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a  b  s  t  r  a  c  t

Study  region:  The  study  considers  six  precipitation  stations  located  in  Sene-
gal, West  Africa.  Senegal  is  located  in  the  Sahel,  an  area  that  is  threatened  by
climate variability  and  change.  Both  droughts  and  extreme  rainfall  have  been
an issue  in  recent  years.
Study  focus:  Two  different  statistical  downscaling  techniques  were  applied
to the  outputs  of  four  regional  climate  models  at  six  selected  precipitation
stations in  Senegal.  First,  the  delta-change  method  was  applied  to  the  mean
annual precipitation  as  well  as  the  5,  10,  20,  50  and  100-year  return  period
daily precipitation  events.  Second,  a  quantile–quantile  transformation  (QQ)
was used  to  downscale  the  monthly  distributions  of  precipitation  simulated
by regional  climate  models  (RCMs).  The  5,  10,  20,  50  and  100-year  daily  precip-
itation events  were  afterward  calculated.  All  extreme  events  were  calculated
assuming that  maximum  annual  daily  precipitations  follow  the  generalized
extreme value  (GEV)  distribution.  The  two-sided  Kolmogorov–Smirnov  (KS)
test was  finally  used  to  assess  the  performance  of  the  quantile–quantile  trans-
formation  as  well  as  the  GEV  distribution  fit  for  the  annual  maximum  daily
precipitation.
New hydrological  insights  for  the  region:  Results  show  that  the  two  down-
scaling techniques  generally  agree  on  the  direction  of  the  change  when  applied
to the  outputs  of  same  RCM,  but  some  cases  lead  to  very  different  projections
of the  direction  and  magnitude  of  the  change.  Projected  changes  indicate  a
decline in  mean  precipitation  except  for  one  RCM  over  one  region  in  Senegal.
Projected changes  in  extreme  precipitations  are  not  consistent  across  stations
and return  periods.  The  choice  of  the  downscaling  technique  has  more  effect
on the  estimation  of  extreme  daily  precipitations  of  return  period  equal  or
greater than  ten  years  than  the  choice  of  the  climate  models.
© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article
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1. Introduction

Senegal is a semi-arid country located in the extreme west of the African continent. Its climate
is characterized by a dry season from November to April and a wet season from May  to October,
regulated by the migrations of the InterTropical Convergence Zone (ITCZ) (Leroux, 1970). During the
wet season, the ITCZ completely covers the study area as it moves towards the north to the edge
of the Sahara until the months of August and September. Most of the rainfall is recorded in August,
followed by July and then September (Sarr et al., 2013, 2014). As part of the Sahelian zone, Senegal
has been hit by recurrent droughts leading to food shortage. Recently, the country also experienced
frequent episodes of intense precipitations leading to urban flooding and casualties in Dakar, the
country’s capital, and in other urban centres. Between August 16 and August 22, 2005, Dakar has
recorded 367 mm of rain, which is more than half of the average annual total rainfall. On August 26,
2012, Dakar received one quarter of the annual precipitation (168 mm)  in less than an hour (Dacosta,
2012, personal communication). These precipitation events have caused considerable psycho-social
and health impacts, which are eventual losses to vulnerable sectors such as agriculture, infrastructures
and trades. The perceived increase in climate-related disasters has triggered fears that the frequency
of extreme precipitations will be triggering more extreme events, characterized by their infrequency
and their high magnitude.

The best way to develop cost-effective coping strategies is to generate information about future
changes in mean and extreme precipitation indices (Nicholls and Murray, 1999; Manton et al., 2001).
These indices are generally calculated with the outputs of a climate model running under a given
scenario. Different emission scenarios and climate models simulations are available. In addition,
different downscaling techniques exist, ranging from statistical methods (delta-change, regression-
based, weather typing, neural networks, etc.) to the use of regional climate models (RCMs). Statistical
downscaling can be applied to RCMs in an attempt to correct their biases. Given that for practical
reasons an end user in a given region can only apply a few of the available techniques available,
inter-comparison studies are helpful in pointing out the uncertainty associated with the choice
of the downscaling technique. Burger et al. (2012) showed for the same location that downscaled
climate extremes are more sensitive to the choice of the downscaling technique than the emission
scenario, the RCM and the location. The choice of the downscaling technique, mainly in the field
of regional planning and decision-making, is very important. Even if there are many downscaling
techniques, they can be classified into two categories: dynamical and statistical (Hewitson and
Crane, 1996; Miller et al., 2009). Dynamical downscaling is physically related to regional climate
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Fig. 1. The study domain and the selected stations.

models with high computational requirements (e.g. Giorgi et al., 1994; Sylla et al., 2009). Dynamical
downscaling do not give significantly better results for temperature and precipitation and is often
considered too expensive for operational use, but it does not require local calibration of their outputs.
Statistical downscaling assumes stationarity in the predictor–predictand relationship, requires robust
relationships and sufficient data to verify this assumption. Statistical downscaling results could be
also strongly impacted by data errors if the predictor–predictand relationship does not consider
important climatic features (such as large scale circulation and local characteristics of the study area),
it generally focuses on precipitation (in the present paper) and/or temperature (e.g. Di Vittorio and
Miller, 2013). Statistical methods are based on statistical relationships between the coarse GCM or
RCM data and point measurement at an observation station. In practical terms, the statistical rela-
tionships are based on a calibration period, approved for a period of separate time, and then applied
to other time periods, with the assumption of temporal stationarity (Di Vittorio and Miller, 2013).

The objective of this paper is to compare the impact of two downscaling techniques (the
delta-change and quantile–quantile transformation) on projected changes, in average and extreme
precipitation of the 2000–2050 period at six locations across Senegal (Fig. 1). Four RCMs and global
climate models (GCMs) are sampled from Ensembles-based Predictions of Climate Changes and Their
Impacts (ENSEMBLES) and African Monsoon Multidisciplinary Analyses (AMMA) experiments (Van
der Linden and Mitchell, 2009; Redelsperger et al., 2006). The downscaling techniques were applied
to estimate the mean daily precipitation and 5, 10, 20, 50 and 100-year daily precipitation events
at the six locations in addition to the direction of change. The delta-change technique was  selected
because it is most widely used with RCM outputs (Maraun et al., 2010; Themeßl et al., 2011). The delta
change technique is easy to apply (one just need to apply a coefficient to historical time series) and
preserve important statistical characteristics (spatial correlations, interdependence) in downscaled
time series. Its main limitation is that it does not allow for a change in variance in the future, and
misses the risk generated by a possible change in climate variables distributions in the future. It is
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Table 1
Selected climate stations.

ID Name Latitude Longitude Altitude (m)  Data availability

BK Bakel 14.9 −12.5 25 1950–2007
DK  Dakar 14.7 −17.5 24 –
LG  Linguère 15.4 −15.1 20 –
KG  Kédougou 12.6 −12.2 116 –
PD  Podor 16.6 −14.9 6 –
ZG  Ziguinchor 12.5 −16.3 26 –

well known that the correct reproduction of these statistical characteristics is required for a realistic
modelling of biophysical impacts. The choice of the QQ correction is motivated by the fact that it tries
to correct the distributions of the variables, therefore potentially reducing the bias of extreme events
estimators in climate model simulations. When it is applied to several variables generated by an RCM,
the spatial correlation and interdependence in RCM outputs are inherited by downscaled time series.
Regression based downscaling techniques such as the Statistical DownScaling Model (SDSM) were
not used given their reported low explained variance in reproducing daily precipitation statistics dur-
ing the historical period (reportedly from 6% to 45%): Wilby et al. (1998), Wilby and Dawson (2008)
and Nguyen et al. (2004). The delta-change was  applied to both the mean and extreme precipitations
indices calculated using historical data; The QQ-transformation was  applied to historical data before
the mean and extreme precipitation indices were calculated for future periods.

The remainder of the paper is organized as follows: the two  downscaling methods are described
in Section 2. The results are discussed in Section 3, and a conclusion is finally given in Section 4.

2. Methodology

2.1. Observed precipitation

Daily precipitation time series spanning from 1950 to 2007 at six climatic stations were collected
from the Senegalese meteorological service for the study (Table 1). The stations were selected to
provide a good spatial coverage of the different climatic zones across Senegal: Dakar (DK) in the west
and Ziguinchor (ZG) in the southwest are located on the fringe of the Atlantic Ocean. Podor (PD) and
Linguère (LG) in the north of the country; Bakel (BK) in the east is representative of the more arid areas,
while Kédougou (KG) at the southeast experiences a relatively wet  climate (Fig. 2). Stations in Senegal
hold the oldest data in West Africa. However, these data are missing, inconsistent or erroneous because
of a bad management of materials and staff who made the measurements. Only stations containing less
than 2% of missing values were retained in the study. Many other stations are not considered because
many years were missing. The rainy season in Senegal generally extends from May  to October, with
the heaviest precipitations occurring between July and September. A decreasing trend was  detected
in the mean annual precipitation at all stations using a Mann–Kendall test at 95% of confidence level,
but no trend was found in maximum daily precipitations.

2.2. Regional/global climate models combinations

AMMA-ENSEMBLES is an international collaborative model intercomparison experiment that pro-
vides a set of RCM simulations results covering most of the African continent at a resolution of 50 km
(Paeth and Diederich, 2011a,b). The RCMs are driven by either the ERA-INTERIM reanalysis, or by
global climate models outputs simulated under the SRES A1B emission scenarios (Paeth and Diederich,
2011a,b). The data sets are available for free in the online database (http://ensemblesrt3.dmi.dk/). Four
different RCM/GCM combinations (listed in Table 2) are selected from the AMMA-ENSEMBLES database
to include three different RCMs (HIRHAM, REMO and RCA) driven by two  different GCMs (HADCM3
and ECHAM5) (Paeth and Diederich, 2011a,b). All RCMs are run under the SRES A1B scenarios. The
simulated precipitation time series of the four GCM/RCMs combinations are extracted for each of the
six cities and used in the analysis. The use of an ensemble of different climate simulations allows

http://ensemblesrt3.dmi.dk/
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Fig. 2. Time-series of the annual precipitation extremes for each station.

the evaluation of the uncertainties in the individual projections coming from the RCM/GCM models
combination.

2.3. T-year precipitation estimate

In this study, the generalized extreme value distribution (GEV) is used to model maximum daily
precipitations. The GEV distribution has an interesting asymptotical behaviour and is commonly used
to model extreme events. The extreme value theory (EVT) provides the convergence of the extremes to
the GEV distributions despite the original distribution of the daily data. The GEV distribution combines
the Gumbel, Fréchet and Weibull distributions of extreme values (Jenkinson, 1955):

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

exp

[
−
(

1 − �

˛
(x − �)

)1/�
]

; � /= 0

exp
[
− exp

(
−

(
x − �

˛

))]
; � = 0

(1)

where �,  ̨ and � are the location, the scale and the shape parameters, respectively. When � < 0,
the GEV corresponds to the Fréchet distribution and can be fitted to heavy tailed behaviour. The � > 0
represents the Weibul distribution and is used to fit left skewed samples. The case, � = 0 corresponds to
the Gumbel distribution and has moderate right tail with two  parameters, scale and location (Katz et al.,

Table 2
Selected GCM/RCM combinations.

Acronym RCM Driving GCM Simulation period

DMI-HIRHAM5 HIRHAM5 ECHAM5-r3 1989–2050
MPI-M-REMO REMO ECHAM5-r3 1950–2050
METNOHIRHAM RCA HadCM3-Q0 1990–2050
INMRCA3 HIRHAM HadCM3-Q0 1951–2099
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2002). The GEV parameters are estimated with the generalized maximum likelihood (GML) method.
The GML  method is based on the same principle as the maximum likelihood (ML) method with an
additional constraint on the shape parameter, to eliminate potentially invalid values (El Adlouni et al.,
2007). A prior distribution of � adapted to hydro-meteorological series was  introduced by Martins
and Stedinger (2000). The prior for � has a Beta distribution (with shape parameters  ̨ = 3 and  ̌ = 6)
defined on the interval [−0.5, +0.5], with a mode at −0.12.

2.4. The delta-change technique

The technique is based on the ratio between the periods 2001–2050 and 1950–2000 of the T-year
precipitation calculated using RCM simulations. For a given station and a given RCM, the delta-change
technique is applied in a similar way as in Tramblay et al. (2012) using the following steps:

1. Maximum daily precipitations of each year in the historical precipitation time series are extracted
from the observed data.

2. The GEV distribution is fitted to the samples to calculate the T-year return period precipitation
(PT,hist,obs) for T = 5, 10, 20, 50, 100 years using the maximum likelihood estimator.

3. Maximum daily precipitations of each year in the RCM-simulated precipitation time series for the
historical period are extracted.

4. The mean daily precipitation and the T-year return period precipitation (PT,hist,RCM) for T = 5, 10, 20,
50, 100 years are calculated using the GEV distribution for which parameters are obtained using
their maximum likelihood estimator.

5. Maximum daily precipitations of each year in the RCM-simulated precipitation time series for the
future period are extracted.

6. The mean daily precipitation and the T-year return period precipitation (PT,hist,RCM) for T = 5, 10, 20,
50, 100 years are calculated using the GEV distribution which’s parameters are obtained using their
maximum likelihood estimator.

7. The future T-year precipitation is estimated as

PT,fut,delta = PT,fut,RCM
PT,hist,obs

PT,hist,RCM
(2)

2.5. The quantile–quantile transformation (QQ)

The quantile–quantile transformation (also called quantile mapping) (Maraun et al., 2010; Themeßl
et al., 2011) was applied on a monthly integrals to obtain statistical distributions of a given climate
variable as close as possible to the statistical distribution of the observed variable on the historical
period. The procedure for a given month and precipitation variable is explained below:

1. The historical data is split in a calibration period (1950–1988) and a validation period (1989–2007).
The daily time series of the month are extracted for both periods from both observations and RCM
simulations

2. An empirical cumulative distribution function Fobs is developed using the observations on the cali-
bration period; another cumulative distribution function FRCM is developed using the RCM outputs
on the calibration period.

3. Corrected RCM simulations are generated on the validation period and future periods using the
following transformation: XCORR = F−1

obs
(FRCM(XRCM)) where XRCM is the variable extracted from raw

RCM simulations and XCORR is the corrected variable.
4. The probability mass function (PMF) of precipitation occurrence (defined as intensity > 1 mm/day)

as well as the PDF of precipitation intensity on rainy days are built. If the PDF (or PMF) of corrected
variable is closer to the probability density function (PDF) of the observations than the PDF (or
PMF) of the non-corrected variable, the quantile–quantile transformation is applied to future RCM
simulations of that particular variable.
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Table 3
Combination of stations and models selected to carry-on extreme precipitation estimation after QQ-transformation (OK = the
station is selected).

Model Stations

Bakel Dakar Linguère Kédougou Podor Ziguinchor

DMI-HIRHAM5 OK OK
MPI-M-REMO OK OK
METNOHIRHAM OK OK
INMRCA3 OK

5. A two-sample Kolmogorov–Smirnov (KS) test is used to compare the PDF of the observations to
the PDF of the corrected precipitation on both the calibration and validation period (Simard and
L’Ecuyer, 2011). The null hypothesis is that the two  data sets are from the same continuous dis-
tribution. The alternative hypothesis is that they are from different continuous distributions. The
distributions are assumed different if the p-value is below 5%.

3. Results and discussion

3.1. Validation of the quantile–quantile transformation in the historical period

The hypothesis that the uncorrected RCM outputs have the same distribution as the observations
was systematically rejected by the KS test at all stations on both the calibration and validation period,
supporting the assumption that a distribution correction is needed. As expected the hypothesis that the
corrected RCM outputs have the same distribution as observed was  never rejected on the calibration
period across all variables and stations. The QQ-downscaling is carried on at a station only if the
null hypothesis is not rejected for any of the three months of the rainy season where the maximum
precipitation occurs in Senegal (July, August and September). Results show that the null hypothesis
was however rejected on the validation period at some of the stations for some of the months, and that
the rate of rejection varied greatly across models and stations: for instance, no model was retained
for the cities of Bakel and Kédougou because for each of the models under consideration, the null
hypothesis was rejected for at least one month in the rainy season (Table 3); only model DMI-HIRHAM5
was retained for Dakar, and only one model (out of four) was rejected for the station of Linguère. The
complete list of model-station combinations retained to carry-on the QQ-transformation can be found
in Table 3. No RCM is selected at the two eastern stations of Bakel and Ziguinchor, while only one is
selected at Dakar, two at Podor and Ziguinchor and three at Podor (Table 3). No RCM is selected at
more than two stations, making it difficult to draw a general conclusion about potential zones of better
performances for the climate models. Therefore we cannot recommend a particular RCM for Senegal
based on this study. The rejections may  be due to undetected anomalies such as outliers in either the
observed data, or the RCM data.

The QQ-transformation always improved the fit between RCM simulations and observation. Even
when the KS test led to the rejection of the null hypothesis on the validation period, the p-value
obtained when comparing corrected RCM outputs to observations was  higher than the p-value
obtained when comparing uncorrected RCM values to observations. An example of such improve-
ment is presented in Fig. 3 where probability of rainfall occurrence at Dakar for each month from
June to October plotted for the observations, a RCM (METNOHIRHAM in this case) outputs and QQ-
transformed RCM outputs. The graphs are presented for the calibration (left panels) and validation
(right panels) periods. The dark blue bars represents the precipitation occurrence probability for the
month in the observations; the light blue bars represent the precipitation occurrence probability calcu-
lated using the uncorrected outputs of the RCM; the green bars represent the precipitation occurrence
probability calculated using the QQ-corrected outputs of the RCM; the orange and red bars present
the same results for the uncorrected and corrected RCM on the 2000–2050 period. It can easily be seen
that the green bars (corrected RCM) are always closer to the dark blue bars (observations) than the
light blue bars (uncorrected RCM). Furthermore, the projected rainfall occurrence probabilities for the
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Fig. 3. Probability mass function of precipitation occurrence for Dakar, RCM METNOHIRHAM.

2000–2050 period are significantly different of those of the uncorrected RCM. The probability density
of wet days precipitations for the same city (Dakar) and the same RCM (Fig. 4). On that figure, the
thick blue lines represent the observations; the dotted green lines represent the uncorrected RCM;
the dashed orange lines represent the QQ-corrected RCM. The continuous green line and the dash-dot
violet lines represent the uncorrected and corrected RCM on the 2000–2050 period. Once again, it can
be seen that the distribution of the corrected RCM outputs are closer that of the observations than the
distribution of the uncorrected RCM outputs.

3.2. Downscaling results

By construction, no performance can be calculated for the delta-change, since it is the modification
of the observed data according to a climate change signal; the QQ technique in the other hand allows
the modeller to evaluate its ability to correct probability distributions. Results show that the two  sided
KS test lead to the discarding a significantly high number of stations-model combinations (Table 3).
In similar applications of the QQ transformation (e.g. Amadou et al., 2014; El-Khoury et al., 2015), the
authors have found that the transformation works much better with temperatures than with precipita-
tion. It is assumed that the difference in performance is due to the highly skewed shape of precipitation
transformation, the QQ transformation having trouble reproducing the tail of the distribution, since it
is a non-parametric method thus heavily dependent on the calibration period. The mean precipitation
and the extreme precipitations of the historical (1950–2000) and future (2001–2050) periods for the
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Fig. 4. Empirical probability density of wet  days precipitation for Dakar, RCM METNOHIRHAM.

models that passed the KS-test screening are presented in Table 4 (Dakar), Table 5 (Linguère), Table 6
(Podor) and Table 7 (Zinguichor). Each table is organized as follow: the first and second columns rep-
resent the climate model and the indices (either the mean precipitation or a T-year precipitation).
Columns 3–8 represent the following methods of estimation of the indices: GEV fit on observations
(column 3), GEV fit on uncorrected climate model outputs on the historical period (columns 4), GEV fit
on QQ-corrected climate models outputs on the historical period (columns 5), GEV fit on uncorrected
climate model outputs on the future period (columns 6), GEV fit on QQ-corrected climate models out-
puts on the future period (columns 7) and finally the delta-change technique (column 8). Each climate
model is represented by seven lines. The results of the KS-test comparing the fitted GEV distribution
to the empirical distribution of annual maximum precipitation are presented on the first line. When
‘S.D.’ (similar distribution) appears in one column, it means that the KS-test did not lead to the rejec-
tion of the null hypothesis. The p-value is presented as well. The second line presents the mean daily
precipitation while the third to the seventh lines represent the T-year quantile for T = 5, 10, 20, 50 and
100 years, and the column represents a future period (columns 7 and 80, a percentage of increase over
the same quantity calculated with the observations is provided). The following general conclusions
can be drawn:

1. The annual maximum daily precipitation time series can be considered GEV-distributed since the
null hypothesis was never rejected.

2. The range of projected changes ranges from very small values (less than 2%) with is within the
data uncertainty range to quite large values (from −41.6% to +18.7%). While smaller changes of a
few percents can be considered non significant, those above 10% strongly suggest an impact in the
future.

Then, the following location-specific conclusions can be drawn:



378
 

M
.A

.
 Sarr

 et
 al.

 /
 Journal

 of
 H

ydrology:
 R

egional
 Studies

 4
 (2015)

 369–385

Table 4
Current and future estimates of extreme daily precipitations for Dakar (M: annual precipitation in mm;  T = X: X-years return period precipitation).

RCM/GCM Return period Historical period (1950–2000) Future (2001–2050)

Observations GCM/RCM GCM/RCM + QQ GCM/RCM (uncorrected) GCM/RCM + QQ GCM/RCM + delta-change
KS  test S.D. (p = 0.879) S.D. (p = 0.879) S.D. (p = 0.411) S.D. (p = 0.832) S.D. (p = 0.926)

METNOHIRHAM M 298.935 401.5 292 328.5 182.5 (−39%) 255.5 (−18.2%)
T  = 5 86.5 103.1 73.2 88.0 55.9 (−35.4%) 73.78 (−14.7%)
T  = 10 108.9 129.9 112.1 118.7 74.74 (−31.3%) 99.41 (−8.7%)
T  = 20 130.1 157.8 174.5 154.9 98.28 (−24.5%) 127.67 (−1.9%)
T  = 50 157.3 197.4 319.4 214.1 139.35 (−11.4%) 170.64 (+8.5%)
T  = 100 177.4 229.8 509.9 269.9 180.52 (+1.7%) 208.43 (+17.5%)
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Table 5
Current and future estimates of extreme daily precipitations for Linguère (M: annual precipitation in mm;  T = X: X-year return period precipitation).

RCM/GCM Return period Historical period (1950–2000) Future (2001–2050)

Observations GCM/RCM GCM/RCM + QQ GCM/RCM (uncorrected) GCM/RCM + QQ GCM/RCM + delta-change

DMI-HIRHAM5 M 337.26 547.5 365 474.5 292 (−13.5%) 292 (−13.5%)
T  = 5 76.8 42.4 80.2 39.8 74.17 (−3.4%) 71.99 (−6.2%)
T  = 10 91.5 45.7 84.1 43.7 81.17 (−11.2%) 87.41 (−4.4%)
T  = 20 108.2 48.4 86.3 47.1 86.01 (−20.5%) 105.39 (−2.6%)
T  = 50 134.7 51.1 87.8 51.0 90.38 (−32.9%) 134.33 (−0.3%)
T  = 100 158.8 52.8 88.4 53.6 92.65 (−41.6%) 161.06 (+1.5%)

RCM/GCM KS test S.D. (p = 0.879) S.D. (p = 0.879) S.D. (p = 0.640) S.D. (p = 0.620) S.D. (p = 0.617)

MPI-M-REMO M 0.969 0.9 1.0 0.9 0.9(−7.2%) 0.6(−9.7%)
T  = 5 83.5 123.5 80.1 112.9 75.88 (−9.1%) 76.35 (−8.5%)
T  = 10 99.9 186.2 97.0 178.9 90.53 (−9.4%) 96.03 (−3.9%)
T  = 20 115.2 269.6 113.8 274.5 104.95 (−8.9%) 117.34 (+1.8%)
T  = 50 134.4 426.1 136.3 472.3 124.17 (−7.6%) 148.94 (+10.8%)
T  = 100 148.3 594.3 153.8 705.5 139 (−6.2%) 175.9(+18.7%)

RCM/GCM KS test S.D. (p = 0.928) S.D. (p = 0.928) S.D. (p = 0.902) S.D. (p = 0.935) S.D. (p = 0.959)

METNOHIRHAM M 0.922 0.7 0.9 0.7 0.8(−13.3%) 0.9(−0.3%)
T  = 5 74.6 70.2 87.0 72.3 82.15 (+10.1%) 76.82 (+3.0%)
T  = 10 89.0 95.7 111.4 92.9 98.38 (+10.6%) 86.3 (−3.0%)
T  = 20 105.7 127.6 139.3 115.3 113.88 (+7.7%) 95.51 (−9.6%)
T  = 50 132.7 183.0 183.5 148.7 133.86 (+0.9%) 107.81 (−18.8%)
T  = 100 157.8 238.4 223.9 177.4 148.78 (−5.7%) 117.41 (−25.6%)
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Table 6
Current and future estimates of extreme daily precipitations for Podor (M: annual precipitation in mm;  T = X: X-years return period precipitation).

RCM/GCM Return period Historical period (1950–2000) Future (2001–2050)

Observations GCM/RCM GCM/RCM + QQ GCM/RCM (uncorrected) GCM/RCM + QQ GCM/RCM + delta-change
KS  test S.D. (p = 0.449) S.D. (p = 0.449) S.D. (p = 0.690) S.D. (p = 0.780) S.D. (p = 0.297)

DMI-HIRHAM5 M 210.605 255.5 182.5 182.5 109.5 (−48.1%) 146 (−29%)
T  = 5 64.2 34.4 56.3 35.4 50.48 (−21.3%) 65.84 (+2.6%)
T  = 10 69.6 35.9 63.5 39.6 58.51 (−16.0%) 76.9 (+10.5%)
T  = 20 73.0 36.8 69.3 43.1 64.89 (−11.1%) 85.52 (+17.2%)
T  = 50 75.6 37.4 75.3 46.7 71.58 (−5.4%) 94.36 (+24.7%)
T  = 100 76.8 37.7 79.0 48.9 75.65 (−1.6%) 99.61 (+29.6%)
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Table 7
Current and future estimates of extreme daily precipitations for Zinguichor (M: annual precipitation in mm;  T = X: X-years return period precipitation).

RCM/GCM Return period Historical period (1950–2000) Future (2001–2050)

Observations GCM/RCM GCM/RCM + QQ GCM/RCM (uncorrected) GCM/RCM + QQ GCM/RCM + delta-change
KS  test S.D. (p = 0.861) S.D. (p = 0.86) S.D. (p = 0.435) S.D. (p = 0.842) S.D. (p = 0.256)

IMETNOHIRHAM M 1226.035 985.5 1131.5 985.5 1131.5 (−7.8%) 1241 (−0.3%)
T  = 5 121.8 144.1 134.8 153.6 124.7 (+2.4%) 129.87 (+6.6%)
T  = 10 148.0 186.7 138.9 189.8 134.4 (−9.2%) 150.46 (+1.7%)
T  = 20 175.9 237.9 140.7 227.4 141.08 (−19.8%) 168.11 (−4.4%)
T  = 50 216.7 323.5 141.5 280.4 147.08 (−32.1%) 187.82 (−13.3%)
T  = 100 251.1 405.7 141.8 323.6 150.19 (−40.2%) 200.3 (−20.2%)

RCM/GCM KS test S.D. (p = 0.504) S.D. (p = 0.50) S.D. (p = 0.833) S.D. (p = 0.960) S.D. (p = 0.491)

MPI-M-REMO M 3.581 2.8 3.5 3.0 3.6(0.5%) 3.8(6.9%)
T  = 5 125.1 221.1 123.9 247.3 134.42 (+7.5%) 139.91 (+11.8%)
T  = 10 150.9 280.2 138.4 291.2 143.21 (−5.1%) 156.84 (+4.0%)
T  = 20 178.6 344.5 150.4 330.4 148.94 (−16.6%) 171.3 (−4.1%)
T  = 50 219.4 440.4 163.8 377.1 153.77 (−29.9%) 187.81 (−14.4%)
T  = 100 254.0 523.1 172.4 409.3 156.11 (−38.5%) 198.74 (−21.8%)
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3.2.1. Dakar
Only one RCM (METNOHIRHAM) was selected for this station. The KS-test comparing the fitted GEV

distribution to that of the annual maximum daily precipitation did not lead to the rejection of the null-
hypothesis in any data set. The two techniques results project a reduction of the magnitude of both the
mean precipitation and extreme precipitation events with a return period equal to or below 20 years,
but the QQ-transformation provide a larger decrease for the future (−39% versus −18.2%). According
to the QQ-transformation, the 50-year event is also set to decrease while the delta-change predicts a
change in the opposite direction. Both techniques predict an increase in the 100-year event, but the
increase suggested by the QQ-transformation is ten times smaller (+1.7% versus +17.5%). Given that
lower quantiles are set to decrease and higher quantiles set to increase, the variability of precipitation
in Dakar will be increasing.

3.2.2. Linguère
Three RCMs (DMI-HIRHAM5, MPI-M-REMO, METNOHIRHAM) were selected for this station. The

two sided KS test comparing the fitted GEV distribution to that of the annual maximum daily precipi-
tation did not lead to a significant difference for all data set. All RCMs and both downscaling techniques
provide a reduction of the mean precipitation in a range between −13.5% and −0.3%. There is however
a disagreement between models and downscaling techniques about the directions of changes of the
quantiles. When applied to the outputs of DMI-HIRHAM5 and MPI-M-REMO, the QQ-transformation
predicts a decrease of the quantiles for all return periods while the delta-change technique points
to a decrease in lower return periods and an increase in higher return periods. The two downscaling
techniques agree on the direction of change of the quantiles when they are applied to the outputs of
METNOHIRHAM: they point to an increase in lower return periods quantiles and a decrease in higher
return periods quantiles.

3.2.3. Podor
Two RCMs (INMRCA3 and DMI-HIRHAM5) were selected for this station. The two sided KS-test

comparing the fitted GEV distribution to that of the annual maximum daily precipitation did not lead
to the same result of the absence of significant differences. All RCMs and both downscaling techniques
provide a reduction of the mean precipitation in a range between −29% and −48.1%. The delta-change
suggests an increase in all quantiles while the QQ-transformation systematically suggested a change
in the opposite direction.

3.2.4. Ziguinchor
Two RCMs (METNOHIRHAM and MPI-M-REMO) were selected for this station. METNOHIRHAM

predicted a reduction of the mean precipitation (−7.8% with the QQ-transformation; −0.3% with the
delta-change) while MPI-M-REMO points to an increase of the mean precipitation (+0.5% with the
QQ-transformation; +6.9% with the delta-change). Independently of the downscaling technique used,
both climate models show an increase of lower return periods of the quantiles and a decrease of higher
return period of the quantiles.

3.3. Discussion

The most important finding of this study is that for a given location, depending on the climate
model and downscaling technique used, one can get two opposite conclusions. It is therefore highly
hazardous to rely on only one model or only one downscaling technique when designing adaptation
options to climate change based on model simulations. As shown in previous studies, combining
different climate models can increase the consistency of model projections (Frei et al., 2006; Fowler
et al., 2007a; Tebaldi and Knutti, 2007; Déqué et al., 2012). However, it must be noted that when the
same RCM is used with both techniques, the delta-change and the QQ-transformation always agreed
in the direction of the projected change for the mean annual precipitation (predicted downward in
seven out of eight cases in this study), but not for the change in magnitude. On the opposite, the two
downscaling techniques can disagree on the direction of change for extreme precipitation quantiles,
even when applied to the same RCM. Several authors have previously shown that the difference in the
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Table 8
p-Value and rank of each factor after the ANOVA analysis (bold values represents significant influence; (M: annual precipitation
in  mm;  T = X: X-years return periods precipitation).

Index City GCM RCM Downscaling technique

M 1.33e−007 (rank = 1) 5.99e−001 (rank = 3) 7.92e−001 (rank = 4) 4.37e−001 (rank = 2)
T  = 5 1.09e−005 (rank = 1) 2.47e−001 (rank = 4) 1.38e−001 (rank = 3) 8.27e−002 (rank = 2)
T  = 10 8.57e−005 (rank = 1) 1.31e−001 (rank = 4) 6.68e−002 (rank = 3) 1.93e−00s2 (rank = 2)
T  = 20 1.25e−003 (rank = 1) 1.01e−001 (rank = 4) 5.16e−002 (rank = 3) 9.83e−003 (rank = 2)
T  = 50 2.45e−002 (rank = 2) 1.02e−001 (rank = 4) 5.60e−002 (rank = 3) 8.50e−003 (rank = 1)
T  = 100 4.79e−002 (rank = 2) 1.24e−001 (rank = 4) 7.17e−002 (rank = 3) 1.08e−002 (rank = 1)

climate change signal between bias-corrected and uncorrected RCMs could be low for mean values
of hydrological variables such as precipitation (Chen et al., 2011), but may  be high in the case of
extreme values (Hagemann et al., 2011; Dosio et al., 2012). This finding is confirmed in the present
study with RCM, indicating that future projections of extreme events may  be associated with a high
uncertainty. The main sources of uncertainty in regional climate change are the choice of the RCM and
the choice of the forcing GCM (Déqué et al., 2012). In addition, the bias-correction of climate model
outputs relies on the hypothesis of stationarity of the bias (Maraun et al., 2010). Several authors have
shown that this hypothesis was not fulfilled for some arid regions (Maraun, 2012) or for considering
different time periods concerning the validation and the calibration of the method (Lafon et al., 2013).
Given that some climate models have been discarded after failing the KS-test in validation, the only
station where the results for different RCMs (HIRHAM5 and REMO) driven by the same GCM (ECHAM5)
can be compared is Linguère (Table 5). The differences between the projected variations in mean
precipitation is less affected by the choice of downscaling techniques (predicted changes differed of
0.0% and 2.5% of the historic mean depending of the RCM) than by the choice of the RCM (6.2% and
3.8% of the historic mean depending of the downscaling technique). A similar comparison can be
done but may  be misleading for extreme precipitations since the GEV fit on extreme precipitation is
calculated with the corrected outputs of DMI-HIRHAM5 at Linguère which is one of the worst one
in the data set (with a p-value of 0.574 while p-values for other data sets are in the 0.9–1 range).
Finally, in order to identify which factor has more impact on the downscaled mean and extreme
precipitation among the location, the driving GCM, the RCM or the downscaling technique, a four-
ways fixed effect ANOVA analysis was  performed. The location factor has four levels (Dakar, Podor,
Linguère and Ziguinchor) corresponding to the cities for which one model was retained at least. The
GCM factor has two levels (ECHAM5 and HADCM3), the RCM factors have three levels (HIRHAM,
RCA, REMO) and finally the downscaling factor has two levels (delta-change and quantile–quantile
transformation). The p-values of the significance of each factor for each of the indices (mean and
extreme precipitations) and their rank in a decreasing order of influence are listed in Table 8. At a
95% confidence level, only the location significantly affects the mean precipitation and the 5-year
return period daily precipitation. The downscaling becomes significant for return periods above 10
year. It takes the second rank after the location factor for return periods 10 years and 20 years. The
downscaling technique takes the first rank and the location of the second rank for return periods 50
years and 100 years. The GCM and the RCM techniques did not have a significant impact (p-value
below 0.05) on any of the indices, although the p-value of the RCM is always close to 0.05 which
is the threshold value for return periods above 10 years. These results should be taken with care
as the size of the data set used for the ANOVA is small (16 combinations). Results suggest that one
could use any of the models and any of the downscaling techniques to estimate the mean and 5-year
precipitation at any of the stations. For T-year daily precipitation with T larger or equal to 10 year,
the choice of the downscaling technique matters. Despite the fact that recent study showed that the
bias-correction method can improve the reproduction of the historical climate by RCMs, it is hard to
tell if one downscaling technique is better than the other: several studies (Tebaldi and Knutti, 2007;
Reifen and Toumi, 2009) mentioned that the performance of climate models at reproducing the past
is not a guarantee of better skills at making accurate projections. Our recommendation is to use both
in order to capture the uncertainty associated with the downscaling technique.
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4. Conclusion

This study presents the first evaluation of the projected changes in precipitation in Senegal with
RCMs and two downscaling techniques. The daily data observed at six stations between 1950 and
2007 as well as four RCM simulations driven by two different GCMs are taken into account to evaluate
the impact of future climate changes under the emission of greenhouse gases scenario A1B. GEV
distributions are fitted to the precipitation extremes observed and projected to provide an analysis
based on quantiles for different return periods. Results show that the two  techniques generally agree
on the direction of the change when applied to the outputs of same climate model, but sometimes lead
to very different projections of the direction and magnitude of the change in extreme precipitations.
Projected changes in the mean precipitation are downward except for one RCM in one city. Projected
changes in extreme precipitations are not consistent across stations and return periods.

Results also suggest that the choice of the downscaling technique has more effect on the estimation
of extreme daily precipitations of return period equal or greater than ten years than the choice of the
climate models. Because of the great variability in the future projections obtained with the set of 4
RCMs considered herein, further work in the same region should consider a larger ensemble of climate
models to evaluate if a larger ensemble provides similar results.
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