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ABSTRACT

Within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) Land Surface Model

Intercomparison Project phase 2 (ALMIP-2), this study evaluates the water balance simulated by the In-

teractions between Soil, Biosphere, andAtmosphere (ISBA) over the upperOuéméRiver basin, inBenin, using
a mesoscale river routing scheme (RRS). The RRS is based on the nonlinear Muskingum–Cunge method

coupled with two linear reservoirs that simulate the time delay of both surface runoff and base flow that are

produced by land surface models. On the basis of the evidence of a deep water-table recharge in that region,

a reservoir representing the deep-water infiltration (DWI) is introduced. The hydrological processes of the basin

are simulated for the 2005–08 AMMA field campaign period during which rainfall and streamflow data were

intensively collected over the study area. Optimal RRS parameter sets were determined for three optimization

experiments that were performed using daily streamflow at five gauges within the basin. Results demonstrate

that the RRS simulates streamflow at all gauges with relative errors varying from 220% to 3% and Nash–

Sutcliffe coefficients varying from0.62 to 0.90. DWI varies from24% to 67%of the base flow as a function of the

subbasin. The relatively simple reservoir DWI approach is quite robust, and further improvements would likely

necessitate more complex solutions (e.g., considering seasonality and soil type in ISBA); thus, such modifica-

tions are recommended for future studies. Although the evaluation shows that the simulated streamflows are

generally satisfactory, further field investigations are necessary to confirm some of the model assumptions.

1. Introduction

The AMMA (African Monsoon Multidisciplinary

Analysis) project (Redelsperger et al. 2006) was im-

plemented with the main goal of acquiring a better un-

derstanding of the intraseasonal and interannual

variability of the West African monsoon. The study of

the terrestrial water budget has been one of the key

research topics of the project. While significant progress

was made in terms of both basic understanding and

modeling, questions still linger concerning the impact of

land surface and hydrological processes on the monsoon

system through feedback mechanisms and the capacity

of current Earth system models to represent physical

processes in that area. This is critical since there is a need

to better quantify both current and future water avail-

ability within the context of predicted climate change

over an already water resource–limited region. The

AMMA Land Surface Model Intercomparison Project

(ALMIP; Boone et al. 2009b) was developed within

AMMA in order to evaluate the representation of the

water and energy cycles in the current generation of land

surface models (LSMs) overWest Africa. Other goals of

ALMIP are the identification of possible missing pro-

cesses in LSMs and the forcing of state-of-the-art LSMs

with high-quality and relatively high spatiotemporal-

resolution data in order to better understand the key

processes and their corresponding scales.

ALMIP is subdivided into two phases. ALMIP phase 1

(ALMIP-1; Boone et al. 2009b) focused on the regional
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scale with a domain that covers most of West Africa at

a 0.58 spatial resolution, and ALMIP phase 2 (ALMIP-2;

Boone et al. 2009a) deals with the local and mesoscales.

Twenty land surface and hydrological models are inter-

compared and evaluated over this region using observa-

tional data from three heavily instrumented supersites

from the AMMA–Coupling the Tropical Atmosphere

and the Hydrological Cycle (AMMA-CATCH; Lebel

et al. 2009) observing system. These supersites, located in

Mali, Niger, and Benin, are located along a north–south

transect and therefore provide a good characterization of

theWest African ecoclimatic gradient. The current study

focuses on the upper Ouémé River basin, located in Be-
nin, in which river networks are well structured. Over the
other two mesoscale supersites, both gullies of limited
extension (1–10km) and low connectivity transfer water

to topographic depressions (sinks), with no flow at larger

scales (so-called endorheism; Desconnets et al. 1997).

The mesoscale modeling of the water cycle in such

a complex context is beyond the scope of this study, even

though it will be considered in future works. Previous

modeling studies over this region have used conceptual

and physically based hydrological models in order to re-

produce streamflow at gauges (e.g., Varado et al. 2006;

Giertz et al. 2006; Le Lay et al. 2008; Gaiser et al. 2008).

Compared to typical hydrological models, LSMs gener-

ally have detailed representations of near-surface hy-

drology, soil properties, and vegetation processes, while

neglecting or parameterizing lateral flow processes. A

straightforward way to evaluate the water budget pro-

vided by hydrological models is to compare observed and

simulated river streamflow (e.g., Lohmann et al. 1998;

Getirana et al. 2014), as it can be directly measured, with

cost-effective methods, in almost any basin. Streamflow

results from the combination of various processes within

the basin (surface, subsurface transfer, groundwater dis-

charge, and routing in open channel networks); thus, it

provides useful information for evaluating the overall

water cycle in spatially distributed models.

Recent advances from field campaigns and modeling

over the ALMIP area have provided evidence that most

of the streamflow originates from perched water tables.

It develops in the near surface (1–2m), with almost no

contribution from the underlying (10–15m deep) per-

manent water table (Kamagaté et al. 2007; Séguis et al.
2011). This permanent water table is seasonally re-

charged by deep infiltration in the rainy season. In the

absence of evidence for large-scale flow in the perma-

nent water table, or a significant contribution to the

rivers, dry-season evapotranspiration (ET) is assumed

the main cause of groundwater depletion (Descloitres

et al. 2011; Richard et al. 2013). In this context, the

ALMIP-2 River Routing Scheme (ARTS) was developed

in order to simulate the partitioning and transfer of

surface and base flow simulated by LSMs. ARTS is

composed of two modules: 1) two linear reservoirs

representing the time delay to reach the river network

for both surface runoff and base flow in each grid cell

(i.e., the time delay corresponds to the time needed for

the water to flow from the headwater grid cell to the

river) and 2) a flow routing routine based on the non-

linear Muskingum–Cunge (MC) method (Ponce 1989).

The first module is used to partition base flow between

water-table recharge and lateral fluxes to the river.

ARTS is therefore more than strictly a river routing

scheme; it can be viewed as a hydrologic postprocessor

that accounts for both surface water and groundwater

dynamics. In this study, the near-surface water budget is

simulated by the Interactions between Soil, Biosphere,

and Atmosphere (ISBA) model (Noilhan and Mahfouf

1996). Surface runoff and base flow simulated by ISBA

are used as forcing in ARTS to generate streamflow and

groundwater recharge. Most ARTS parameters can be

acquired from in situ observations and/or satellite im-

agery. However, the determination of four model pa-

rameters requires either expertise or automatic

calibration. Three of them are related to time delays or

deep-water infiltration (DWI) rates, while the fourth

parameter is the so-called Manning’s roughness co-

efficient that is required for the MC-based scheme.

In addition to describing the ARTS scheme, the main

objectives of this study are 1) to evaluate the ability of

ISBA to simulate the mesoscale hydrology in that re-

gion, given its relatively simple and standard represen-

tation of such processes, and 2) to investigate possible

structural biases in LSMs that result from the in-

adequate or missing representation of some key pro-

cesses. The latter objective is attained through the use of

ARTS parameters. In this sense, parameters are esti-

mated through three automatic calibration experiments,

each considering a set of streamflow datasets that differ

from each other according to the number and order of

gauges that are used in the optimization process. The

University of Arizona multiobjective complex evolution

(MOCOM-UA) global optimization algorithm (Yapo

et al. 1998) is considered in this context.

This study is a test bed for a forthcoming multi-LSM

evaluation based on the ALMIP-2 ensemble simula-

tions. This paper is organized into four sections. Section 2

presents the study area and a description of the available

datasets. Section 3 provides the modeling approach,

including a detailed description of ARTS and the

MOCOM-UA algorithm, as well as the experimental

design. In section 4, the results are shown, compared,

and discussed, and section 5 presents the concluding

remarks.
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2. Study area

The upper Ouémé River basin is located in northern
Benin, with a drainage area of;14400km2 (see Fig. 1). It

is one of the three ALMIP-2 meso sites (also including

theMali andNigermeso sites; Boone et al. 2009a) and the

only one with available streamflow observations at that

scale. The basin is located within the Sudanian climatic

regime, and it is characterized by a single rainy season

with an average rainfall of ;1150mmyr21. The bulk of

the rainfall occurs during the monsoon, which corre-

sponds to the period between April and October (ap-

proximately 60% of the rain falls between July and

September). More details about the rainfall characteris-

tics in the region can be found inDepraetere et al. (2009).

The streamflow is intermittent, occurring between the

end of June and January. The basinwide average runoff

(estimated from observations between 2005 and 2008, for

which data are available for this study) is approximately

150mmyr21, and this corresponds to a runoff ratio

(runoff/rainfall) of approximately 0.12. These ratios can

vary spatially from 0.08, at Bori station, to 0.24, at Tebou

station (see locations in Fig. 1). According to previous

studies based on observed data (Kamagaté et al. 2007;
Séguis et al. 2011), recharge rates range from 10% to 17%

of the annual rainfall depending on the year.

a. Meteorological forcing

A dense rainfall gauge network maintained by the

AMMA-CATCH observing system (Lebel et al. 2009) is

available over the study area (see Fig. 1 for the rainfall

gauge distribution). The rainfall product used in this

study is derived from an interpolation technique based on

a combined krigged–Lagrangian methodology (Vischel

et al. 2009). The resulting rainfall product is available at

a 30-min time step for the 2005–08 period at a 0.058
spatial resolution. Surface parameters, such as the leaf

area index (LAI) and albedo, are from the ECOCLIMAP2

database (Kaptué Tchuenté et al. 2011). Note that,

unlike ALMIP-1, ALMIP-2 input vegetation parame-

ters include interannual vegetation variability. This data-

set was developed specifically for applications such as

ALMIP-2 since the vegetation is characterized at very

large interannual variability over this region. Mesoscale

downwelling fluxes (interpolated from a 3-km resolution

grid to a 0.058 spatial resolution and aggregated from

a 15- to a 30-min time step for this project) are from the

Land Surface Analysis Satellite Applications Facility

(LandSAF) project (Geiger et al. 2008; Trigo et al.

2011). Other meteorological forcings are derived from

the European Centre for Medium-Range Weather

Forecasts (ECMWF) operational forecast system [for

FIG. 1. Location of the upper Ouémé River basin.
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further details, see Boone et al. (2009a)], with relatively

small hypsometric-based adjustments to the tempera-

ture, specific humidity, and surface pressure using the

differences between the large-scale model and ALMIP-

2 mesoscale topography.

b. Streamflow

The streamflow observations at 10 gauges (see loca-

tions in Fig. 1) maintained by the AMMA-CATCH ob-

serving systemwere utilized in the modeling experiments

described below. The five main catchments within the

basin (Beterou, Aval-Sani, Bori, Barerou, and Cote 238)

were used in the parameter calibration (described in the

next section) and the other four (Igbomakoro, Sarmanga,

Affon, and Tebou) were used for the parameter eva-

luation. The drainage areas vary from 533 km2 (Tebou

station) to 10 140 km2 (Beterou station), with mean

streamflow ranging from 1.3 to 43.1m3 s21. The main

characteristics of the catchments (identified by the cor-

responding gauges) are listed in Table 1.

The river length and slope, flow direction, and drain-

age area used in river routing scheme were derived from

Shuttle Radar Topography Mission (SRTM; Farr et al.

2007) digital elevation model (DEM) data processing.

Cross-sectional observations at 12 gauges were used to

determine river widths as a function of the drainage area

based on a power-law relation. The power-law method

used herein is widely cited in the literature (e.g., Coe

et al. 2008; Getirana et al. 2010; Decharme et al. 2012; Li

et al. 2013), and it has been shown to be able to provide

reasonable spatially distributed estimates of river ge-

ometry in different areas in the world.

3. Modeling approach

This section provides a detailed description of the

ARTS parameterization and the land surface hydrology

module in ISBA. The MOCOM-UA (Yapo et al. 1998)

optimization algorithm used for the ARTS calibration is

briefly presented [detailed descriptions are presented in

Yapo et al. (1998) and Boyle et al. (2000)]. ISBA and

ARTS were coupled in offline mode, that is, ARTS was

run using ISBAoutputs (surface runoff and base flow) as

input data.

a. The ARTS river routing scheme

ARTS is a mesoscale river routing scheme developed

in the framework of the ALMIP-2 project with the ob-

jective of evaluating the water budget provided by

multiple LSMs. Surface runoff R and baseflow B com-

ponents generated by an LSM at each grid cell are

routed through the river network using the nonlinear

MCmethod. This method provides a numerical solution

similar to the diffusion term of the Saint Venant equa-

tion. The model simulates daily spatially distributed

streamflow with internal computational time steps that

can be adjusted for accuracy (varying from a few min-

utes to several hours) as a function of the river reach

length, river bed slope, and kinematic wave celerity. The

spatial resolution of bothARTS and ISBA in the current

study is 0.058 3 0.058, which results in 473 grid cells for

the upper Ouémé River basin.
ARTS also represents the R and B time delays before

reaching the river network using a linear reservoir ap-

proach. The methodology is similar to that used in the

Hydrological Modeling andAnalysis Platform (HyMAP;

Getirana et al. 2012), except for the fact that ARTS is

capable of simulating the deep-water infiltration, as de-

scribed in the next sections. The surface runoff time

delay tr is the product of a spatially distributed surface

runoff time delay factor, determined by the Kripich

(1940) formula, and a spatially uniform parameter. The

baseflow time delay tb is calibrated. In addition, ARTS

can represent water losses and water-table recharge via

deep-water infiltration. At each time step, a uniform and

constant fraction of the base flow is diverted to the

aquifer reservoir. The remaining fraction, transferred to

the river, mimics the subsurface flow that is not specifi-

cally diagnosed by most LSMs. A schematic of the

model is shown in Fig. 2.

TABLE 1. Selected streamflow gauges located within the upper Ouémé River basin.

Station name Lat (8) Lon (8) Area (km2)

Observed

discharge (m3 s21)

Observed runoff

rate (mmday21) Rainfall (mmday21)

Runoff ratio

(runoff/rainfall)

Beterou 9.20 2.27 10 140 43.13 0.37 3.01 0.12

Aval-Sani 9.72 2.15 3307 17.54 0.46 2.99 0.15

Bori 9.76 2.40 1630 4.86 0.26 2.98 0.09

Barerou 9.36 2.38 2141 8.03 0.32 3.07 0.10

Cote 238 9.09 2.09 3152 17.61 0.48 3.13 0.15

Igbomakoro 9.08 1.88 2335 13.96 0.52 3.01 0.17

Sarmanga 9.23 1.82 1371 9.90 0.62 3.06 0.20

Affon 9.75 2.10 1187 6.56 0.48 3.08 0.15

Tebou 9.96 1.86 533 4.57 0.74 3.10 0.24
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1) THE RUNOFF AND BASEFLOW TIME DELAYS

As mentioned above, R (mm Dt21) and B (mm Dt21)

derived from an LSM are used as inputs for an ARTS

simulation. At each time step, a fraction f of B, called

subsurface flow B0 (B0 5 Bf), is transferred to the river

network while the remaining part, referred to as deep-

water infiltration [DWI5B(12 f )], leaves the system to

an assumed deep aquifer. The fraction f is calibrated in

order to fit mean observed and simulated streamflow.

Note that feedbacks from this deep aquifer to both soils

and rivers seem to be negligible, even over time scales

longer than the one considered in this study (Leduc et al.

1997; Séguis et al. 2011), thereby enforcing the fraction f

assumption for this study.

The time delay characterizes a physically based pro-

cess that represents the subgrid-scale routing (Getirana

et al. 2012). For each grid cell, R and B0 (mm Dt21) pass

through separate linear reservoirs. The time delay of

each linear reservoir can vary from a few hours to sev-

eral days, depending on the hydrogeological character-

istics of the catchment. The linear reservoir outflows can

be represented by

Or,b 5
Vr,b

tr,b
, (1)

where the subscripts r and b represent surface runoff and

baseflowvariables, respectively.ThevariableOr,b (mmDt21)

stands for the outflow at time step t,Vr,b (mm) represents

the water stored in the linear reservoir, and tr,b (Dt) is the

depletion rate of linear reservoirs that is determined as

a function of the time delay factor of a grid cell. The

variable V is updated twice at each time step: at the be-

ginning, adding the inflows R and B0 and at the end, by

subtracting Or,b. The tb parameter can be defined as a

function of hydrogeological characteristics of the basin,

and it represents the depletion rate of the baseflow linear

reservoirs. Some studies suggest that it can be derived

from the recession time of observed hydrographs at the

catchment outlet (e.g., Collischonn et al. 2007). InARTS,

tb is assumed to be spatially uniform and constant in

time, and it is calibrated. The surface runoff transfer time

scale tr is spatially distributed and defined as

tr
j
5Tr

j
pr , (2)

where Tr (Dt) is a surface runoff time delay factor for

each grid cell and pr is a spatially uniform parameter.

The variable Tr is computed for each grid cell j from

Kirpich (1940):

Tr
j
5 3600

 
0:868

Dx3j
Dhj

!0:385

, (3)

where Dxj (km) is the distance between the farthest

point within a grid cell and its outlet and Dhj (m) is the

difference between the maximum and minimum eleva-

tions of the pathway. Both Dxj and Dhj are derived from

a high-resolution DEM. Finally, the total streamflow

Qc (m
3 Dt21) produced in each grid cell is computed as

FIG. 2. Schematic of the ARTS river routing scheme.
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Qc 5 (Or 1Ob)Ac , (4)

where Ac (m
2) stands for the grid cell area.

2) WATER FLOW IN THE RIVER NETWORK

The Muskingum–Cunge routing method is based on

the equation

Qot115C1Qit 1C2Qit111C3Qot , (5)

where, for each grid cell, Qot11 (m3 Dt21) is the outflow

at time step t 1 1, Qot (m3 Dt21) is the outflow at time

step t, Qit (m3 Dt21) is the inflow at time step t, and Qit11

(m3Dt21) is the inflow at time step t 1 1. The variables

Qot and Qit result from the preceding time step com-

putation, and Qit11 is the summation of the streamflow

produced in the current grid cell and the outflow of

upstream grid cells i:

Qit115Qct111 �
nUp

i51

Qct11
i , (6)

where nUp represents the number of upstream grid cells.

The variables C1, C2, and C3 are defined as

C15
2KX1Dt0

2K(12X)1Dt0
, (7)

C25
Dt02 2KX

2K(12X)1Dt0
, (8)

and

C35
2K(12X)2Dt0

2K(12X)1Dt0
, (9)

where Dt0 is a submultiple of the model time step. The

variables K and X are physically based constants, also

known as the variable parameters of the MC method

(Ponce 1989):

K5
Dx0

co
(10)

and

X5
1

2
2

qo
wSocoDx

0 , (11)

where co (m s21) stands for the kinematic wave celerity,

qo (m3 s21) is the water discharge of reference, and So
and w (m) are the river bed slope and width of the main

river reach within the grid cell. The variable Dx0 (m) is

the length of a river reach, which can be a submultiple of

the total river length within the grid cell. The variable co
is computed as

co5
5

3

q0:4o S0:3o

n0:6w0:4
, (12)

where n is the Manning roughness coefficient and esti-

mates are available in the literature for most flow regimes

and different river physical characteristics (Chow 1988).

In this study, n has been defined as being spatially uniform

and constant in time (equal to 0.03), which is in agreement

with values suggested in the literature (Chow1988) for the

physical characteristics of rivers found in this basin.

The variable So is approximated as the valley slope,

which is derived from the SRTM DEM. The variable

w (m) was derived from a power-law equation as a func-

tion of the drainage area A (km2), based on the observed

river widths at the corresponding gauges. The following

equation was used to derive a map of w within the basin:

w5 12.A0:17 R25 0:69. (13)

The nonlinear version of the MC method is used in this

study, which means that the kinematic wave celerity varies

with discharge. This version of the MC method is particu-

larly useful for long reaches and rivers with a wide range of

flow-level variation (Ponce 1989). The nonlinearity of the

MC method is introduced by varying the routing parame-

tersX andK. These parameters are functions of qo and co,

which are computed with a three-point average of the

knownvalues. Thus,qo for the time step t1 1 is providedby

qt11
o 5

Qit 1Qit111Qot

3
. (14)

Ponce and Yevjevich (1978) showed that this equation

provides satisfactory estimates of qo when compared to

the interactive four-point average method, which in-

cludes the unknown variable Qot11.

The MC method provides an optimal precision when

the following relation is satisfied (Tucci 1998):

qo
wSoco

1 0:8(coDt
0)0:8(Dx0)0:22Dx05 0. (15)

Optimal submultiples of the river length in a computa-

tional cell Dx0 and model time step interval Dt0 are cal-

culated using the Newton–Raphson method applied to

Eq. (15). This improves the precision of the wave

propagation within the grid cells. To solve Eq. (5), the

parameters K and X [Eqs. (10) and (11)] are calculated

based on geomorphologic characteristics of the study

area. The physical basis of these parameters distinguishes

the MC method from the Muskingum method, which
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estimatesK andX empirically. Most of these data can be

easily derived from satellite or in situ observations.

b. The ISBA land surface model

ISBA is a state-of-the-art LSM that is a part of the

Surface Externalized (SURFEX) platform (Masson et al.

2013). The model is used for operational numerical

weather prediction, global climate model simulations, op-

erational hydrological forecasting over France, offline land

data assimilation applications, and mesoscale atmospheric

researchmodeling [seeMasson et al. (2013) for a review of

the different applications]. ISBA provides fluxes of mass,

heat, carbon, radiation, and momentum to the overlying

atmosphere (in coupled mode), in addition to predicting

the temporal evolution of the near-surface continental

water and energy balance components and surface state

variables (in coupled or offline mode). ISBA contains

many physics options for soil, snow cover, and photosyn-

thesis, the choice of which depends on a given application.

LAND SURFACE MODEL HYDROLOGY

Within ISBA, there are several different hydrological

parameterizations available. For example, within the

global climate model (large-scale applications), the

ISBA–Total Runoff Integrating Pathways (ISBA-TRIP)

river routingmethodology (Decharme et al. 2012) is used.

In the current study at the mesoscale, we use a new ap-

proach based on the MCmethodology. Compared to the

ISBA-TRIP parameterization, this method includes

processes that are more amenable to mesoscale hydro-

dynamics. In terms of near-surface hydrology, a relatively

simple and standard three-layer force–restore hydrolog-

ical configuration is used (Boone et al. 1999). In terms of

surface runoff, the variable infiltration capacity method-

ology is activated (Habets et al. 1999). The hydrological

simulations from this configuration have been evaluated

at the regional scale within the context of international

intercomparison projects (e.g., Boone et al. 2004). The

surface runoff is parameterized as

Qrcrit 5

2
412 (w22wrgmin)

(wsat2wrgmin)

3
5
1/(11B)

2
RtDt

rwd2

2
4 1

(11B)(wsat2wrgmin)

3
5 , (16)

Qr 5Rt 2
rwd2
Dt

f(wsat2w2)

2 (wsat2wrgmin)[max(0,Qrcrit)]
11Bg , (17)

and

Qr 5 0 if (Qr , 0) or (w2 2wrgmin , 0), (18)

where Qrcrit (m
3m23) is a critical nondimensional flow

rate, w2 is the volumetric water content of the surface

layer,wsat (m
3m23) is the porosity,Rt (kgm

22 s21) is the

throughfall or potential infiltration rate,Dt (s) is the time

step, d2 (m) is the depth of the second (root zone) soil

layer, and rw (1000 kgm23) represents the density of

liquid water. The variable B is the so-called variable

infiltration parameter, and the current default value of

B 5 0.5 (Habets et al. 1999) is used in this study. The

parameter wrgmin (m3m23) is a threshold volumetric

water content that is sufficiently humid to generate

surface runoff. By default,wrgmin has been set somewhat

arbitrarily (for lack of observational studies) to the

wilting point value for large-scale or global modeling

applications. But note that the wilting point represents

the minimum soil moisture at which plant roots can

uptake soil water: strictly speaking, it does not actually

have a hydrological significance. In the current study,

based on the runoff generation in the beginning of the

rainy season, it was found that surface runoff did not

occur until the soil was moistened to values above the

wilting point (based on streamflow observations). Run-

ning ISBA with its default wrgmin results in early runoff

generation, which is not consistent with observed

streamflow. After some testing, we assigned a constant

value that is computed as the average of the wilting point

and field capacity to this parameter. This value was

found to be quite stable (it produced similar improved

results for the 4 years in this study).

c. The MOCOM-UA algorithm

The MOCOM-UA is a global multiobjective optimi-

zation algorithm that provides a distribution of solutions

on the Pareto optimum space. The algorithm only re-

quires the definition of the population ns of points ran-

domly distributed within the parameter hyperspace. The

parameter hyperspace is defined by the n-dimensional

feasible parameter space. The population of ns points is

ranked and sorted according to a Pareto ranking pro-

cedure for each iteration, as suggested by Goldberg

(1989). The optimization process stops when the entire

population has converged toward thePareto optimum, that

is, when all ns points are ranked evenly. Further details

about the MOCOM-UA algorithm can be found in the

literature (e.g., Yapo et al. 1997, 1998; Boyle et al. 2000).

d. Experimental design

ARTS was automatically calibrated for the period

from 2005 to 2008 using the MOCOM-UA algorithm.

Three calibration experiments have been performed,
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differing from each other according to the number of

utilized gauges providing streamflow observations and

how they were used to drive the optimization algorithm.

Experiment 1 only incorporated the Beterou station,

with a drainage area of 10 140 km2, which includes the

other three gauges (Aval-Sani, Bori, and Barerou). In

experiment 2, data available at the five gauges listed in

Table 1 were used in the optimization process simulta-

neously. At each iteration of experiment 2, objective

functions (OFs) are computed as the weighted sum of

the performance coefficients at the gauges, represented

as (Getirana et al. 2013):

OF5minimize

2
666412

�
n

k51

F(O, S, t)Wk

�
n

k51

Wk

3
7775 , (19)

where F is a performance coefficient that is a function of

the time step t and the simulated S and observed O

signals, W is the weight attributed to each gauge, and k

represents the total number of stations considered in the

experiment. The function F can be represented by dif-

ferent performance coefficients.

Finally, in experiment 3, the same five stations were

considered, but parameter sets were calibrated for each

catchment individually. The upstream catchments were

calibrated first, and then selected optimal parameters

were used to calibrate parameter sets for the downstream

catchments. For all experiments, the Nash–Sutcliffe (NS)

coefficient and the normalized root-mean-square error

(NRMSE) for streamflow were defined as F:

NS5 12

�
nt

t51

(yt 2 xt)
2

�
nt

t51

(yt 2 y)2
(20)

and

NRMSE5
RMSE

(ymax2 ymin)
, (21)

where t is the time step and nt represents the total

number of days with observed data. The variables x and

y are, respectively, the simulated and target (observed)

signals at time step t, while ymax, ymin, and y represent the

maximum, minimum, and mean values of the target

signals for the entire period. The term NS ranges from

2‘ to 1, where 1 is the optimal case, while 0 results when

simulations represent observed signals as well as the

mean value. NRMSE varies from 21 to 1‘, where 0 is

the optimal case.

A manual calibration was performed in order to

refine the parameter values. The parameters tb, pr, and

f were considered in the optimization procedure, and

relatively large parameter domains were defined with

the purpose of covering the entire range of feasible

values. Table 2 shows the first guess for the automatic

calibration. The value of NS was fixed as 200 in the

experiments performed in this study. Since the objec-

tive of this paper is the presentation and evaluation

of ARTS rather than the MOCOM-UA algorithm,

details about the optimization efficiency are not

presented.

Results were evaluated using two additional

coefficients: the relative volume error of the stream-

flow (RE) and the NS coefficient for seasonal vari-

ability (NSd), as suggested by Schaefli and Gupta

(2007):

RE5

�
nt

t51

xt 2 �
nt

t51

yt

�
nt

t51

yt

(22)

and

NSd 5 12

�
nt

t51

(yt 2 xt)
2

�
nt

t51

(yt 2 ytref)
2

, (23)

where ytref is the reference value at time step t. The

term RE allows us to determine whether mean simu-

lations under- or overestimate observation while NSd
identifies whenever the model has more predictive

abilities than those processes already contained within

the seasonality of the reference signal.

TABLE 2. Optimal parameter sets obtained in the calibration experiments.

Experiment 3

Parameters First guess Search domain Experiment 1 Experiment 2 Aval-Sani Bori Barerou Beterou Cote 238

tb (days) 12.5 0–100 8.0 10.7 1.9 25.9 19.1 8.4 9.4

pr 50 0–250 32 39 21 100 57 36 33

f (%) 40 0–100 59 57 70 33 61 70 76
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4. Results and discussion

a. Water budget simulated by ISBA

The basinwide average ET simulated by ISBA can

reach daily values as high as 7mmday21 during the rainy

season, with a considerable decrease during the dry

season: values as low as 0.4mmday21 are produced

during this period (the time series for the water budget

components are shown in Fig. 3). Runoff starts to occur

about 3 months after the rainy season starts. Approxi-

mately 72% (2.15mmday21) of the precipitation within

the basin is lost through ET, while 5% and 23% are

converted into surface runoff (0.17mmday21) and base

flow (0.68mmday21), respectively. The total runoff

simulated by ISBA is found to significantly overestimate

the observed streamflow. This is consistent with the

findings of previous studies suggesting the occurrence of

a deep-water infiltration in the studied area (Séguis et al.
2011). The overestimation varies from ;190% at the

Aval-Sani station to ;330% at the Bori station. In

contrast, if only the surface runoff is considered, there is

an underestimation that varies from 37% at Bori station

to 64%atAval-Sani, as shown in Fig. 4. These significant

differences suggest a limited representation of hydro-

logical processes in ISBA. The water balance is first

evaluated in terms of ET, which is justified by the hy-

pothesis that underestimating the simulated total ET

can result in increased total runoff rates. This hypothesis

FIG. 3. The 10-day time step series of precipitation (P); simulated ET, R, and B; and change of

the water storage in the soil (dS/dt) averaged over the entire basin.

FIG. 4. Water balance variables (P, ET,B,R, and observed streamflowQobs) averaged over the

2005–08 period (mmday21).
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is sustained by the possible existence of deep tree roots in

the studied area. According to Canadell et al. (1996), tree

roots can reach 4–15-m depths in tropical areas. On the

other hand, input ECOCLIMAP soil parameters specify

approximately 1–2-m soil depths in the basin (and the

corresponding prescribed rooting depths are even less),

while in situ observations in this basin (unpublished data)

suggest that tree roots extend much deeper than the

rooting depth prescribed in current LSMs. As a result, it is

expected that models underestimate ET during the dry

season. Evidently, other hypotheses, such as the mis-

representation of the deep aquifer infiltration, are also

potential explanations for the total runoff overestimation.

Simulated ET was evaluated by comparing it against

ALMIP-1 LSM outputs (Boone et al. 2009b) and two

other satellite-based products: theModerate Resolution

Imaging Spectroradiometer (MODIS)-based ET data-

set (MOD16;Mu et al. 2007, 2011) and theGlobal Land-

Surface Evaporation: the Amsterdam Methodology

(GLEAM; Miralles et al. 2011). Trambauer et al. (2014)

performed a comparison of numerous ET products, in-

cluding MOD16 and GLEAM, demonstrating that they

agree well with other datasets describing the study area.

Figure 5 shows the monthly time series of these products

from 2005 to 2007. According to the figure, all ET esti-

mates exhibit similar seasonality, but a wide range of

values in both dry and wet seasons is perceptible.

However, it should be noted that ISBA tends to un-

derestimate ET, if compared to the satellite-based esti-

mates, by about 15%, which is mostly caused by an early

rise in the beginning of the rainy season. This could be

explained by the aforementioned shallow root zone (1–

2m) found in most LSMs, including ISBA. This results

in low groundwater availability, especially during the

dry season. But this difference corresponds to only about

half of the difference between total runoff and observed

discharge. Excessive total runoff can also be due to the

overestimation of the rainfall used for model forcing.

However, this is deemed to be unlikely to explain the

large runoff biases owing to the spatial density of the rain

gauges, and the fact that the rain field products have been

extensively validated (Vischel et al. 2009). These analyses

suggest that neither simulated ET nor rainfall can fully

explain the difference between the total runoff and the

observed discharge. Assuming that the simulated R cor-

rectly represents the actual process, Fig. 4 suggest that

only a fraction of the base flow should contribute to the

river, which is consistent with field results. Accordingly,

the remaining fraction should be abstracted from the

surface water cycle and supply a new reservoir, acting as

a sink term in the system. These results justify the struc-

ture of the ARTS scheme, which allow us to ‘‘fix’’ the

LSM simulation by adding these missing processes.

b. Evaluation of simulated streamflow

On average, a single run for 473 grid cells and 4 years at

the daily time step takes about 1–2 s using an Intel Core

2 Duo 2.4-GHz 4-GB processor under a Linux operating

system. In addition, simulations show that ISBA-ARTS

can satisfactorily simulate the streamflow in the upper

Ouémé River basin, in particular, the 3-month delay be-
tween the beginning of the rainy season and the stream-
flow peaks. Although ISBA outputs overestimate the
total runoff within the basin, the inclusion of a reservoir
representing the deep-water infiltration significantly re-
duced these differences, thereby producing simulated
streamflow fairly close to the observations using a limited
set of calibrated parameters. Figures 6–8 present daily

FIG. 5. Monthly ET in the upper Ouémé River basin from 2005 to 2007 derived from ISBA parameterized as described in this study,
MOD16 (Muet al. 2007, 2011), GLEAM(Miralles et al. 2011), andALMIP-1 LSMoutputs. Values on the right correspond to the averages

of time series.
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streamflow and performance coefficients of optimal re-

sults at the five gauges used in the three optimization

experiments. Beterou station, draining most of the basin

(;10 140 km2), hadNS5 0.90 andNRMSE5 0.06 for all

of the experiments, with quantitatively comparable RE

and NSd values. Experiments 2 and 3 resulted in 21%

and 0.67 for the last two coefficients, respectively, while

experiment 1 produced values of25%and 0.68. Although

the coefficients at Beterou are very similar in the three

optimization experiments, other stations had varying per-

formances as a function of the number of stations used in

the automatic calibration.

FIG. 6. (from top to bottom) Results at five gauging stations for

experiment 1 (calibration with streamflow data observed at the

Beterou station).

FIG. 7. As in Fig. 6, but for experiment 2 (i.e., calibration with

observed streamflow data at five gauging stations simultaneously).
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The best overall results were obtained in experiment 3,

for which basins were calibrated individually, and the

incremental area of Beterou station was calibrated using

optimal results for each upstreambasin. This confirms the

benefit of a spatially based calibration. Barerou station

produced good simulated streamflowwith NS5 0.83 and

NSd 5 0.43 in experiment 3, in comparison to 0.77 and

0.21 in experiment 1 and 0.80 and 0.33 in experiment 2.

Bori presented the best improvement from experiment 1

to experiment 3, with NS, RE, and NSd values improving

from 0.19, 41%, and 21.51 to 0.75, 23%, and 0.22. The

worst results, which were obtained at Aval-Sani and Cote

238, can likely be explained by physical properties poorly

represented by ECOCLIMAP in these areas. Even

though a dense rain gauge network in the basin would

reduce errors in the precipitation dataset, this forcing can

also be a secondary explanation for errors in streamflow

simulations. The evaluation of streamflow at four addi-

tional gauges (Tebou,Affon, Sarmanga, and Igbomakoro)

reinforces the previous results that showed that the spa-

tially distributed calibration performed in experiment 3

provided the best results. For example, NS, RE, and NSd
values at Affon evolved from 0.59, 024%, and 0.03 in

experiment 2 to 0.66, 211%, and 0.20 in experiment 3.

Figure 9 shows the results at four gauging stations used

for the evaluation of experiment 3.

c. Discussion of the parameterization

As described in section 3a, the surface runoff ts time

delay is a function of a surface runoff time delay factor

Tr, defined by the Kirpich formula, and a spatially uni-

form surface runoff parameter rd, which was parame-

terized. The base flow (tb) was also parameterized.

Table 2 shows that approximately 30%–70% of the

simulated base flow B is abstracted from the surface

water budget and is diverted to deep water-table re-

charge. Overall, DWI values correspond to 6%–15% of

rainfall P (see Table 3), which is slightly lower than but

close to previous estimates of 10%–15%, as suggested

by Séguis et al. (2011) on the basis of in situ measure-

ments. A plausible explanation for the underestimated

DWI/P ratios is that the contribution of R simulated by

ISBA to the total river runoff is too high. As shown in

Kamagaté et al. (2007) in a smaller catchment located in

the northeastern Ouémé basin, most of the river dis-
charge originates from the subsurface flowB0. According

to those estimates, B0 represents 68%–83% of the total

river discharge; hence, the surface runoff only accounted

for 17%–32% of the water volume flowing in the rivers.

On the other hand, we found that R accounts for 47%–

63% of river discharge.

A DWI of 41% of B (or f 5 0.59), tb 5 8 days , and

pr5 32 were obtained for experiment 1. The inclusion of

four other stations in the optimization, as defined by

experiment 2, had little impact on the parameters with

respect to the values obtained in the first experiment:

increases in both tb and pr to 10.7 days and 39, re-

spectively, and a reduction in f to 57% was obtained.

As discussed above, these parameter sets can provide

FIG. 8. As in Fig. 6, but for experiment 3 (i.e., calibration with

observed streamflow data at five gauging stations individually).
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adequate simulated streamflow at Beterou, but other

stations have lower statistical scores. Results obtained

with experiment 3 suggest that the parameters are highly

heterogeneous in space. Figure 10 shows the daily mean

time series of streamflow from January to December for

the 2005–08 period at the five stations used in the cali-

bration procedure of experiment 3. Effects of parameter

f are clearly seen at all of the stations, and the mean

streamflow is reduced by a factor of approximately 2.5 at

Beterou after the ARTS runs. The f values varied from

33% at Bori to 76% at Cote 238. The best improvements

in terms of mean streamflow are observed at Beterou,

Bori, and Barerou. This large difference is due to

a higher loss of water toward the deep aquifer in the

northeastern part of the basin. The analysis of observed

runoff ratios at Bori (Table 1) shows that, because of

specific physical properties, the runoff capacity of this

basin is lower than those observed at other locations.

The relatively simplistic representation of these prop-

erties in both the ECOCLIMAP dataset and ISBA is

likely responsible for the overestimation of the total

runoff in this basin, and the low value of f acts as a cor-

rection factor.

The tb value varies from 1.9 days at Aval-Sani to 25.9

days at Bori. Barerou had a high tb value of 19.1 days

while Beterou and Cote 238 had values similar to those

obtained in experiments 1 and 2 (8.4 and 9.4 days, re-

spectively). Because of the high baseflow rates, tb has

a nonnegligible impact on the streamflow during the

recession periods (period when rain ceases and stream-

flow drops and should be easily noticed at the end of

rainy seasons). While R 1 B from ISBA (i.e., without

routing) drops to zero almost immediately when rain

stops (see Fig. 10), water keeps flowing in the rivers for

about 1 or 2 months, from October to December, de-

pending on the basin. Simulations in experiment 3 could

represent the recession periods at most stations, dem-

onstrating the sensitivity of tb and how important it is to

represent the baseflow water delay in a river routing

modeling system. The exception is Aval-Sani, where an

early drop of simulated streamflow is due to the low

tb value obtained in experiment 3. This can be explained

by a delayed total runoff peak simulated by ISBA at that

station, forcing the optimization scheme to compensate

it with a lower baseflow time delay.

5. Conclusions

The main objective of this paper is to assess the water

budget as simulated by the current generation of land

surface models (LSMs) over a basin with a monsoon

climate. The current study focuses on the upper Ouémé
River basin (Benin, West Africa) within the ALMIP-2
framework. In addition to evaluating the performance of
LSMs, an attempt to identify key misrepresented pro-
cesses is also performed. Groundwater dynamics and
deep water-table recharge are examples of such pro-
cesses and have been previously identified in the region

TABLE 3. Details on DWI estimates.

Station name R (mmday21) B (mmday21) 1 2 f

DWI ratio

(DWI/

rainfall)

Beterou 0.16 0.68 0.41 0.09

Aval-Sani 0.16 0.70 0.3 0.07

Bori 0.16 0.67 0.67 0.15

Barerou 0.17 0.73 0.39 0.09

Cote 238 0.20 0.75 0.24 0.06

FIG. 9. As in Fig. 6, but for the four gauging stations used for the

evaluation of experiment 3.
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(Kamagaté et al. 2007; Séguis et al. 2011). The water

budget is simulated by the Interactions between Soil,

Biosphere, and Atmosphere (ISBA) model (Noilhan

andMahfouf 1996) and surface runoff (R) and base flow

(B) simulated by ISBA are used as forcing for the

ALMIP-2 River Routing Scheme (ARTS), which has

been specifically developed to generate streamflow in

the study area. To evaluate the capability of ARTS to

represent physical processes within the basin, three au-

tomatic calibration experiments were performed. The

experiments were evaluated through the comparison of

simulated discharges against observations at nine gauging

stations within the basin. ARTS was developed with the

main goal of routingR andB simulated by LSMs in offline

mode at the mesoscale using a generic approach with

a limited number of calibration parameters. The model

combines a set of three reservoirs, representing baseflow

water loss and the time delays for both R and B, with the

Muskingum–Cunge method, representing the water

transfer though the river network. Since the objective is to

evaluate LSMwater budgets at themesoscale, ARTS only

computes spatially distributed streamflow, which results

in a relatively high computational efficiency. In this

study, ARTS was run at the daily time step and 0.058
spatial resolution for the 2005–08 period. As mentioned

before, ARTS is time efficient, and a single run in

a standard computer takes only a few seconds. This is

a great advantage while performing the automatic pa-

rameterization of numerous experiments. This study

showed the utility of ARTS for computing streamflow

from a single LSM, outlined an optimization strategy,

and explored model sensitivity. The next phase of this

work will be to useARTS to study the water budget over

this basin from an ensemble of ALMIP-2 LSMs.

To evaluate the parameterization based on the

MOCOM-UA optimization algorithm, three experi-

ments were performed, differing from each other

according to the number of gauges used in the calibra-

tion procedures and the spatial distribution of parame-

ters. Results demonstrate that the use of river routing

schemes and observed streamflow is a straightforward

way to evaluate the water budget provided by LSMs,

and it also allows the identification of potentially mis-

represented or missing processes at the river basin scale.

The runoff simulated by ISBA overestimated observed

streamflow in the entire basin (about 2.3 times at Beterou

station). Plausible explanations for this overestimation

are 1) the evidence of deep-water infiltration (DWI) as

suggested by previous studies over West Africa and 2)

the underestimation of simulated evapotranspiration

owing to insufficient root depths. Another potential er-

ror source is the rainfall interpolation. However, owing

to both the highly dense spatial distribution of the gauge

network and the extensive evaluation of the rainfall

product, potential errors are theorized to be too small to

explain all of the runoff overestimation. As discussed

above, most LSMs, including ISBA, do not represent

deeper root zones, resulting in a lower evapotranspira-

tion as a consequence of limited access to groundwater.

A simple comparison against satellite-based products

showed a slight underestimation of simulated ET, but it

insufficient to explain such a difference between simu-

lated and observed streamflow. More likely, as sup-

ported by observations in the study area, theses biases

pointed to the necessity to consider DWI as an addi-

tional physical process in ISBA and other Earth system

models.

In this study, we considered a robust solution based on

an unconnected aquifer supplied by a fraction 1 2 f of

the base flow that leaves the system in the form of DWI,

the remaining fraction f being transferred to the river

along with the surface runoff. This scheme is consistent

with field observations. Incidentally, this result shows

that the simulated total runoff (R 1 B) often used in

LSM modeling is not an appropriate approximation for

river discharge in these tropical regions, as it is not

consistent with the actual hydrological processes. The

use of an offline scheme with an unconnected reservoir

supplied by DWI was shown to significantly improve the

simulations of streamflow at gauges within the basin. But

FIG. 10. Daily mean streamflow observations (Obs), ISBA-ARTS simulated streamflow (Sim) resulting from experiment 3 and ISBA

total runoff (R1B) converted frommmday21 to m3 s21 for comparison: (from left to right) Beterou, Aval-Sani, Bori, Barerou, and Cote

238.
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it is evident that this should be considered as a temporary

solution until LSMs are improved to represent more

detailed hydrological processes in the basin, notably

more realistic groundwater representations. Indeed, the

fact that trees ‘‘seek out’’ water at very deep depths to

minimize stress during the dry season is perhaps

a mechanism that is common to monsoon-dominated

ecosystems and thus needs to be modeled if it is found in

other such regions. This would imply a soil moisture

memory that is potentially longer than what is currently

represented in fully coupled global climatemodels, since

most LSMs currently use soil depths in this region on the

order of several meters at most (Boone et al. 2009b).

Future studies based on field measurements are rec-

ommended in order to better simulate the redistribution

of base flow generated in land surface models. The de-

viation of a uniform and constant fraction of base flow

out of the system is a very simplistic solution to repre-

sent such nonlinear processes. More complex solutions

based on hydrogeological knowledge and considering

spatial and temporal variability of parameter f should be

used in future works. These solutions will potentially

provide better streamflow estimates and, consequently,

better overall simulations of the water budget.

Acknowledgments. A.C.V. Getirana was funded by

EUMETSAT in the framework of the LSA SAF activ-

ities. This work is supported by the African Monsoon

Multidisciplinary Analysis (AMMA) project. Based on

a French initiative, AMMAwas built by an international

scientific group and has been funded by a large number

of agencies in France, the United Kingdom, the United

States, and Africa. The ALMIP-2 project is supported

by AMMA, IRD (French overseas research institute),

and INSU/CNRS (EC2CO/CYTRIXprogramme)French

agencies. Observed data were obtained in the framework

of the AMMA-CATCH Observatory (www.amma-catch.

org) and with the contribution of the scientific and tech-

nical teams in Benin (IRD and Direction Générale de
l’Eau, Cotonou). In particular, acknowledgements are

due to Arnaud Zannou for providing streamflow data.

REFERENCES

Boone, A., J.-C. Calvet, and J. Noilhan, 1999: Inclusion of a third

soil layer in a land-surface scheme using the force–restore

method. J. Appl. Meteor., 38, 1611–1630, doi:10.1175/

1520-0450(1999)038,1611:IOATSL.2.0.CO;2.

——, and Coauthors, 2004: The Rhône-Aggregation Land
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