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Dental homologies and evolutionary transformations in

Caviomorpha (Hystricognathi, Rodentia): new data from the Paleogene of Peruvian Amazonia

Introduction

Homology is usually considered as a fundamental concept in biology, which 'occupies a central position in comparative studies', dixit [START_REF] Pinna | Concepts and tests of homology in the cladistic paradigm[END_REF]. As part of morphological analyses, the identification of structures corresponding to primary homology (sensu [START_REF] Pinna | Concepts and tests of homology in the cladistic paradigm[END_REF]) is a prerequisite, but is not always obvious and often a matter of debate. For instance, the case of the distal crests of upper teeth in caviomorph rodents (Caviomorpha Wood, 1955 or New World hystricognaths) has long been the subject of intense discussions. The diverging proposed homologies have resulted in competing hypotheses regarding the sister group identification of caviomorphs and, hence, in diverging opinions about their geographic origin. Indeed, two main hypotheses were proposed during the twentieth century:

(1) some authors have advocated that a tetralophodont pattern would be the ancestral condition for caviomorph upper teeth, and that these rodents would be closely related to North American rodents: Paramyidae or Sciuravidae [START_REF] Wood | A new Oligocene rodent genus from Patagonia[END_REF]) and then Franimorpha (Reithroparamyinae, Protoptychidae, Prolapsus, Guanajuatomys, and later Cylindrodontidae ;Wood 1980; see also Wood 1950[START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF][START_REF] Wood | The early Tertiary rodents of the family Paramyidae[END_REF]Wood , 1965Wood , 1972Wood , 1973Wood , 1974Wood , 1975Wood , 1983Wood , 1984Wood , 1985aWood , b, 1993;;[START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF]Patterson and Wood 1982);

(2) in contrast, some others have defended the hypothesis according to which the upper teeth of caviomorphs would be primitively pentalophodont, with a pattern similar to that of Old World hystricognaths (Phiomorpha [Thryonomyidae, Bathyergoidea, and Hystricoidea] sensu [START_REF] Lavocat | Les microfaunas du Néogène d'Afrique orientale et leurs rapports avec celles de la région paléarctique[END_REF]. On the basis of these hypotheses of morphological homologies, an African origin of caviomorphs was postulated [START_REF] Lavocat | La systématique des rongeurs hystricomorphes et la dérive des continents[END_REF][START_REF] Lavocat | Affinités systématiques des caviomorphes et des phiomorphes et origine africaine des caviomorphes[END_REF](Lavocat , 1973(Lavocat , 1974a(Lavocat , b, 1976(Lavocat , 1977a(Lavocat , b, 1980;;[START_REF] Hoffstetter | Le peuplement mammalien de l'Amérique du Sud. Rôle des continents austraux comme centres d'origine, de diversification et de dispersion pour certain groupes mammaliens[END_REF][START_REF] Hoffstetter | Origine et dispersion des Rongeurs Hystricognathes[END_REF][START_REF] Hoffstetter | El origen de los Caviomorpha y el problema de los Hystricognathi (Rodentia). Actas del Primer Congreso Argentino de Paleontologia y Bioestratigraphia[END_REF][START_REF] Hoffstetter | Rongeurs caviomorphes de l'Oligocène de Bolivie[END_REF]Hoffstetter and Lavocat 1970). Frailey and Campbell 2004;[START_REF] Ribeiro | Die Grundlagen Des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetic[END_REF], Kerber et al. 2017). During the last decade, the continuing field efforts in Peruvian Amazonia (Contamana and Tarapoto areas) have led to the discovery of about twenty Paleogene localities yielding many fossils of caviomorphs (mainly dental remains; Antoine et al. 2016;Boivin et al. 2017aBoivin et al. , b, 2018)). They document three South American Land Mammal Ages (SALMA): Barrancan (late Middle Eocene; Contamana), Tinguirirican (Early Oligocene; Tarapoto, Shapaja section) and Deseadan (Late Oligocene; Contamana). The late Middle Eocene localities have so far yielded the oldest known representatives of the group in South America (Antoine et al. 2012;Boivin et al. 2017a). The studies of these fossils have revealed a rich specific diversity, most of the species being new for science (Antoine et al. 2012;[START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]Boivin et al. 2017aBoivin et al. , b, 2018)). These ancient fossils have provided unusual dental morphologies for caviomophs, the descriptions and detailed comparisons of which have led us to formulate new hypotheses regarding some structural homologies, and also to further our understanding regarding some aspects of their evolutionary trends. All these observations were at the origin of an updated dental nomenclature, which was proposed in Boivin et al., 2017aBoivin et al., , b, 2018)). In this paper, we propose a detailed overview of the dental homology and evolutionary transformation hypotheses that we have formulated in light of the dental material from the Paleogene rodent-bearing localities of Contamana and Tarapoto/Shapaja. We provide here an exhaustive morphological analysis of the fossil cheek teeth from these localities, and compare these rodents from Peruvian Amazonia to other extinct New and Old World hystricognaths as well as to extant caviomorphs. For this study, we considered most of the caviomorph cheek teeth available from the Eocene (Antoine et al. 2012;Boivin et al. 2017a) and Oligocene (Boivin et al. 2017b) localities of Contamana (CTA), and the Oligocene localities of Tarapoto/Shapaja (TAR; Boivin et al. 2018).

Material and methods

Material

For comparisons, we used a large taxonomic sampling of caviomorphs, including several extinct and extant members of the four superfamilies recorded from low, middle and high latitudes of South America. Our taxonomic material used for comparisons also included some Paleogene representatives of the Old World hystricognaths, which represent among the early hystricognaths known from Asia and Africa (e.g., [START_REF] Wood | Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part II: the African Oligocene Rodentia[END_REF]Marivaux et al. 2000Marivaux et al. , 2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Marivaux et al. , 2017a;;Marivaux and Welcomme 2003;Sallam et al. 2009Sallam et al. , 2011Sallam et al. , 2012;;[START_REF] Coster | New hystricognathous rodents from the Early Oligocene of central Libya (Zallah Oasis, Sahara Desert): systematic, phylogenetic, and biochronologic implications[END_REF][START_REF] Sallam | New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian "clock"-based phylogenetic methods on estimates of basal hystricognath relationships and biochronology[END_REF], and are supposed to be close to the caviomorph ancestor. The comparisons were made from the literature or directly with the material (originals or casts) of several institutions.

The taxa used for comparisons are listed in Supplementary Online Material.

Dental nomenclature

The terminology used here for the rodent dentition (Figures 1 and2) is based on:

- Wood and Wilson (1936), [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF], [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]Candela ( , 2002)), Marivaux et al. (2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF] and Antoine et al. (2012) for the cusps, crests and cristids; - [START_REF] Stirton | A review of the Tertiary beavers[END_REF], [START_REF] Black | Variation and tooth-replacement in a Miocene mylagaulid rodent[END_REF], Fields (1957), [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF], Antoine et al. (2012) and [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Marivaux et al. ( , 2017a, b) , b) for the flexi(-ds), fossett(-ids)es and stri(-ds).

Compared with these authors, several modifications regarding the designation of some cusp(-id)s, loph(-id)s, and flexi(-ds) are the results of our own observations and interpretations of the material we have studied and used for comparisons. These modifications, based on distinct homology hypotheses, are abundantly discussed here, and were considered for the selection of characters and character states used by [START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF] and Boivin et al. (submitted) for their large scale cladistic analysis of caviomorph rodents. Some of these characters and character states have already been introduced by Boivin and Marivaux in Boivin et al. (2017aBoivin et al. ( , b, 2018)), and used by Marivaux et al. (2017a) at a wide taxonomic scale (i.e., for Old World hystricognaths). Upper case letters are used here for the upper dentition (DP: for deciduous premolar, P: for premolar, M: for molar) and lower case letters for the lower dentition (dp: for deciduous premolar, p: for premolar, m: for molar).

Criteria for homologies

For the recognition of dental homologies, we followed the anatomical definition of homology (i.e., primary homology sensu [START_REF] Pinna | Concepts and tests of homology in the cladistic paradigm[END_REF], and used notably the interdependent criteria of topology and connectivity between structures [START_REF] Rieppel | Fundamentals of comparative biology[END_REF][START_REF] Rieppel | Homology, topology, and typology: the history of modern debates[END_REF]. We also used two other criteria: the position of structures relative to each other and their orientation (the latter aspect being applied only for loph(-id)s). We did not used directly the shape and size criteria for homology identification, but we considered the variations of both the shape and size (in surface and height) of the structures in one taxon or closely related taxa, which could be informative for the understanding of homology recognition and evolutionary tendencies. The latter aspect joins the third criterion of [START_REF] Ribeiro | Die Grundlagen Des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetic[END_REF] for identifying homologies: criterion of continuity or connection through intermediate forms (the latter being either ontogenetic stages or systematically intermediate species). For each taxon, when the available material was sufficient, we examined the intraspecific variation (inter-individual variation) in analysing dental specimens of several individuals. We focused with special interest on juvenile specimens (when available) having germs or little worn teeth, for which the dental structure recognition was obvious (not erased by wear). The morphological comparisons between many New and Old World hystricognaths allowed the proposition of dental homology hypotheses (conjectures of homologies) that can be applicable at the caviomorph scale, or at least for the less or moderately specialized taxa. We compared our proposed hypotheses of dental homologies with alternative plausible hypotheses proposed and discussed in the literature (synthetized in the section 'Historical review and current state of caviomorph dental structures', see below). The dental homology hypotheses proposed here have been evaluated by a cladistic assessment [START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]Boivin et al. submitted;i.e, test of congruence;see Riepple 1988;[START_REF] Pinna | Concepts and tests of homology in the cladistic paradigm[END_REF]Riepple and Kearney 2002) in order to provide a phylogenetic context and to identify structures shared from a common ancestor (secondary homology sensu [START_REF] Pinna | Concepts and tests of homology in the cladistic paradigm[END_REF]. In this paper, the schematic line drawings focus exclusively on the occlusal morphology and transformations of some parts (specified in each case) of considered loci. The other occlusal areas and structures remain voluntarily unchanged (i.e., the schemes do not refer to any occlusal pattern of a specific taxon). 

Institutional abbreviations

MACN

Historical review and current state of caviomorph dental structures (homologies and nomenclature)

Upper teeth [START_REF] Stirton | A review of the Tertiary beavers[END_REF], then Wood and Wilson (1936) were the first to propose/formalize a nomenclature of cusps, crests, cristids and flexi(-ids), applicable to the cheek tooth morphology of rodents, a nomenclature which was consistent with the tribosphenic plan characteristic of Theria, as defined by [START_REF] Simpson | Studies of the earliest mammalian dentitions[END_REF]) based on Osborn (1907). Throughout the description of Platypittamys (Scarritt Pockett, Argentina; Deseadan), [START_REF] Wood | A new Oligocene rodent genus from Patagonia[END_REF] applied the Wood and Wilson nomenclature to caviomorphs. Their proposition was subsequently completed and formalized by [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF], and later by Patterson and Wood (1982). For tetralophodont teeth, these authors recognized successively on a mesiodistal axis, an antero-, meta-, hypo-and posterolophid on lower teeth, and an antero-, proto-, meta-and posteroloph on upper teeth. According to these authors, the tetralophodonty of upper molars was likely the ancestral condition in caviomorphs, and the pentalophodonty was developed secondarily in some groups, by the addition of a neoloph situated between the metaloph (then constituting the third loph) and the posteroloph (the fifth loph; Figure 3(A)). The pentalophodonty of lower molars (as well as for dp4s and p4s) was also interpreted with the addition of a neolophid (Figures 4(A) and 5(A)).

After studying the fossil rodents from Salla (Bolivia; Deseadan), Hoffstetter and Lavocat (1970) and [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF] proposed, however, another interpretation of the crest homologies for describing the pentalophodonty of upper molars, a view which was compatible with that of [START_REF] Schaub | Remarks on the distribution and classification of the Hystricomorpha[END_REF] (Figure 3(B)). For these authors, the configuration of the teeth would be similar to that found in the Theridomyidae and Old World hystricognaths (Phiomorpha sensu Lavocat 1967): the third crest would be a mesoloph (that can be linked to a transversal crest stemming from the anterior arm of the hypocone; Lavocat 1976, figure 4, p. 71) labially connected to a mesostyle, and the fourth crest would be a metaloph labially connected to the metacone (Figure 3(B)). They interpreted the tetralophodonty of caviomorphs as a simplification (i.e., loss of the metaloph) from a pentalophodont ancestral state. They provided several arguments in favor of this hypothesis:

-in addition to the formerly known pentalophodont taxa Protosteiromys (Cabeza Blanca and La Flecha, Argentina; Deseadan; [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF], the fact that three new genera from Salla (Branisamys, Incamys, and Sallamys) also exhibited a pentalophodont pattern of upper molars, revealed that the pentalophodonty was rather common among early caviomorphs (known in the 1970s) and likely primitive; -Incamys shows a vestigial metaloph as in Thryonomys (i.e., the modern African cane rat), in which this crest originates from the well-developed metaloph of Miocene 'phiomorphs'; -Sallamys has a P4 that is structurally much simpler than the condition observed in Platypittamys, and also exhibits a very large infraorbital foramen, a condition which would suggest that the absence of P4 complexity is not primitive; -the Salla rodents are very similar to the early 'phiomorphs' known in the 1960s (i.e., Early Oligocene of Fayum, Egypt; Wood 1968), notably in the morphology of their upper molars. Their pattern can be explained by the reductions or loss of connections between crests from a fundamental pattern illustrated by the African Phiomys andrewsi (Early Oligocene; [START_REF] Wood | Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part II: the African Oligocene Rodentia[END_REF]Lavocat 1976, figure 4(D), p. 71).

The two competing hypotheses have generated hotly debated issues regarding caviomorph geographic origins, notably the North American origin defended by Wood (and collaborators) versus the African origin defended by Lavocat (and collaborators) (see Introduction). It is worth noting that [START_REF] Butler | Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny[END_REF] questioned Wood's hypothesis of homologies [START_REF] Wood | A new Oligocene rodent genus from Patagonia[END_REF], inasmuch as the dental pattern of upper molars would be a non-functional configuration (i.e., the paracone being closer to the metacone than the protocone to the hypocone). This argument was later used by [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF] who also noted in erethizontoids that the third labial cusp is larger in both surface and height than the second one, thereby suggesting a pattern including a mesostyle- metacone complex, the latter topology being more consistent with the Lavocat's hypothesis of homologies [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]. Jaeger (1989) and Vucetich and Verzi (1994) followed Lavocat's view but diverged regarding the pattern of simplification leading to a tetralophodonty from a pentalophodont scheme. Based primarily on Salla rodents, Jaeger (1989) interpreted the third crest of tetralophodont upper molars of Sallamys as the result of a fusion between the metaloph and the mesoloph. In this context, the latter was not considered to be the homologuous structure as that observed in Old World hystrognaths. These crests, although occupying an analogous position would be developed independently in each group as a result. Vucetich and Verzi (1994) also analyzed the Salla rodent fauna in performing a more extensive comparative analysis, and considering many other extinct and extant taxa. According to them, the transformation from a pentalophodont to a tetralophodont pattern would also include the fusion of the metaloph with another crest, but the latter would be the posteroloph instead of the mesoloph. These authors recognized that a fusion between the mesoloph and the metaloph is possible, like on the M2 of the Branisamys holotype (MNHN SAL 102, Lavocat 1976: plate 2.4). Nevertheless, this fusion would be particular in Branisamys, generating a part of the intraspecific variation observed in this taxon. [START_REF] Bryant | Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia; Rodentia) from the Hsanda Gol formarion (Oligocene), Mongolia[END_REF] also advocated that the pentalophodonty of upper molars is the ancestral condition of caviomorphs, but in considering that the third crest of Old World hystrognaths and caviomorphs is neither a mesoloph nor a metaloph, but rather a mesolophule (Figure 3©). This structure was originally defined by Flynn et al. (1986) in Baluchimyinae (Chapattimyidae sensu Flynn et al. 1986; Hystricognathi incertae sedis sensu Marivaux et al. 2002) as being the crest originating from the metaconule and running towards the labial edge of the tooth (Flynn et al. 1986;[START_REF] Marivaux | Les rongeurs de l'Oligocène des Collines Bugti (Balouchistan, Pakistan) : nouvelles données sur la phylogénie des rongeurs paléogènes, implications biochronologiques et paléobiogéographiques[END_REF]Marivaux et al. 2000Marivaux et al. , 2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Marivaux and Welcomme 2003). In studying the morphology of the upper molars of fossil and modern [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF] showed that the third crest is either continuous or discontinuous in this superfamily. When discontinuous, this crest is formed by a lingual portion linked to a metaconule (corresponding to a mesolophule) and a neoformed labial portion stemming from the mesostyle (Figure 3(D)). Given these observations, [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF] proposed a prepentalophodont step as the ancestral condition in erethizontoids, a pattern in which the metaloph is still connected to the hypocone. Subsequently, this connection would be lost, and the metaloph would be linked to the posteroloph. A continuous third crest would be formed by the fusion of the mesolophule with the neocrest of the mesostyle.

Over the past three decades, the hypothesis of an African origin of caviomorphs, closely related to the 'phiomorphs', has gained strong support. The phiomorph-caviomorph relationship derives from a corpus of morpho-anatomical and genetic data (see Introduction), other than the dental morphology only. Such a strongly supported phylogenetic relationship between Old and New World hystricognaths then supports Lavocat's dental homology hypothesis, which has now reached a well-accepted consensus, althrough some authors have continued to follow the nomenclature proposed by Wood [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]Frailey and Campbell 2004). Since the 1990s, the discussions have progressively focused on the homology of the third crest on upper molars, considered as either a mesoloph or a mesolophule (see above). [START_REF] Marivaux | Les rongeurs de l'Oligocène des Collines Bugti (Balouchistan, Pakistan) : nouvelles données sur la phylogénie des rongeurs paléogènes, implications biochronologiques et paléobiogéographiques[END_REF] studied the early radiation of Paleogene rodents via a phylogenetic approach, in order to better understand the patterns of dental transformations through time, and to identify homoplasic structures. In related papers, Marivaux et al. (2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF] proposed a general dental terminology applicable to the whole group (at least to their Paleogene representatives and more recent forms moderately derived from a dental point of view). In this nomenclature, the third crest of upper molars can be formed by (1) a lingual part, the mesolophule (sensu Flynn et al. 1986) that is connected to the metaconule (conule that can disappear in some groups like caviomorphs and advanced 'phiomorphs'), and (2) a labial part, named mesoloph, originating from the mesostyle and running lingually (Figure 3(E)). This nomenclature was consistent with that proposed by [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]. However, [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF] recognized only a mesolophule as the third crest in the sampled Paleogene Ctenohystrica (caviomorphs included, but limited to few Deseadean forms; the Afro-Asian hystricognaths being also less known and documented at that time), the mesoloph being observed only in some Ischyromyiformes (Anomaluroidea, Zegdoumyidae, Eutypomyidae, Gliridae, Sciuravidae, and Theridomyidae). This terminology has been applied by Marivaux for the original description of caviomorphs from CTA-27, which are among the most ancient representatives of the group known thus far (Barrancan; Antoine et al. 2012;Figure 3(F)). The dental morphology of some of these rodents (Cachiyacuy and Canaanimys), characterized by pentalophodont upper molars, is very similar to that of Old World hystricognaths and especially to some Paleogene African forms. The discovery of these early caviomorph taxa from the late Middle Eocene of Peruvian Amazonia has provided key elements, which have strengthened support for Lavocat's hypotheses regarding caviomorph origin and dental evolutionary patterns (i.e., African origin of caviomorphs and ancestral pentalophodont pattern of upper molars in this group; Hoffstetter and Lavocat 1970;[START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF].

Lower teeth

Although less controversial than for upper teeth, the structural homologies on lower teeth have often been questioned, notably regarding the identification of the mesial cristids. According to Candela (2000), based on Wood and Wilson (1936), the second cristid of lower molars in erethizontids would be a metalophulid II or a mesolophid, depending on the connected cuspids (protoconid-metaconid or mesoconid-mesostylid, respectively; Figure 4(B)). Candela (2002) studied the dp4 morphology of extinct and extant erethizontids and compared it with that of dp4s of some fossil Old World hystricognaths (i.e., Baluchimys, Gaudeamus, Lindsaya, Phiomys, and Tsaganomys). The morphologies being very similar, she concluded that they are probably homologous, and that the ancestral pattern of erethizontid dp4s (and probably, more generally, of hystricognaths dp4s) is pentalophodont, contrary to [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF]. On lower teeth, based on Wood and Wilson (1936), she recognized successively an anterolophid, metalophulid II, mesolophid, hypolophid and posterolophid (Figure 5(B1)). The tetralophodont scheme would be developed subsequently in Hypsosteiromys and some specimens of Erethizon dorsatum by the loss of the mesolophid (Figure 5(B2)). The hexalophodont pattern of some erethizontids (i.e., Eosteiromys homogenidens, E. dorsatum, Steiromys detentus, S. duplicatus, and Coendou prehensilis) would be also achieved from the pentalophodont ancestral configuration, by the addition of a neolophid between the anterolophid and the metalophulid II (Figure 5(B1)). Candela (2002) identified the same hexalophodont morphology on one dp4 of Branisamys (UM GN 014; [START_REF] Hartenberger | Nouvelles découvertes de rongeurs dans le Déseadien (Oligocène inférieur) de Salla Luribay (Bolivie)[END_REF]Patterson and Wood 1982), a taxon from Salla initially described as a dasyproctid cavioid [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]). Based on this observation, as well as on other cranial and dental features characterizing erethizontids, Candela (2002) advocated a potential affiliation of Branisamys to the New World porcupines.

The nomenclatures used so far for the studies on hystricognaths (and more generally other rodent groups) have often been inconsistent across authors. This lack of uniformity (standard usage) has somewhat engendered a degree of confusion in the terminology: e.g., cingulum/anterior cingulid, anterolophid, paracristid/paralophid, metalophid, metalophid I, protolophid/protocristid, metalophid II, metalophulid I, metalophulid II, and posterior arm of the protoconid (e.g., [START_REF] Wood | Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part II: the African Oligocene Rodentia[END_REF]Dawson 1984;Flynn et al. 1986;[START_REF] Korth | The Tertiary record of rodents in North America[END_REF][START_REF] Kumar | Middle Eocene rodents from the Subathu Group[END_REF]Wang 1997;Meng and Wyss 2001). The nomenclature proposed by [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF], modified from that of Wood and Wilson (1936), allowed, to some extent, for a first step of clarification of these issues, notably on the homologous structures used for discriminating the anterior cristids of lower molars. Following this terminology, basal rodentiaforms display a trigonid with a paralophid/paracristid linking the protoconid to the reduced paraconid, as well as a metalophulid II (protolophid/protocristid = long posterior arm of protoconid) connecting the protoconid to the metaconid (e.g., Tribosphenomys). The paraconid is subsequently lost and the paralophid joins lingually the metaconid, then becoming a metalophulid I (e.g., Archetypomys, Cocomys). A low anterior cingulid can be present in some "ctenodactyloids" and "ischyromyoids". In the latter group, this cingulid iteratively developed to reach a lophid status, becoming the anterolophid, and in some cases replacing the metalophulid I, which is lost in some forms (for a synthesis, see Marivaux et al. 2004, p. 120). In this context, Marivaux et al. identified on caviomorph lower molars a metalophulid I, a metalophulid II, a hypolophid, and a posterolophid (Figure 4(C)). According these authors, these same cristids are present on dp4s, and a mesolophid can be additionally developed between the metalophulid II and the hypolophid (Figure 5(C)). This terminology was used by Antoine et al. (2012). Candela and Rasia (2012) extended this nomenclature to dp4s and lower molars of echimyids (the more diversified octodontoid group) and questioned previous terminologies of Patterson and Wood (1982; Figures 4(A) and 5(A)) and [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]Figures 4(A (which appears at least three times independently) would be derived. Candela and Rasia (2012) shared, however, the view of Patterson and Wood (1982) and [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF] in the interpretation of the second cristid of pentalophodont lower molars (in Hoplomys), which would be a neoformed structure called neolophid (Figure 4(E1)). As for erethizontids (Candela 2002), the pentalophodonty would be the plesiomorph condition for echimyid dp4s, and the tetralophodonty would be the apomorph state. Lastly, these authors interpreted the "crest C" of dp4s and lower molars of some echimyids (i.e., Clydomys, Euryzygomatomys, Lonchothrix, Mesomys, Proechimys, Therisomysops, or Trinomys) as being a metalophulid II, more or less long and curved (Figures 4(E2) and 5(E2)). This cristid was originally defined by [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF] as a metalophid merged with a neolophid (Figures 4(D) and 5(D)). Recently, Verzi et al. (2014[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF] have considered the second cristid of lower molars in some octodontoids as a mesolophid (Myocastor, Acaremys in Verzi et al. [2014, figure 5(D), p. 763]; Acaremys and gen. et sp. nov. in Verzi et al. [2017, figure 5(B) and (F), p. 418]) or a combination of a metalophulid II with a mesolophid (e.g., Proechimys, Myocastor, Acarechimys in Verzi et al. [2016, figures 1-3, p. 96-98]; and potentially Acarechimys, Plesiacarechimys, and Protacaremys in Verzi et al.

[2017, figures 4(C), (F) and (G), p. 417]; Figure 4(F1)). In the case of the lower molars of Hoplomys, [START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF] have interpreted the second cristid ("crest C"/neolophid sensu [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF] and Candela and Rasia [2012], respectively) as a metalophulid II, and the third cristid (metalophulid II sensu Candela and Rasia [2012]) as a mesolophid (Figure 4(F2)). Following [START_REF] Arnal | Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae[END_REF] and Candela and Rasia (2012), [START_REF] Candela | Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents[END_REF] questioned the hypothesis advanced by Verzi et al. (2014, and subsequently Verzi et al. 2016[START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]. According to [START_REF] Candela | Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents[END_REF], in all octodontoids, the second cristid of lower molars would correspond to a metalophulid II with notable variation in orientation, size and shape, but not to a mesolophid.

Recently, [START_REF] Verzi | Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea[END_REF], analyzing dp4s of caviomorphs of the four superfamilies and ancient representatives of New and Old World hystricognaths, have considered that a hexalophodont scheme is the ancestral condition for this locus in caviomorphs. This scheme would be characterized by an anterolophid, metalophulid I, metalophulid II, mesolophid, hypolophid and posterolophid (Figure 5(F)). From this ancestral condition, more simple patterns would derive with firstly the loss of the metalophulid I.

Results

Upper teeth

The third transverse crest [START_REF] Marivaux | Les rongeurs de l'Oligocène des Collines Bugti (Balouchistan, Pakistan) : nouvelles données sur la phylogénie des rongeurs paléogènes, implications biochronologiques et paléobiogéographiques[END_REF] and Marivaux et al. (2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF] have highlighted the third crest of the upper molars, which can comprise a lingual part, the mesolophule stemming from the metaconule (conule that can disappear in caviomorphs), and a labial part, the mesoloph originating from the mesostyle. Based on the available taxonomic sample, it was shown that the mesoloph is present more specially in some Ischyromyiformes (sensu [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF], and that the third crest of the upper molars in Ctenohystrica (including caviomorphs [but limited to Incamys, Branisamys, Sallamys, and Platypittamys]) corresponds only to a mesolophule (see section 'Historical review and current state of caviomorph dental structures'). However, the New World hystricognaths included in the analysis were limited and inufficient to appreciate variability of the third crest configuration (works otherwise focused on Old World hystricognaths). In parallel, [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF] observed that the third crest of erethizontid upper molars can be discontinuous, and in this case, in addition to a mesolophule, there is a labial crest neoformed from the mesostyle. Following the nomenclature proposed by [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF], this labial crest is an equivalent of the mesoloph.

On several upper teeth of early caviomorphs from the Eocene of Contamana (e.g., MUSM 1873, 2801, 2819, 2832), the third crest is clearly discontinuous and formed by two portions: a mesoloph and a mesolophule (Figure 6). The study of the entire fossil material from Contamana and Tarapoto/Shapaja has revealed that the third crest morphology is very variable (Boivin et al. 2017a(Boivin et al. , b, 2018)). Indeed, it can be composed of the mesoloph and mesolophule, connected either with each other (Figure 6 When no interpretation/distinction can be made, the term "third transverse crest" is then used. In addition to erethizontoids [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF], other fossil and modern caviomorphs, such as species of Santa Rosa, those of Salla, but also Australoprocta, Garridomys, Eoviscaccia, Willidewu, Protadelphomys, Proechimys, or Mesomys display upper molars with a mesoloph, accompanied or not by a mesolophule [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;Vucetich and Bond 1984;Vucetich and Verzi 1991;[START_REF] Kramarz | Un nuevo dasyproctidae (Rodentia, Caviomorpha) del Mioceno inferior de Patagonia[END_REF]Kramarz , 2001a;;Frailey and Campbell 2004;Kramarz et ). In this context, the observations made by [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF] on erethizontoid upper molars must be generalized to the whole caviomorph group and for all upper loci (i.e., P4, DP4, and M1-3).

Terminology of flexi

The flexus nomenclature of upper teeth used in Boivin et al. (2017a,b) follows that of [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]. For pentalophodont teeth, this nomenclature recognizes, labially a paraflexus, mesoflexus, metaflexus and posteroflexus, and lingually the hypoflexus. Nevertheless, it is not consistent with the original definitions of the metaflexus and mesoflexus proposed by [START_REF] Black | Variation and tooth-replacement in a Miocene mylagaulid rodent[END_REF]. According to these authors, the metaflexus is distal to the mesoflexus and should be the posteroflexus sensu [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]. The third crest being a secondary formation with respect to the ancestral pattern of rodents (see Marivaux et al. 2017a, b), the mesoflexus sensu [START_REF] Black | Variation and tooth-replacement in a Miocene mylagaulid rodent[END_REF] corresponds to the mesoflexus plus metaflexus sensu [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]. In Boivin et al. (2018), we proposed a new terminology in order to distinguish both flexi separated by the third crest: the mesial mesoflexus (mesoflexus sensu [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]) and the distal mesoflexus (metaflexus sensu Candela 1999) (Figure 7).

Pentalophodont, tetralophodont and trilophodont patterns

Old and New World fossil evidence and phylogenetic inference (e.g., Marivaux et al. 2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Antoine et al. 2012;[START_REF] Sallam | New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian "clock"-based phylogenetic methods on estimates of basal hystricognath relationships and biochronology[END_REF][START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]Boivin et al. 2017a, submitted) substantiate the hypothesis that the ancestral occlusal pattern of caviomorph upper molars is composed of five transverse crests (see section 'Historical review and current state of caviomorph dental structures'). As for the upper molars, the ancestral condition of P4s and DP4s Boivin et al. 2017aBoivin et al. , b, 2018)). In these taxa, the metaloph tends to be lost: it is reduced and seems to merge with the posteroloph, especially in advanced stages of wear (Figure 8). In these taxa, the metacone is usually linked to the posteroloph and tends also to merge with the latter (subsumed), thereby forming a posteroloph-metacone-metaloph complex in the posterolabial part of the tooth (Figure 8). Nevertheless, the metacone is sometimes still distinct and well-defined, as in Eoincamys valverdei. Similar observations were previously made in other caviomorphs (e.g., Incamys or Draconomys; Vucetich and Verzi 1994;Vucetich et al. 2010a;[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF]) that led Vucetich and Verzi (1994) to propose the hypothesis according to which a tetralophodont pattern would derive from a pentalophodont pattern, notably by the reduction of the metaloph subsumed within the posteroloph (Figure 8; see section 'Historical review and current state of caviomorph dental structures'). This pattern of occlusal transformation seems to be the rule in caviomorphs and to have occurred iteratively during the Paleogene. Some specimens (e.g., MUSM 2792-2794 from CTA-27) show a metaloph reduced to a very short spur nonetheless. Therefore, a loss of the metaloph (by complete reduction not by incorporation within the posteroloph) cannot be ruled out in some cases (Figure 8). Vucetich and Verzi (1994, p. 66) also seem to consider as possible complete reduction (= loss) of the metaloph: 'primero, el metalofo se reduce o se fusiona al pósterolofo, dando como resultado el primer patrón tetralofodonte'. Contrary to some Old World hystricognaths such as Paraphiomys and Thryonomys, no caviomorph seems to develop a tetralophodont pattern as the result of the reduction of the third crest on upper molars. Vucetich and Verzi (1994) defined two main types of tetralophodont patterns on upper molars, depending on the morphology of the third crest (mesoloph sensu Vucetich and Verzi 1994). The first pattern is characterized by a complete third crest stretching from the mesostyle to the anterior arm of the hypocone, whereas for the second pattern, this same crest is more reduced and is lingually linked to the posteroloph (Figure 8). In the first case, the third crest can be composed of a mesoloph and/or a mesolophule, whereas in the second case, it would correspond to a mesoloph (backwardly curved), the mesolophule being absent (or lost).

The first scheme is typical of octodontoids but it is also observed in some erethizontoids (Eopululo, Hypsosteiromys, ?Neosteiromys tordillense, Steiromys detentus, Neosteiromys bombifrons, and Protosteiromys pattersoni; Vucetich et al. 1993Vucetich et al. , 2010b;;Candela 2000Candela , 2004;;Frailey and Campbell 2004;Pérez et al. in press) and in several taxa considered here as stemcaviomorphs (e.g., Cachiyacuy, Canaanimys, Eoespina, Pozomys, Ucayalimys, Plesiosteiromys, or Tarapotomys; see Boivin 2017 and Boivin et al. submitted). In octodontoids (e.g., Platypittamys or Dudumus; [START_REF] Wood | A new Oligocene rodent genus from Patagonia[END_REF]Arnal et al. 2014), the tetralophodont pattern of upper molars is associated with four main cusps: the paracone, protocone, hypocone and a cusp situated labiodistally, usually joined to the posteroloph with wear. Owing to its large size (in height and surface) and its distal position on the occlusal surface, the latter cusp has often -and logicallybeen considered as a metacone (e.g., Vucetich and Kramarz 1993;Vucetich and Verzi 1996;Arnal and Vucetich 2015;Arnal et al. 2014). However, in some cases, this distolabial cusp may be a large and displaced mesostyle. This new nomenclatural assumption is supported by several observations:

-some upper molars of the octodontoid Protadelphomys (Vucetich and Bond 1984;Vucetich et al. 1992) retain a reduced metaloph associated with a metacone positioned very distally and slightly lingually, and which appears smaller than the mesostyle; -some octodontoids (e.g., Galileomys antelucanus; [START_REF] Vucetich | New Miocene rodents of Patagonia (Argentina) and their bearing in the early radiation of the octodontoids (Hystricognathi)[END_REF] have on some of their upper molars a third transverse crest, which clearly originates from this labiodistal cusp. In Galileomys antelucanus, the third crest is lingually extended and connected to the anterior arm of the hypocone. A short mesolophular spur is sometimes distinct. This morphology recalls the condition found in some taxa such as Cachiyacuy and Eobranisamys javierpradoi, and thus can be interpreted as a third crest essentially formed by a long mesoloph stemming from the mesostyle. A metacone-metaloph complex is highly doubtful, the metaloph being very rarely connected to the anterior arm of the hypocone in caviomorphs. A metaloph-anterior arm of the hypocone connection is only observed in two ancient caviomorphs (and basal): Cachiyacuy and Canaanimys. Aditionnally, the metaloph seems to disappear in octodontoids, as observed in Plesiacarechimys or Draconomys (Vucetich and Vieytes 2006;Vucetich et al. 2010a); -lastly, the abundant taxon in TAR-01, Mayomys confluens, shows affinities with octodontoids [START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]Boivin et al. 2018, submitted). The morphology of its upper molars appears intermediary (for considered characters), between the ancestral pentalophodont pattern and the tetralophodont pattern typical of octodontoids. Such a configuration highlights the understanding regarding the identification of the labiodistal cusp. In Mayomys, the tetralophodont scheme is dominant, with a metaloph sometimes vestigial but absent in most cases. A metacone, distal to the mesostyle, is clearly distinct on some M3s (MUSM 3462 and 3480; Boivin et al. 2018, figure 4S, p. X) and merged with the posteroloph and/or the mesostyle with wear (e.g., MUSM 3461; Boivin et al. 2018, figure 4N, p. X). On M1-2s, only one labiodistal cusp is present. It is interpreted as a mesostyle due to, (1) its position moderately close to the paracone;

(2) a third crest (usually a mesolophule) broadly transverse and aligned with this cusp (both structures can be joint), and (3) the presence of a very extensive distal flexus. The metacone is subsumed within the posteroloph in most cases. The MUSM 3462 M3 has a large and distally displaced mesostyle, with a labiodistal-linguomesial obliquity of the third crest, and a marked However, it is worth noting that on some specimens of Sallamys pascuali from Salla (MNHN-Bol-V-004256, -007382, -007589, -007823, and -011054), the mesostyle appears associated (i.e., very closely situated or twinned) to a distal cusp, interpretable as a metacone. On these specimens, the mesostyle can be larger than the metacone (MNHN-Bol-V-007589), but the reverse is also observed (MNHN-Bol-V-007382 and -011054). Hence, total loss of the metacone may not have occurred in all octodontoids. A fusion between the mesostyle and the metacone is also possible (as in the erethizontoid Erethizon and Coendou; Boivin 2017 and Boivin et al. submitted), and as such the hypothesis of loss of the mesostyle instead of the metacone cannot be completely excluded in this superfamily.

The second scheme of tetralophodonty defined by Vucetich and Verzi (1994) would be a characteristic of chinchilloids. Indeed, this morphology is developed in several fossil chinchilloids (e.g., Scleromys angustus, Eoviscaccia australis, and Garridomys curnunuquem; Ameghino 1887; Kramarz 2001a; [START_REF] Kramarz | A new Early Miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution[END_REF], taxa originally described as dasyproctids but which would show closer affinities with chinchilloids (e.g., Microscleromys cribriphilus, Eoincamys pascuali, and Eoincamys parvus; Walton 1997;Frailey and Campbell 2004;Boivin et al. 2018), and in the octodontoid Protadelphomys latus (Vucetich and Bond 1984). Such a case of tetralophodonty also tends to be developed in other taxa such as: the chinchilloid Eoincamys ameghinoi, Eoincamys valverdei, Chambiramys sylvaticus, Incamys bolivianus, Maquiamys praecursor, Scleromys quadrangulatus and Microscleromys paradoxalis, and the octodontoid Sallamys pascuali [START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;Walton 1997 Boivin et al. 2017bBoivin et al. , 2018, submitted), submitted). In these species, the mesoloph is reduced and it loses its connection(s) with the anterior arm of the hypocone or the mesolophule (which is strongly reduced or absent), its lingual part is oriented toward the posteroloph and, in some cases, connects to the latter. In some of these taxa (E. valverdei, C. sylvaticus, I. bolivianus, S. pascuali, and P. latus), a short metaloph can be still present. With wear, the mesoloph and mesostyle tend to be subsumed within the posteroloph (and the metaloph, if it is still present), thus forming a large distolabial complex/platform as observed on upper molars of S. pascuali, E. valverdei, and species of Scleromys. This complex is suspected on M1-2s of Willidewu, which have three transverse crests including a very thick posteroloph (Vucetich andVerzi 1991, 1994). This configuration being very similar to that observed for the metaloph, Vucetich and Verzi (1994) and [START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF] 8). Nevertheless, these transformations do not necessarily occur in an ordored fashion (i.e., a trilophodont scheme deriving from a tetralophodont scheme, itself deriving from the pentalophodont scheme). As a matter of fact, some taxa, such as E. valverdei, still have a metaloph in addition to the reduced third crest, all of these structures tending to merge with the posteroloph. These taxa would then illustrate a direct transformation from a pentalophodont to a trilophodont pattern (Figure 8).

Interestingly, in the extant octodontoid Euryzygomatomys, the trilophodonty of upper molars seems not to follow a scheme of occlusal transformations presented above. Indeed, its trilophodont pattern would be linked to the loss of the labial protoloph instead of the third crest (always present). The slightly worn teeth of a specimen attributed to this taxon (MLP 16 VII0211; Figure 9) are characterized by an isolated cusp, positioned to the labial extremity of the first transverse crest (i.e., anteroloph), and another labial cusp connected to the apparent second crest.

With dental wear, the first cusp tends to be connected to the anteroloph. It can be interpreted as a paracone. In that context, the cusp directly posterior to this paracone would then be a mesostyle, and the crest linked to this style would be the third transverse crest (mesoloph/mesolophule), thereby forming a transverse crest in second position. However, the possibility exists that this isolated buccal cusp is rather a neoformation, which would invalidate our interpretation regarding the trilophodonty of this taxon. Tarapotomys sp. of TAR-20 and TAR-21, Tarapotomys subandinus, Tarapotomys mayoensis, Kichkasteiromys raimondii, and Shapajamys labocensis [START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF]Boivin et al. 2017aBoivin et al. , b, 2018, submitted), submitted). It is also present in other caviomorphs such as the species of Santa Rosa, those of Salla, Draconomys, Australoprocta, Garridomys, Microscleromys, or Coendou (Walton 1997;[START_REF] Kramarz | Un nuevo dasyproctidae (Rodentia, Caviomorpha) del Mioceno inferior de Patagonia[END_REF][START_REF] Kramarz | A new Early Miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution[END_REF]Vucetich et al. 2010a; see the coding of the character 214 in Boivin 2017 and Boivin et al. submitted). Being usually associated to the metaloph, this spur has often been interpreted as a part or a relict of this crest (Boivin et al. 2017a(Boivin et al. , b, 2018)), but from our observations and comparisons, it seems likely that this spur is a neoformation because:

-it is developed from the posteroloph; -it is slightly connected to the metaloph in most cases, and it is sometimes independent of it (Figure 10 In most caviomorphs, the second transverse cristid of lower molars would correspond to a posterior arm of the protoconid (= metalophulid II; Candela 2000[START_REF] Candela | Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents[END_REF][START_REF] Marivaux | Les rongeurs de l'Oligocène des Collines Bugti (Balouchistan, Pakistan) : nouvelles données sur la phylogénie des rongeurs paléogènes, implications biochronologiques et paléobiogéographiques[END_REF]Marivaux et al. 2002[START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF][START_REF] Arnal | Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae[END_REF]Vucetich 2011, 2015;Antoine et al. 2012;[START_REF] Arnal | Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae[END_REF]Candela and Rasia 2012;[START_REF] Kramarz | A new Early Miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution[END_REF]Arnal et al. 2014; see section 'Historical review and current state of caviomorph dental structures'). Some authors recognize that a mesolophid can form the second cristid instead of a metalophulid II (in erethizontoids ;Candela 2000) or in association with the metalophulid II (in octodontoids; Verzi et al. 2014[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF]. However, there are competing interpretations regarding that second cristid, notably in octodontoids. Indeed, contrary to the opinion of Verzi et al. (2014[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF], [START_REF] Arnal | Sistemática, filogenia e historia evolutiva de roedores Octodontoidea (Caviomorpha, Hystricognathi) del Oligoceno tardío-Mioceno medio vinculados al origen de la familia Octodontidae[END_REF], Candela and Rasia (2012) and [START_REF] Candela | Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents[END_REF] consider that in octodontoids, the second cristid of lower molars is not a mesolophid but a metalophulid II that varies in orientation and length (see section 'Historical review and current state of caviomorph dental structures').

Like the third crest of upper teeth, the configuration of the second transverse cristid is highly variable on lower molars and p4s of taxa from Contamana and Tarapoto/Shapaja, especially in Cachiyacuy contamanensis (CTA-27). In the latter, the second transverse cristid of lower molars is usually formed by two portions of fluctuating length and orientation: (1) a labial portion stemming from the protoconid (the posterior arm of the protoconid), and (2) a lingual portion originating from the mesostylid (Figure 11(A) and(B)). The latter, not previously identified, has been recently called a neomesolophid in Boivin et al. (2017aBoivin et al. ( , b, 2018)). It is worth noting that the posterior arm of the protoconid and the neomesolophid can be connected together (Figure 11(A and Tarapotomys mayoensis) (see Boivin et al. 2017aBoivin et al. , b, 2018)). Other fossil and modern caviomorphs, such as species of Santa Rosa, those of Salla, Hypsosteiromys, Steiromys, Australoprocta, Garridomys, Scleromys, Drytomomys, Prostichomys, Erethizon, Myocastor, Proechimys or Mesomys (Fields 1957;[START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;[START_REF] Kramarz | Un nuevo dasyproctidae (Rodentia, Caviomorpha) del Mioceno inferior de Patagonia[END_REF]Kramarz , 2001bKramarz , 2006a;;Candela 2000;Frailey and Campbell 2004;[START_REF] Kramarz | A new Early Miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution[END_REF], clearly have a neomesolophid, which is associated or not with a posterior arm of the protoconid. The "crest C" defined by [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF] on lower molars of some echimyids (e.g., Clydomys, Euryzygomatomys, Lonchothrix, and Mesomys) was interpreted by Candela and Rasia (2012) as being a metalophulid II, which would have lost its connection with the protoconid, and developed a link with the metalophulid I (see section 'Historical review and current state of caviomorph dental structures'). Nevertheless, this cristid would correspond most likely to a neomesolophid, with the labial extremity connected to the metalophulid I. 1879, 1914, 1915, 2676-2678, 2689, 2692, 2701, 2708, and 2714;Antoine et al. 2012;Boivin et al. 2017a) show additional and unusual structures (cristids and/or cuspids) between the second transverse cristid and the hypolophid. Some of these structures are developed from the hypolophid, and as such, are considered as neoformations. Otherwise, it is difficult to establish criteria of homology for these structures, notably those stemming from the ectolophid, which can be interpreted either as neoformations or as residual parts of an ancestral mesolophid (Boivin et al. 2017a; Figure 12). Among all p4s and lower molars attributed to C. contamanensis, only one specimen (the MUSM 2678 p4) displays one of these additional cristids stemming from a cuspid situated at the level of the ectolophid, and that could be interpreted as a mesoconid. Some lower molars seem to bear a mesoconid-like cuspid, but without supernumerary cristid associated with it. These structures are not found in other taxa from Contamana or Tarapoto/Shapaja. The mesolophid is commonly developed but very variable and slender in some 'baluchimyines' and 'phiomorphs' of the Old World from the Eocene to the Oligocene: Bugtimys, Hodsahibia, 'Acritophiomys', Phiomys, 'Waslamys', and Gaudeamus hylaeus (see Marivaux and Welcomme 2003;Jaeger et al. 2010;Sallam et al. 2009Sallam et al. , 2011Sallam et al. , 2012)). Otherwise, the mesolophid is present and well developed in many groups of Ischyromyiformes (e.g., Anomaluroidea, Theridomorpha and Cricetidae; see [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Marivaux et al. , 2017b)). It is therefore possible that basal caviomorphs (including C. contamanensis) inherited this structure from their African common ancestor. It is usually considered that the ancestral pattern of caviomorph lower molars is tetralophodont (e.g., metalophulid I, second cristid, hypolophid, and posterolophid). But, considering that earliest caviomorphs would have inherited a mesolophid from their African hystricognath ancestor (and not developed this structure independently), the possibility exists that a pentalophodont pattern In other taxa observed and compared to the material of Contamana and Tarapoto/Shapaja in the context of this study (Coendou, Branisamys, Cephalomys, and Luantus), the second transverse cristid can be distally displaced on lower molars, and notably on m3s. The second cristid is then close to the hypolophid and would correspond to a mesolophid (at least for its labial part, sometimes connected to a neomesolophid; Figure 12). In addition, some specimens of extant erethizontoids (MNHN MO-1909-241 andMNHN MO-1909-242, originally assigned to Sphiggurus insidiosus and probably attributable to Coendou insidiosus following the synonymy proposed by Voss 2011) have pentalophodont lower molars, characterized by the simultaneous presence of a posterior arm of the protoconid and a mesolophid (Figure 12). The presence of a mesolophid in erethizontoids had previously been indicated by Candela (2000). Verzi et al. (2014[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF] consider that the second cristid of lower molars of some octodontoids is a mesolophid or the association of a metalophulid II with a mesolophid. As noted by Verzi et al. (2016, figure 3, p. 98), a very short mesolophid can be developed posteriorly to the second transverse cristid in Protacaremys prior and Caviocricetus lucasi (Figure 14(G) and (J)). In contrast, in other taxa figured by Verzi et al. (2016, figures 1 and 2, p. 96-97;Figures 13, 14), the second cristid is positionned anteriorly, and it is linked to the protoconid and/or the mesostylid, and/or the metaconid (see below). Given these connections, this cristid seems not to correspond to a mesolophid (Figures 13,14), which is in agreement with the hypothesis selected by Arnal (2012), Candela and Rasia (2012) and [START_REF] Candela | Analyzing the impact of conflictive dental characters on the phylogeny of octodontoid rodents[END_REF].

Another type of pentalophodonty, different from that previously mentioned for Dasyprocta and Shiggurus, is found on lower molars of the octodontoid Hoplomys [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]; Figure 13(A1,A3)) and several fossil erethizontoids (e.g., Branisamyopsis australis, Branisamyopsis praesigmoides, Steiromys duplicatus, and Neosteiromys pattoni; Candela 2000Candela , 2003Candela , 2004;;Kramarz 2004). It corresponds to an addition of a neolophid in the anteroflexid, situated between the metalophulid I and the second cristid (Patterson and Wood 1982;Candela 2000Candela , 2003Candela , 2004;;[START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]Candela and Rasia 2012;Figures 12 and 13(A3)). This neolophid often originates from a mesiolingual cuspid, which is also neoformed (neoconid), and situated between the metaconid and the mesostylid. MUSM 2861 is the only lower molar from CTA-32 that is assigned to Palaeosteiromys amazonensis (Boivin et al. 2017b, figure 4L, p. 77). With a neolophid in the anteroflexid, this molar displays a pattern equivalent to that of B. australis, B. praesigmoides, S. duplicatus, N. pattoni and Hoplomys (Boivin et al. 2017b).

In several caviomorphs (including Dasyprocta), a cristid is developed in the anteroflexid of lower molars. This cristid is neither a posterior arm of the protoconid, nor a mesolophid, nor a [START_REF] Wood | A new Oligocene rodent genus from Patagonia[END_REF][START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;Vucetich and Verzi 1991;Kramarz 2004;Arnal and Vucetich 2015;Arnal et al. 2014). In that group, this metaconid cristid can be connected to the posterior arm of the protoconid, and in some cases accompanied by other cristulids stemming from the metalophulid I, the metaconid or even the posterior arm of this cuspid (when the latter is still present; Figures 13,14). [START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF] On lower molars of Lonchotrix emiliae, Proechimys poliopus, P. roberti, Trinomys elegans figured by [START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF], the homology of the cristid situated in second position, stemming from the lingual margin of the molars, and which is labially connected to the metalophulid I, is somewhat ambiguous. This cristid would correspond either to a neomesolophid or to a metaconid cristid (Figure 13(C), (D), (G) and (H)). Verzi et al. (2017, figure 4F, G, p. 417) described a "lingual extension of the metaconid" on m1s of Plesiacarechimys and Protocaremys, which would not correspond to the metaconid cristid (it is not directly connected to the metaconid), but rather to a neoformation.

Among the Oligocene taxa from Contamana and Tarapoto/Shapaja, several of them show a tendency toward a reduction of the second cristid of lower molars: Chambiramys sylvaticus, Eoincamys cf. pascuali, Tarapotomys subandinus, Tarapotomys mayoensis and Mayomys confluens (Boivin et al. 2017b(Boivin et al. , 2018)). In caviomorphs, this reduction seems to have occurred convergently several times, and two usual types of patterns can then be distinguished (Figure 12): 
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-in the first, the posterior arm of the protoconid tends to disappear and the neomesolophid to be reduced (e.g., Tarapotomys subandinus, T. mayoensis, Chambiramys sylvaticus, Eoincamys, Incamys, Garridomys, and Eoviscaccia;[START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;Kramarz 2001a;Frailey and Campbell 2004;[START_REF] Kramarz | A new Early Miocene chinchilloid hystricognath rodent; an approach to the understanding of the early chinchillid dental evolution[END_REF]Boivin et al. 2017bBoivin et al. , 2018)); -in the second, the neomesolophid tends to disappear and the posterior arm of the protoconid (or ?mesolophid) to be reduced (e.g., Luantus, Mayomys, Draconomys, Leucokephalos, and Xylechimys; Patterson and Pascual 1968;Kramarz 2006b;Vucetich et al. 2010aVucetich et al. , 2015;;Boivin et al. 2018).

In caviomorphs, several taxa display trilophodont lower molars (e.g., Tarapotomys mayoensis, Chambiramys shipiborum, Phoberomys, Luantus, Sallamys, Ethelomys, and Deseadomys; [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF][START_REF] Lavocat | Rongeurs caviomorphes de l'Oligocène de Bolivie. Rongeurs du bassin déséadien de Salla[END_REF]Patterson and Wood 1982;Kramarz 2006b;Vucetich et al. 2015;[START_REF] Rasia | Reappraisal of the giant caviomorph rodent Phoberomys burmeisteri (Ameghino, 1886) from the Late Miocene of northeastern Argentina, and the phylogeny and diversity of Neoepiblemidae[END_REF]Boivin et al. 2017bBoivin et al. , 2018)). The trilophodont pattern is achieved by the loss of the second cristid, and seems to be linked or to have implied (Figure 12):

-the fusion of a reduced neomesolophid with the metalophulid I. This fusion is observed for instance on worn molars of T. mayoensis, Incamys and Scleromys. This structural rearrangement recalls that observed on upper molars, notably the fusion of the metaloph and third crest with the posteroloph (see above); -the fusion of the metaconid cristid (or associated cristulids; see previous paragraph) with the metalophulid I. This fusion occurs on worn molars of Sallamys; -the complete disappearance of the neomesolophid and/or the posterior arm of the protoconid (or ?mesolophid; e.g., T. mayoensis, C. shipiborum, Luantus, and Sallamys). In caviomorphs, p4s develop equivalent structures to those observed on lower molars (i.e., posterior arm of the protoconid, mesolophid, neomesolophid, neolophid, and metaconid cristid).

The second transverse cristid can also be reduced or lost on p4s (e.g., Draconomys, Leucokephalos, and Deseadomys), as well as the metalophulid I (e.g., Cephalomys arcidens, Asteromys, Perimys, or Galileomys; [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF][START_REF] Kramarz | Roedores chinchilloideos (Hystricognathi) de la Formación Pinturas, Mioceno temprano-medio de la provincia de Santa Cruz, Argentina[END_REF]Kramarz , 2004)). The hypolophid, entoconid and posterolophid are merged and form a distal thick cristid on p4s of some octodontoids (Platypittamys, Deseadomys, Galileomys, Acaremys, and Sciamys). However, the fossil taxa being more rarely documented by p4s than lower molars, the evolution of these different structures on p4s is more difficult to appreciate.

Nomenclature of the dp4s

According to Candela (2002) and Candela and Rasia (2012), the ancestral pattern of the dp4s of echimyids and erethizontids (and more broadly of hystricognaths) is pentalophodont. These authors recognize on dp4s of these groups: a metalophulid I, a metalophulid II, a mesolophid, a hypolophid and a posterolophid. In contrast, [START_REF] Verzi | Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea[END_REF] consider that a hexalophodont scheme is the ancestral condition for this locus in caviomorphs. This scheme would be characterized by the presence of an anterolophid, in addition to the metalophulid I, metalophulid II, mesolophid, hypolophid and the posterolophid (see section 'Historical review and current state of caviomorph dental structures').

Considering the Old and New World hystricognaths, the identification of the mesialmost cristid seems to be somewhat more complicated than that proposed by Candela (2002), Candela and Rasia (2012) and [START_REF] Verzi | Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea[END_REF]. In some caviomorphs, the anterior cristid on dp4s appears to be a metalophulid I, which is formed by the anterior arm of the protoconid and/or the anterior arm of the metaconid. In Eocene and Oligocene Old World hystricognaths, the trigonid of the dp4s is strongly variable and can display an anterior cingulid/anterolophid/anteroconid, and/or elements of the metalophulid I (which are usually separated and reduced), and/or the posterior arm of the protoconid/metaconid cristid. In some of these Old World hystricognaths (e.g., Baluchimys barryi, Lindsaya derbugtiensis; Flynn et al. 1986), there is no direct connection between the anterior cingulid/anterolophid/anteroconid and the anterior arms of the protoconid and metaconid, but the latter arms are often oriented toward the anterior cingulid/anterolophid/anteroconid. In contrast, in some others ('Acritophiomys' bowni, Birkamys korai, Hodsahibia azrae, Lophibaluchia, Phiomys hammudai, Protophiomys aegyptensis, and Protophiomys algeriensis; Jaeger et al. 1985Jaeger et al. , 2010;;Flynn et al. 1986;Sallam et al. 2009Sallam et al. , 2012;;[START_REF] Sallam | New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian "clock"-based phylogenetic methods on estimates of basal hystricognath relationships and biochronology[END_REF], the anteroconid (and often its anterior and posterior arms as well) and/or the anterior cingulid, can be connected to the metalophulid I. So, the anterior cristid on dp4s in caviomorphs (and in Gaudeamus too) could be a more complex structure, composed of a metalophulid I, an anteroconid, its arms, and of an anterior cingulid/anterolophid. We propose here to name this mesialmost cristid on caviomorph dp4s an anterocristid.

Rk1: the specimen GSP 21352 illustrated by Verzi et al. (2018, figure 1A, p. 2) and originally described as a dp4 of Baluchimys ganeshapher by Flynn et al. (1986, figure 17J, p. 30), does not correspond in fact to this baluchimyine taxon, but more likely to Downsimys, a taxon with potential anomalurid or even cylindrodontid or bathyergid affinities (see [START_REF] Marivaux | Les rongeurs de l'Oligocène des Collines Bugti (Balouchistan, Pakistan) : nouvelles données sur la phylogénie des rongeurs paléogènes, implications biochronologiques et paléobiogéographiques[END_REF][START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]Marivaux et al. , 2017b)). In contrast, we consider that GSP 21353 described as a p4 of B. ganeshapher by Flynn et al. (1986, figure 17I, p. 30), would be rather a dp4. The p4 of B. ganeshapher would be not documented (this assumption was already assumed in former works of Marivaux et al. (2002Marivaux et al. ( , 2004, etc.), etc.).

Rk2: the specimen Z5R-163 illustrated by Verzi et al. (2018, figure 1B, p. 2) was originally described by Coster et al. (2012, figure 4N, p. 243) as a dp4 of Metaphiomys aff. schaubi.

However, according to Marivaux et al. (2017a), the specimens attributed to this taxon rather correspond to a morphology corresponding to Acritophiomys (A. bowni), a genus also considered as a junior synonym of Phiomys. In this context, the material of Metaphiomys aff. schaubi from Zallah (Central Libya; [START_REF] Coster | New hystricognathous rodents from the Early Oligocene of central Libya (Zallah Oasis, Sahara Desert): systematic, phylogenetic, and biochronologic implications[END_REF]) should be rather designated as belonging to a species of

Phiomys.

The dp4s from CTA-27 (late Middle Eocene) attributed to Cachiyacuy contamanensis and C. kummeli are pentalophodont, except one, MUSM 1880, attributed to C. contamanensis, with almost hexalophodont scheme (Antoine et al. 2012(Antoine et al. , figure 2k, p. 1322)). Except for the mesialmost cristid (see above), the nomenclature proposed by Candela (2002) and Candela and Rasia (2012) is applicable on all dp4s. However, some clarifications are appropriate:

-the second transverse cristid does not always correspond to a long posterior arm of the protoconid (= metalophulid II). Indeed, it can be composed of a posterior arm of the protoconid plus a short cristid developed from the metaconid (MUSM 1880(MUSM , 1888(MUSM , 2663(MUSM , 2665(MUSM , and 2673;;Boivin et al. 2017a; Figure 15(A-E)). This short cristid is the equivalent of the metaconid cristid or metaconid spur of p4s and lower molars; -the mesolophid can be aligned and connected to a lingual cristid stemming from the mesostylid (MUSM 1880; Figure 15(A) and(E-H)). This lingual cristid is the equivalent of the neomesolophid of p4s and lower molars; -mesial and distal ectolophids can be recognized (Figures 14 and15). The distal ectolophid is longitudinal and links the mesolophid to the hypolophid. The mesial ectolophid is longitudinally oriented in its anterior part and linguodistally oriented in its posterior part.

It links the protoconid to the mesolophid and the distal ectolophid. On some dp4s of C. contamanensis (MUSM 1880(MUSM , 2464(MUSM , and 2671)), the mesial ectolophid appears composed of different structures: two cristulids on MUSM 2464 and 2671, and one large cuspid with anterior and posterior arms on MUSM 1880 (Antoine et al., 2012;Boivin et al. 2017a). This cuspid is connected to a cristid situated between the second cristid and the mesolophid, and which seems to be composed of two cristulids. This cuspid would be a mesoconid labially displaced, but it is interpreted here as a neocuspid, as well as the cristid that is connected to it (neolophid; Figures 16,17). Indeed, these structures are developed on only one dp4 of C. contamanensis (MUSM 1880). Paleogene Old World hystrognaths do not have structures with equivalent morphology and position (e.g., 'Acritophiomys', Protophiomys, Phiomys, 'Waslamys', Metaphiomys, Gaudeamus;[START_REF] Wood | Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part II: the African Oligocene Rodentia[END_REF]Sallam et al. 2009Sallam et al. , 2011Sallam et al. , 2012;;Jaeger et al. 2010;[START_REF] Coster | New hystricognathous rodents from the Early Oligocene of central Libya (Zallah Oasis, Sahara Desert): systematic, phylogenetic, and biochronologic implications[END_REF][START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]. Conversely, the mesoconid, at the intersection of the two ectolophids and mesolophid, tends to disappear in these taxa.

As for the p4s and lower molars, the metaconid cristid and neomesolophid are present on dp4s of other fossil taxa from Contamana (e.g., Cachiyacuy cf. contamanensis 1 of CTA-51; Boivin et al. 2017a) and Tarapoto/Shapaja (e.g., Caviomorpha indet. 1. of TAR-21, Eoincamys cf. pascuali of TAR-01, and Mayomys; Boivin et al. 2018), and elsewhere in South America (e.g., Branisamys, Incamys, Drytomomys, Eosallamys, and Galileomys;Fields 1957 Wood 1982;Frailey and Campbell 2004;Kramarz 2004; see coding of the characters 317 and 329 in Boivin 2017 and Boivin et al. submitted). Verzi et al. (2017, figure 4A, F, G, p. 417 and figure 5A, p. 418) have described a "lingual extension of the metaconid" on dp4s, in notably Ameghinomys constans, Protocaremys avunculus, Plesiacarechimys koenisgwaldi and in Acaremys (Sciamys principalis). This would be the metaconid cristid in Ameghinomys and Protocaremys, whereas it could be rather a neoformation in the other taxa (in which it seems to be not directly connected to the metaconid). As for the lower molars, the "crest C" defined by [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF] on dp4s of some echimyids (see Candela and Rasia (2012) and 'Historical review and current state of caviomorph dental structures') would correspond more likely to a neomesolophid with a labial extremity connected to the anterocristid. Within caviomorphs, the mesial ectolophid of the dp4s has variable morphology (Figure 16): it is more or less long, mesially connected or not to the protoconid, with or without neocuspid, and it can be aligned with the third cristid (mesolophid and/or neomesolophid; e.g., Caviomorpha indet. 5 and Cavioidea or Chinchilloidea indet. of CTA-29, Eobranisamys, Branisamys; Patterson and Wood 1982;Frailey and Campbell 2004;Boivin et al. 2017a) or with the distal ectolophid and hypolophid (e.g., E. cf. pascuali of TAR-01, Eoviscaccia, Drytomomys ;Fields 1957;Kramarz 2001a).

Considering our interpretation of the mesialmost cristid homology on caviomorph dp4s, the ancestral condition of the dp4s would not then be hexalophodont in caviomorphs. However, although an ancestral pattern of dp4s in caviomorphs would be probably pentalophodont, a scheme with four (even three) transverse cristids is not entirely excluded, because: -the dp4s of some African hystricognaths ('Acritophiomys ', Protophiomys, Phiomys, 'Waslamys', Metaphiomys, and Talaphiomys;[START_REF] Wood | Early Cenozoic mammalian faunas, Fayum Province, Egypt, Part II: the African Oligocene Rodentia[END_REF]Sallam et al. 2009Sallam et al. , 2012;;Jaeger et al. 2010;[START_REF] Coster | New hystricognathous rodents from the Early Oligocene of central Libya (Zallah Oasis, Sahara Desert): systematic, phylogenetic, and biochronologic implications[END_REF][START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF] variably have second and third cristids complete, reduced or absent.

If we take into consideration that the tetralophodonty (or trilophodonty) is the ancestral condition on caviomorph dp4s, the development of the third (even of the second) cristid would be a convergent feature between Old World hystrognaths and caviomorphs.

Like MUSM 1895and 2670, other dp4s (e.g., MUSM 2843, 2845, and 3302) from Contamana (Late Oligocene) and Tarapoto/Shapaja (Early Oligocene), exhibit a tetralophodont pattern, which is explained by the absence of the third cristid (Boivin et al. 2017b(Boivin et al. , 2018; Figure 17). The dp4s attributed to Mayomys are variable and can be tetralophodont (Boivin et al. 2018).

On these dp4s, the mesolophid can be either complete or reduced, or even absent, and the posterior arm of the protoconid can be complete or reduced, but always present (Boivin et al. 2018; Figure 17). Candela (2002) interpreted the tetralophodont pattern of the dp4s of Hypsosteiromys and some specimens of Erethizon dorsatum, as resulting from the loss of the mesolophid. The cristid in second position on the dp4s of Hypsosteiromys (MACN 52-176, and MNHN col 54) seems to be however formed by two connected cristids (Figure 17), which are: -a lingual part, which is transverse or labiomesially oriented (MACN 52-176 and MACN A 52-177), very distally positioned and stemming from a cuspid on the lingual margin of the teeth. Given its position and orientation, this cristid likely corresponds to a neomesolophid linked to a mesostylid; -a second part, which is linguodistally oriented, and appearing in a position intermediate between the usual posterior arm of the protoconid and mesolophid. Although it is located far from the protoconid (especially on the dp4 of the specimen MLP 84-111-10-1), it would more likely correspond to a posterior arm of the protoconid, notably owing to its obliquity.

According to Candela (2002), some erethizontids (i.e., Eosteiromys homogenidens, E. dorsatum, Steiromys detentus, S. duplicatus, and Coendou prehensilis) have dp4s with a hexalophodont pattern, which is characterized by the addition of a neolophid in the anteroflexid, between the anterocristid (anterolophid sensu Candela 2002) and the second cristid (metalophulid II sensu Candela 2002), and mesially to the metaconid (Figure 17). Other extinct taxa such as Shapajamys labocensis (Boivin et al. 2018), Eobranisamys romeropittmanae (Frailey and Campbell 2004), Branisamys luribayensis [START_REF] Hartenberger | Nouvelles découvertes de rongeurs dans le Déseadien (Oligocène inférieur) de Salla Luribay (Bolivie)[END_REF]Patterson and Wood 1982;Candela 2002), Incamys bolivianus (e.g., MNHN-Bol 008499), Drytomomys typicus (Candela and Nasif 2006) and Luantus propheticus (Kramarz 2006b), seem to have developed this pattern (see coding of the character 320 in Boivin 2017 and Boivin et al. submitted). Nevertheless, the recognition of the cuspids (protoconid and metaconid) and anterior cristids (posterior arm of the protoconid, mesolophid, neomesolophid, metaconid cristid, and neolophid) is often ambiguous on dp4s of erethizontoids. Moreover, some representatives of this superfamily would develop another type of neolophid located not mesially to the metaconid but distally to this cuspid (see coding of the character 318 in Boivin 2017 and Boivin et al. submitted). For instance, the specimen MACN A 4160, attributed to Steiromys detentus, shows a short neocristulid stemming from the lingual edge in the anteroflexid. This neocristulid, situated between the anterocristid and the second cristid, is distally located to the metaconid (Figure 17). The oblique 'second cristid' would correspond to the posterior arm of the protoconid, which is connected to a neomesolophid (i.e., a combination of branches forming the second and third cristids of the pentalophodont scheme, respectively). The MACN 52-176 dp4 of Hypsosteiromys presents a similar cristulid to that observed in MACN A 4160, which is positioned distally to the metaconid.

Conclusions

The exhaustive analysis of the material from Contamana and Tarapoto/Shapaja, and its comparisons with other hystricognath specimens (fossil and modern New and Old World hystricognaths) further our understanding regarding the homology and the evolutionary patterns of the dentary structures in caviomorphs. Our analytical results (1) support and/or allow to generalize some hypotheses formerly proposed about the occlusal morphology of caviomorph cheek teeth and associated evolutionary transformations (e.g., Vucetich and Verzi 1994;[START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]Candela , 2002;;Candela and Rasia 2012), and (2) propose new hypotheses of dental homologies and evolutionary trends. In caviomorphs, the third crest of the upper teeth is highly variable and would correspond either to a mesoloph (stemming from the mesostyle), or a mesolophule (originating from the mesial extremity of the anterior arm of the hypocone [i.e., former position of the ancestral metaconule]), or a combination of both. In most early and subsequent caviomorphs, the transformation from a pentalophodont pattern to a tetralophodont pattern would be explained by the reduction/loss of the metaloph or its merging with the posteroloph, and the tranformation from a tetralophodont pattern to a trilophodont pattern, by the reduction/loss of the the third crest or its merging with the posteroloph. A direct transformation from a pentalophodont pattern to a trilophodont pattern is also observed. On the mesial part of lower teeth, the development of distinct cristids can be recognized, depending primarily on their connections with other structures and secondarily on their position and orientation: metalophulid I (for p4s and lower molars)/anterocristid (for dp4s), posterior arm of the protoconid, metaconid cristid, neomesolophid, mesolophid, and different types of neolophids. Given our observations on ancient fossil specimens, the ancestral pattern of lower molars in caviomorphs was likely tetralophodont, and that of dp4s pentalophodont. However, schemes with five and four (even three) transverse cristids can not be ruled out for the two loci, respectively. The trilophodont pattern of lower molars was mostly secondarily achieved by the loss of the second cristid, a loss which seems to have occurred distinctly, iteratively and at different times in several superfamilies (notably chinchilloids vs octodontoids) and genera. Caviomorphs show a significant disparity of occlusal patterns on their cheek teeth throughout their evolutionary history, which is the result of a complex evolution, involving many comtemporaneous and non-comtemporaneous convergences and parallelisms for each locus. It would be now interesting to assess the correlative effects of the modifications in the number of loph(-id)s and cusp(id)s with other characters (dental, but also mandibular and cranial), to determine if they could be key innovations for this rodent group, and then to explore the modalities of their appearance/selection. 1, protoconid; 2, metaconid; 3, mesoconid; 4, entoconid; 5, hypoconid; 6, mesostylid; 7, metalophulid I; 8, anterocristid; 9, posterior ; 15, ectolophid; 16, mesial ectolophid; 17, distal ectolophid; 18, hypolophid; 19, anterior arm of the entoconid; 20, posterior arm of the entoconid; 21, anterior arm of the hypoconid; 22, posterior arm of the hypoconid; 23, anterior outgrowth of the hypoconid; 24, posterolophid; 25, anteroflexid/anterofossettid; 26, anterostriid; 27, mesoflexid; 28, mesial mesoflexid; 29, distal mesoflexid; 30, mesostriid; 31, confluence of the anteroflexid with the mesoflexid; 32, hypoflexid; 33, hypostriid; 34, metaflexid; 35, metastriid; 36, confluence of the hypoflexid with the metaflexid. Abbreviations: ant., anterior; ling., lingual. (F) [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF], Antoine et al. (2012) (caviomorphs). 1 paracone; 2 protocone; 3 metacone; 4 hypocone; 5 mesostyle; 6 metaconule; 7 anteroloph; 8 protoloph; 9 mesolophule; 10 mesoloph; 11 neocrest sensu [START_REF] Candela | The evolution of the molar pattern of the Erethizontidae (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino[END_REF]; 12 metaloph; 13 neoloph sensu [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF]14 posteroloph;15 paraflexus;16 hypoflexus;17 mesoflexus;18 metaflexus;19 posteroflexus; 20 neofossette sensu [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF]. Abbreviations: ant., anterior; ling., lingual. [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]tetralophodont echimyids); (E) Candela and Rasia (2010), (E1) non-tetralophodont echimyids, (E2) tetralophodont echimyids; (F) Verzi et al. (2014[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF][START_REF] Verzi | Systematics and evolutionary significance of the small Abrocomidae from the Early Miocene of southern South America[END_REF] (1959; caviomorphs), Patterson and Wood (1982;caviomorphs), [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]nontetralophodont echimyids); (B) Candela (2002), (B1) non-tetralophodont erethizontoids, (B2) tetralophodont erethizontoids; (C) [START_REF] Marivaux | A new and primitive species of Protophiomys (Rodentia, Hystricognathi) from the late Middle Eocene of Djebel el Kébar, Central Tunisia[END_REF]caviomorphs), Antoine et al. (2012;caviomorphs), Candela and Rasia (2010;non-tetralophodont echimyids); (D) [START_REF] Carvalho | Relationships among extant and fossil echimyids (Rodentia: Hystricognathi)[END_REF]tetralophodont echimyids); (E) Candela and Rasia (2010), (E1) tetralophodont echimyids configuration 1, (E2) tetralophodont echimyids configuration 2; (F) [START_REF] Verzi | Morphology of the lower deciduous premolars of South American hystricomorph rodents and age of the Octodontoidea[END_REF]caviomorphs). 1 protoconid; 2 metaconid; 3 mesoconid; 4 entoconid; 5 hypoconid; 6 mesostylid; 7 metalophulid I; 8 anterolophid; 9 neolophid sensu Candela (2002); 10 metalophulid II; 11 neolophid sensu [START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF] (Vucetich and Verzi 1994). Abbreviations: ant. anterior;ant, anteroloph;H, hypocone;ling. lingual;Me, metacone;meta, metaloph;Mst, mesostyle;Pa, paracone;post, posteroloph;Pr, protocone;proto, (labial) protoloph. The schematic line drawings focus exclusively on the second transverse cristid. Abbreviations: ant. anterior; Ed, entoconid; Hd, hypoconid; hypod, hypolophid; ling. lingual; Md, metaconid; med I, metalophulid I ; Myd, mesostylid; Pd, protoconid; postd, posterolophid Hd,hypoconid;hypod,hypolophid;ling. lingual;Md,metaconid;m ectod,mesial ectolophid;Myd,mesostylid;Pd,protoconid;postd,posterolophid. Figure 16. The ectolophids of dp4s. The schematic line drawings focus exclusively on these structures. Abbreviations: ant. anterior; ante, anterocristid; d ectod, distal ectolophid; Ed, entoconid; Hd, hypoconid; hypod, hypolophid; ling. lingual; Md, metaconid; m ectod, mesial ectolophid; Myd, mesostylid; Pd, protoconid; postd, posterolophid; 25, anteroflexid/anterofossettid; 26, anterostriid; 27, mesoflexid; 28, mesial mesoflexid; 29, distal mesoflexid; 30, mesostriid; 31, anterocristid; d ectod, distal ectolophid; Ed, entoconid; Hd, hypoconid; hypod, hypolophid; ling. lingual; Md, metaconid; m ectod, mesial ectolophid; Myd, mesostylid; Pd, protoconid; postd, posterolophid. 173x235mm (300 x 300 DPI) 
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  with a well-defined and long metaloph (Branisamys and Protosteiromys) exhibit brachydont teeth, a crown state which would rather indicate a plesiomorphous condition for the metaloph configuration;

  ) and (D), 5(A) and (D)) based on cladistic assessments (Figures 4(E) and 5(E)). Following their results, the tetralophodonty would condition of lower molars in echimyids, the pentalophodonty and trilophodonty

  (A)) or not (Figure 6(B)). It can also be only formed by the mesolophule (e.g., general case of upper molars of Mayomys; Figure 6(C) and (D)) or only by the mesoloph (e.g., general case of upper molars of three species of Eoincamys from Tarapoto/Shapaja; Figure 6(E) and (F))(Boivin et al. 2018). Besides, the mesoloph and mesolophule are also strongly variable in terms of length (Figure6(A-F)), orientation and connections with other elements (i.e., with the mesostyle, anterior arm of the hypocone, metaloph, or posteroloph). The third crest composition is sometimes hardly interpretable, notably when (1) this crest is fully transverse from the mesostyle to anterior arm of hypocone without discontinuity or mesiodistal pinch-point (Figure6(G)), or (2) it displays several discontinuities or mesiodistal pitch-points (Figure6(H)).

  scheme (transformation cladistically supported inBoivin 2017 and Boivin et al. submitted), is

  distal flexus, which are typical features of octodontoids (e.g., Caviocricetus, Dudumus).

  have proposed that the transformation from a tetralophodont pattern to a trilophodont pattern can be explained by the loss of a crest (i.e., mesoloph sensu Vucetich and Verzi 1994; mesolophule sensu Verzi et al. 2016; called third transverse crest here) merging with the posteroloph. This transformation allows explaining the dental pattern of upper molars of Chambiramys shipiborum from CTA-32 (Late Oligocene). Indeed, this taxon displays trilophodont upper molars, with a mesostyle distally displaced and strongly linked to the posteroloph and structures associated to the posteroloph, which are likely the relicts of the third crest or its connection with the posteroloph (on MUSM 2849 and 2852; Boivin et al. 2017b, figure 4B, C, p. 77). With wear (MUSM 2851; Boivin et al. 2017b, figure 4D, p. 77), all of these structures merge and form a large complex (i.e., platform).The observations made here, supported by phylogenetic results of[START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF] andBoivin et al. (submitted) and consistent with the proposition ofVucetich and Verzi (1994), allow to explain the transformation from a pentalophodont pattern to a tetralophodont pattern: the with the posteroloph or it would be lost. Concerning the tranformation from a tetralophodont pattern to a trilophodont pattern, in this case it is the third crest (mesoloph sensuVucetich and Verzi 1994; mesolophule sensu[START_REF] Verzi | Contrasting phylogenetic and diversity patterns in octodontoid rodents and a new definition of the family Abrocomidae[END_REF] which would merge in fine with the posteroloph or would disappear, the metaloph being already absent or subsumed (indistinct) within the posteroloph (Figure

  A short and longitudinal spur (Figure10), situated on the mediolingual part of the posteroloph, can be observed in several taxa from Contamana (Eocene and Oligocene) and Tarapoto/Shapaja: Cachiyacuy contamanensis, Eobranisamys javierpradoi, Chambiramys shipiborum, Maquiamys praecursor, Palaeosteiromys amazonensis, Eoincamys valverdei, Eoincamys parvus, cf.

  (A) and (B)); -it can be present althrough the metaloph is absent (or completely subsumed within the posteroloph) (Figure 10(C) and (D));-it can be also connected to the third crest and notably to the mesoloph (e.g., E. valverdei, E. parvus, and T. mayoensis) (Figure10(D)). the protoconid, neomesolophid, mesolophid and neocristids on lower molars
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  )) or disconnected (Figure 11(B)), and in some cases, only the posterior arm of the protoconid (Figure 11(C) and (D)) or the neomesolophid (Figure 11(E) and (F)) forms the second cristid (see Page 29 of 118 URL: http://mc.manuscriptcentral.com/Boivin et al. 2017a, figure 8, p. 21). A posterior arm of the protoconid and neomesolophid are also recognisable on p4s of C. contamanensis(Boivin et al. 2017a, figure 7, p. 20). As for the third crest of upper teeth, it is sometimes difficult to determine the composition of the second cristid of lower teeth (Figure11(G) and (H)). The other taxa described from Contamana and Tarapoto/Shapaja have lower molars that differ regarding the development of these two cristids: both cristids are present (e.g., Cachiyacuy kummeli, Canaanimys maquiensis, Palaeosteiromys amazonensis, cf. Tarapotomys sp. of TAR-20 and TAR-21, and Tarapotomys mayoensis), only the neomesolophid is developed (e.g., Chambiramys sylvaticus, Eoincamys cf. pascuali of TAR-01, Tarapotomys subandinus, and Tarapotomys mayoensis), only the posterior arm of the protoconid is developed (e.g., Mayomys confluens), or neither cristid is present (Chambiramys shipiborum

  lower molars of C. contamanensis (CTA-27, late Middle Eocene; MUSM

  . This ancestral pattern would have been rapidly supplanted by the tetralophodont scheme (i.e., without mesolophid; Figure12).It is worth noting that the modern caviomorph Dasyprocta can have pentalophodont lower molars (Figure12) characterized by: -a second transverse cristid clearly formed by a posterior arm of the protoconid and another cristid stemming from the metaconid (metaconid cristid or metaconid spur, see below); -a third cristid between the second transverse cristid and the hypolophid. It is composed of a lingual part corresponding potentially to a neomesolophid, and a labial part stemming from the ectolophid, which can be interpreted as a mesolophid.

  figures 1-2, p. 96-98; Figure13(K); Figure14(B-H), (J) and (K)) as a metalophulid II seems

  figure 5.1, 5.5, p. 10; Figure17);
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 7 Figure7. Terminology of flexi on upper teeth. In red, third transverse crest (cf. Figure6).
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 34567891011121314151617 Figure 3. The hypotheses regarding the homology of structures on upper molars. (A) Wood and Patterson (1959), Patterson and Wood (1982) (caviomorphs); (B) Hoffstetter and Lavocat (1970), Lavocat (1976) (caviomorphs); (C) Bryant and McKenna (1995; 'phiomorphs' and caviomorphs); (D) Candela (1999; erethizontoids); (E) Marivaux et al. (2004; general nomenclature for rodents); (F) Marivaux et al. (2004), Antoine et al. (2012) (caviomorphs). 1 paracone; 2 protocone; 3 metacone; 4 hypocone; 5 mesostyle; 6 metaconule; 7 anteroloph; 8 protoloph; 9 mesolophule; 10 mesoloph; 11 neocrest sensu Candela (1999); 12 metaloph; 13 neoloph sensu Wood and Patterson (1959); 14 posteroloph; 15 paraflexus; 16 hypoflexus; 17 mesoflexus; 18 metaflexus; 19 posteroflexus; 20 neofossette sensu[START_REF] Wood | The rodents of the Deseadan Oligocene of Patagonia and the beginnings of South American rodent evolution[END_REF]. Abbreviations: ant., anterior; ling., lingual.113x69mm (300 x 300 DPI)

  nor to the neolophid aforementioned. It extends labially from the metaconid, being usually short or very short. It is named here metaconid cristid or metaconid spur(Figures 12 and 13;[START_REF] Boivin | Rongeurs paléogènes d'Amazonie péruvienne : anatomie, systématique, phylogénie et paléobiogéographie Unpublished[END_REF] Boivin et al. submitted). For most taxa displaying that metaconid cristid, the developement of this structure is very variable. Besides, for a given species, this cristid can be present or absent (see coding of the character 369 inBoivin 2017 and Boivin et al. submitted). It can be then expected that the development of this structure is convergent among several taxa. It is frequently found in octodontoids (e.g., Platypittamys, Sallamys, Willidewu, Acaremys, Dudumus,
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A. erlianensis Huheboerhe-Nuhetingboerhe (AS-1), (Lower Arshanto Fm.), Inner Mongolia late Early Eocene Meng et al. 2007b Cocomys C. lingchaensis Lingcha Fm., Hengdong County, China Early Eocene UM (cast) Li et al. 1989 Reithroparamys R. delicatissimus Luman Tongue (Wasatch Fm.), Wyoming, USA early Early Eocene UM (cast) Leidy 1871; Wood 1962 Tamquammys T. dispinorum Shipigou (Hetaoyuan Fm.), China middle Middle Eocene Dawson et al. 1984 T. wilsoni Huheboerhe escarpment (IM-1) (Irdin Manha Fm.), Nei Mongol, China earliest Eocene -earliest Middle Eocene Dawson et al. 1984 T. tantillus Obayla Fm., Kazakhstan late Early -Middle Eocene Dawson et al. 1984 Chapattimys C. wilsoni H-GSP 144, Kala Chitta Range (Kuldana Fm.), Pakistan; Upper Subathu Group, India early Middle Eocene Hussain et al. 1978 Birbalomys B. sondaari H-GSP 144, Kala Chitta Range (Kuldana Fm.), Pakistan; Upper Subathu Group, India early Middle Eocene UM (cast) Hussain et al. 1978 B. woodi H-GSP 144, Kala Chitta Range (Kuldana Fm.), Pakistan; Upper Subathu Group, India early Middle Eocene UM (cast) Hussain et al. 1978 Ottomania O. proavita Süngülü, Lesser Caucasus, Turkey Eocene/Oligocene boundary interval De Bruijn et al. 2003 Baluchimys B. krabiense Bang Mark Lignite Mine, Krabi, Thailand lastest Eocene Marivaux et al. 2000 B. barryi Y-GSP 417, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene Flynn et al. 1986 B. ganeshapher Y-GSP 417, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene Flynn et al. 1986 Lindsaya L. derabugtiensis Y-GSP 417, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene Flynn et al. 1986 Lophibaluchia L. pilbeami Y-GSP 417, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene Flynn et al. 1986 Hodsahibia H. azrae Y-GSP 417, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene UM (original) Flynn et al. 1986; Marivaux and Welcomme 2003 H. gracilis DBC2, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene Marivaux and Welcomme 2003 Bugtimys B. zafarullahi DBC2, Bugti Hills (Chitarwata Fm.), Balochistan, Pakistan Early Oligocene UM (original) Marivaux et al. 2002 Talahphiomys T. lavocati DT-Loc. 2, Bioturbated Unit, Dur At-Talah, Libya Late Eocene -Early Oligocene Jaeger et al. 2010 T. libycus DT-Loc. 1, Bioturbated Unit, Dur At-Talah, Libya Late Eocene Jaeger et al. 2010 "Waslamys" "W". attiai BQ-2 (Birket Qarun Fm.), Fayum Depression, Egypt early Late Eocene UM (cast) Sallam et al. 2009 Protophiomys P. aegyptensis BQ-2 (Birket Qarun Fm.), Fayum Depression, Egypt early Late Eocene UM (cast) Sallam et al. 2009 P. algeriensis Bir El Ater, Nementcha, Algeria early Late Eocene UM (original) Jaeger et al. 1985 Acritophiomys A. bowni L-41 (Jebel el Qatrani Fm.), Fayum Depression, Egypt latest Eocene Sallam et al. 2012 Birkamys B. korai L-41 (lowermost Jebel Qatrani Fm.), Fayum Depression, Egypt; + Dakhla DAK-C2 latest Eocene -earliest Oligocene Phiomys P. hammudai DT-Loc. 1, Bioturbated Unit, Dur At-Talah, Libya Late Eocene UM (cast) Jaeger et al. 2010 Metaphiomys M. schaubi Quarries B, G and E (Jebel Qatrani Fm.), Fayum Depression, Egypt; + Z7I, Zallah Oasis, Libya Early Oligocene UM (cast) Wood 1968; Coster et al. 2015 Gaudeamus G. aegypticus Quarries A&B and E (Jebel Qatrani Fm.), Fayum Depression, Egypt Early Oligocene Wood 1968 G. aslius L-41 (lowermost Jebel Qatrani Fm.), Fayum Depression, Egypt; + Dakhla DAK-C2 latest Eocene -earliest Oligocene Sallam et al. 2011 G. hylaeus L-41 (lowermost Jebel Qatrani Fm.), Fayum Depression, Egypt; + Dakhla DAK-C2 latest Eocene -earliest Oligocene Sallam et al. 2011 Paraphiomys P. pigotti Rusinga, Kenya Early Miocene -late Middle Miocene UM (original) Lavocat 1973 Thryonomys T. swinderianus Recent UM (original)
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