situ measurements (sdd), the root mean square errors
(RMSE=

√
bias2

+ sdd2) and the Nash model efficiency co-
efficient as defined in Nash and Sutcliffe (1970) for stream-
flow simulation skill. These statistics have been computed
using all common dates available.

4 Results and discussion

This section presents the impact of the SMOS soil moisture
assimilation on different variables: soil moisture at multi-
ple depths (control variables) at the Bira station, water ta-
ble depth at the Nalohou station, and streamflow at the out-

Figure 5. Weighing functions for the observation matrix H compar-
ing the function used for the SMOS antenna pattern and the Gaspari
function used in this study.

let. The simulations and performances after assimilation are
compared to the open-loop simulations in the objective to
reach those from the reanalyzed precipitation products.

4.1 Correction of the control variable: the soil moisture

The first variables to be impacted by the assimilation of
SMOS products are the ones directly contained in the state
vector of the assimilation scheme; i.e., the soil moisture
of the four defined soil layers at 1, 5, 40 and 80 cm. Soil
moisture simulations are shown in Fig. 6 at 5 cm depth for
two time periods: the upper panel represents the time se-
ries of March–April 2011 (beginning of the rain season),
and the lower panel May–June 2012 (wet season). The left
side shows the open-loop simulations, whereas the after-
assimilation results are on the right side. For visual clarity,
the 3 years of simulations are not shown here but these two
time periods are representative of the effect of the assimila-
tion on the soil moisture variable.

As mentioned before, the RT satellite rainfall products
bring too much water during the winter and spring seasons.
The first time period (top panel of Fig. 6) is a good exam-
ple of a soil moisture increase after a rainfall detected by
the satellite product (at the beginning of March for exam-
ple), which has not happened in reality. The simulated soil
moisture is thus impacted by this fake rain event with an in-
crease. By assimilating SMOS soil moisture product at the
surface, the impact of this wrong rainfall event is smoothed
but has not completely disappeared. The wet season example
also shows the same process. These wrong increases cannot
be corrected by the assimilation but the drying phases can be
fastened as post-event corrections.

Table 2 gathers the statistic scores of all the precipitation
cases (RT, RT after assimilation, and RE) for the 3 years and
the three layers at the Bira station. As it can be seen in Fig. 6,
the continuity in the soil moisture time series cannot always
be preserved by the assimilation method applied here, which
results in abrupt changes before and after the time step when
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Table 2. Statistics of the simulated soil moisture at 3 depths (5, 40 and 80 cm) compared to the in situ measurements at the Bira station
for 2010–2012. Three cases are considered: open-loop simulations using real-time satellite precipitation (RT), assimilation of SMOS soil
moisture with real-time precipitation (RT+SMOS) and open-loop simulation using reanalyzed precipitation (RE). Bias, standard deviation
of the difference (sdd) and root mean square error (RMSE) are in m3 m−3, the correlation (R) is dimensionless. Bold font is used when the
bias is improved by the assimilation.

SM PERSIANN TRMM CMORPH

RT RT+SMOS RE RT RT+SMOS RE RT RT+SMOS RE

(5 cm)

R 0.60 0.73 0.81 0.72 0.81 0.54 0.76 0.78 0.76
bias 0.091 0.062 0.073 0.051 0.051 0.123 0.089 0.056 0.041
sdd 0.119 0.091 0.091 0.098 0.082 0.102 0.102 0.086 0.088
RMSE 0.150 0.110 0.117 0.110 0.096 0.160 0.136 0.103 0.097

(40 cm)

R 0.62 0.65 0.89 0.75 0.72 0.65 0.76 0.67 0.87
bias 0.119 0.052 0.056 0.086 0.071 0.129 0.128 0.064 0.033
sdd 0.085 0.099 0.058 0.068 0.094 0.064 0.072 0.101 0.058
RMSE 0.146 0.112 0.081 0.110 0.117 0.144 0.147 0.120 0.067

(80 cm)

R 0.64 0.49 0.63 0.52 0.42 0.36 0.69 0.50 0.57
bias 0.194 0.102 0.114 0.154 0.136 0.192 0.200 0.131 0.068
sdd 0.064 0.126 0.084 0.083 0.115 0.088 0.056 0.119 0.097
RMSE 0.204 0.162 0.142 0.175 0.178 0.211 0.208 0.177 0.119

Figure 6. Comparison between the simulations of soil moisture at 5 cm depth at the Bira station at two different time periods: dry season
in 2011 (upper panel), and the beginning of the raining season in 2012 (lower panel). The open-loop simulations are represented on the
left whereas the simulated soil moisture after assimilation are on the right. The different rainfall products are indicated with various colors.
Assimilated SMOS observations are indicated by yellow triangles on the left panel.

the assimilation is performed. This discontinuity has a nega-
tive artificial impact on the correlation, the standard deviation
and the root mean square error. The bias is the only statistical
metric that can be used to truly assess the impact of the as-

similation on the soil moisture variable. The other statistics
are shown for indication in Table 2.

Using the RT satellite precipitation products, the bias is
always reduced after the assimilation. At 5 cm depth, it is
improved by 0 % (TRMM) to 37 % (CMORPH), at 40 cm
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Table 3. Statistics of the simulated water table depth (WTD) compared to the in situ measurements at the Nalohou station for 2010–2012.
Three cases are considered: open-loop simulations using real-time satellite precipitation (RT), assimilation of SMOS soil moisture with
real-time precipitation (RT+SMOS), and open-loop simulation using reanalyzed precipitation (RE). Since the simulations and the in situ
measurements are not directly comparable, only the correlation (R) is shown here. Improvement of the correlation is indicated in bold font.

WTD PERSIANN TRMM CMORPH

RT RT+SMOS RE RT RT+SMOS RE RT RT+SMOS RE

R 0.09 0.87 0.79 0.70 0.84 0.48 0.33 0.82 0.84

Figure 7. Simulations of the water table depth at the Nalohou station (in situ measurements in black) using RT precipitation for after SMOS
assimilation (in colors). Correlations are also indicated in the figure.

depth by 17 % (TRMM) up to 56 % (PERSIANN), and at
80 cm, by 12 % (TRMM) up to 47 % (PERSIANN). The bi-
ases are even lower than with PERSIANN and TRMM re-
analyzed products. This shows that the assimilation and the
model are able to propagate the information from the 5 cm
layer to the deeper layers of the soil. The largest improve-
ments are naturally obtained when the PERSIANN and the
CMORPH products are used as precipitation forcing since
there are the ones bringing the most extra water in the model.
This proves that assimilation can correct for this additional
amount of water. Moreover, the open-loop simulations show
unrealistic soil saturation at the 5 cm layer during the rain
season (soil moisture value is equal to porosity, see Fig. 6),
which is also the case at deeper layers later in the season (not
shown here). This saturation issue is improved after assimi-
lation, but can still happen.

Assimilation does not correct directly the precipitation:
neither for the amount of water nor for the time of the event
itself. So the volume of water given to the model remains the
same and the peaks in the soil moisture simulations cannot
be corrected until a SMOS observation becomes available,
and only the drying phase can then be modified.

The impact of the assimilation on the evapotranspira-
tion variable has also been studied but not shown here.
The changes in evapotranspiration were very small after
the assimilation using the real-time precipitation products:
it was overestimated before (+3 to +9 %) and was still after
(around +9 %) for all products.

4.2 Impact on the water table depth simulations

Figure 7 shows the simulations of the WTD after SMOS as-
similation. Only the correlation is calculated because of the
scale difference.

There is a clear benefit from the SMOS soil assimilation
even at deeper layers than the ones used for the assimila-
tion directly. The peaks in the period from April to June are
strongly reduced and the temporal behavior is in line with the
in situ time evolution. The correlation scores are also a good
indicator of the improvement brought by the assimilation and
it is improved for all the precipitation products. Compared to
Fig. 3, the seasonal behavior of the water table depth is much
more respected with smoother peaks during the dry season.
The statistics performances are summarized in Table 3 for all
the options: RT precipitation only, SMOS assimilation using
RT forcing, and RE precipitation only. After assimilation, the
performances are either even better or equivalent compared
to RE simulations.

4.3 Impact on the streamflow simulations

Finally, Fig. 8 shows the simulations of the streamflow at
the outlet of the basin after assimilation. Compared to the
open-loop simulations in Fig. 4, improvements can clearly
be identified: the rises are smoother, the dry season is more
respected, and the time evolution is much more in line with
the in situ observations than using RT precipitation alone. Ta-
ble 4 shows the statistics of the streamflow simulations using
the three satellite products.

Except for the TRMM product, all the streamflow statis-
tics are improved by the assimilation, especially the error
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Table 4. Statistics of the simulated streamflow (Q) compared to the in situ measurements at the outlet of the basin for 2010–2012. Three
cases are considered: open-loop simulations using real-time satellite precipitation (RT), assimilation of SMOS soil moisture with real-time
precipitation (RT+SMOS) and open-loop simulation using reanalyzed precipitation (RE). Improvements are indicated in bold font.

Q PERSIANN TRMM CMORPH

RT RT+SMOS RE RT RT+SMOS RE RT RT+SMOS RE

R 0.39 0.78 0.78 0.86 0.81 0.82 0.64 0.81 0.88
bias 147.2 4.5 −15.6 44.4 40.9 −15.5 214.6 47.8 −19.9
sdd 292.2 111.2 112.2 120.3 131.4 105.2 356.6 134.2 85.8
RMSE 327.2 111.3 113.3 128.3 137.6 106.3 416.2 142.5 88.0
Nash −2.45 0.60 0.59 0.47 0.39 0.64 −4.59 0.35 0.75

Figure 8. Simulations of the streamflow at the outlet after SMOS soil moisture assimilation with real-time precipitation forcing (indicated in
colors for PERSIANN, TRMM and CMORPH) compared to in situ measurements (black line).

Figure 9. Taylor diagrams of the streamflow performances for the three rainfall products (PERSIANN on the left, TRMM in the middle,
CMORPH on the right) using their real-time version only (RT), their reanalyzed version (RE), and the RT version after SMOS assimilation
(RT+SMOS). The arrow shows the changes in the statistics before and after SMOS assimilation.

(divided by 3), and the Nash coefficient (from negative to
positive). Even if the reanalyzed precipitation produce bet-
ter performances, the improvement using SMOS assimilation
with RT precipitation is important. The TRMM case is dif-
ferent from the other two products since the RT version al-
ready gives fair performances, and the assimilation degrades
these performances a little bit, whereas the reanalyzed ver-
sion slightly improves them.

Another representation of these statistics is the Taylor di-
agram in Fig. 9. It shows in a more graphical way the im-
provement brought by the assimilation of SMOS soil mois-
ture products. The in situ circle on the bottom axis repre-
sents the point to be reached by the simulations, which would
mean that there is a temporal correlation of 1 (blue radial axis
on the right), the standard deviation is the same as the in situ
(temporal variability, gray circular axis), the standard devia-
tion of the difference between the simulations and the in situ

is null (green semi-circular axis) and the bias would also be
null (point circle filled with colors indicated by the color bar
on the right for the absolute value of the bias). In other words,
the closer to the in situ point, the better.

The arrows on the diagram show the impact of the assim-
ilation on the statistics using RT precipitation. For TRMM,
the after-assimilation point is not much closer indicating no
clear evidence of improvement from the assimilation. As
mentioned before, the TRMM precipitation product already
gave the proper amount of water, so SMOS assimilation can-
not improve it very much. However, simulations using PER-
SIANN and CMORPH products are greatly improved by the
assimilation attested by the long arrows ending much closer
to the RE and in situ points.
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5 Conclusions

Precipitation forcing is generally the main driver in hydro-
logical models and it is generally not simple nor immediate
to collect and distribute in situ measurements in sufficient
number and of quality. If in situ precipitation can be used for
model calibration, real-time or quasi-real-time applications
require forcing and observations quickly in order to react ac-
cordingly, such as in the case of a flooding event. Accurate
rainfall products from satellite observations are usually rean-
alyzed data sets available 2 to 3 months after. Although real-
time precipitation products are expected to be biased, they
are available a few hours to a couple of days after the ob-
servations. Three satellite rainfall products have been tested:
PERSIANN, TRMM and CMORPH.

The study shows the benefit of the assimilation of the
SMOS soil moisture products on three hydrological vari-
ables: the soil moisture, the water table depth and the stream-
flow, which are key variables in the hydrological processes.

By assimilating SMOS soil moisture, the first impacted
variables were naturally the soil moisture of the different soil
layers of the model. Here, we have showed that, even us-
ing a very simplistic methodology of assimilation, the bias
in the simulated soil moisture has decreased significantly af-
ter the assimilation using the real-time precipitation product.
At deeper ground, the simulations of the water table depth
showed a much better correlation after the assimilation when
compared to in situ measurements (from 0.09–0.70 to 0.82–
0.87). These scores were either higher or equivalent to those
from the reanalyzed rainfall products. This positive impact
of the assimilation on these hydrological variables can lead
to a better simulation and management of the actual ground
water resources.

The inaccurate amount of water brought by the real-time
rainfall products also has a substantial impact on the stream-
flow. The extra water can saturate the soil faster, thus increase
the runoff and the subsurface lateral flow, and be finally in-
tercepted by the water channel. This whole sequence of pro-
cesses is also positively impacted by the soil moisture assim-
ilation. The streamflow at the outlet of the basin has been
much improved for the PERSIANN and CMORPH rainfall
products with errors divided by a factor 3 and a Nash co-
efficient going from negative to positive (TRMM real-time
product was already fairly good compared to the other real-
time products). After assimilation, the performances were
either slightly lower or equivalent to those using the reana-
lyzed products. Again, this positive impact of the assimila-
tion can lead to a better simulation and management of ex-
treme events such as floods during the monsoon period in this
case.

This work shows the possibility to implement a near-real-
time hydrologic framework for real-time application wher-
ever it is possible to obtain a proper calibration of the hy-
drological model beforehand, which is one limitation of this
method but this can be overcome by using reanalyzed satel-

lite precipitation. Optionally, the real-time rainfall products
could be directly corrected using SMOS observations and
following current methodologies (Crow et al., 2011; Pellarin
et al., 2013; Brocca et al., 2014; Wanders et al., 2015). An-
other limitation comes from the choice of the assimilation
method. Optimal interpolation relies on assumptions about
the error covariances of the model and the observations. In
this study, these two matrices have been over-simplified. By
implementing ensemble technics, these assumptions could be
avoided and the impact of the soil moisture assimilation on
the other hydrological variables would be enhanced.
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