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Spatial conservation planning seeks optimal designs 
of PAs that meet multiple targets while minimizing costs 
(Margules and Pressey 2000). Biodiversity representation 
and species persistence are the key targets of conservation 
planning (Cabeza and Moilanen 2001). If the former target 
has received much attention, the latter is still overlooked 
partly due to a lack of theoretical framework and appro-
priate tools. Landscape connectivity affects population  
persistence through the effects of dispersal on colonization, 
recruitment and gene flow (Baguette et  al. 2013, Kool  
et  al. 2013) and as such is crucial to develop effective  
conservation planning (Noss and Daly 2006). For exam-
ple, Moilanen et  al. (2005) use ‘population connectivity  
surfaces’ as a way to integrate connectivity into spatial  
conservation planning. Similarly, incidence functions have 
been used to include the effect of dispersal on species occur-
rence probability and rank habitat patches (Cabeza et  al. 
2003, van Teeffelen et al. 2006). However, these approaches 
do not explicitly frame the optimization function in terms 
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Protected areas (PAs) are the most relevant tools to offset 
biodiversity loss (Spalding et  al. 2008), and to ensure the 
long-term provisioning of ecosystem services essential for 
human wellbeing. The Convention on Biological Diversity 
(CBD) has set clear and ambitious targets to be reached by 
2020: to protect at least 17% of land ecosystems and 10% 
of marine and costal habitats (COP10; www.cbd.int/
cop10). Since the current protected fraction of the world 
is extremely small and unevenly distributed (Spalding et al. 
2008, Marinesque et  al. 2012), the need to expand exist-
ing PA networks has stimulated vigorous debates about 
their future design (location, size, spacing, and configura-
tion), efficiency (maximizing the gain for a given cost) and 
effectiveness (ensuring that targets and objectives are met) 
(Rodrigues et  al. 2004). This increasing demand has trig-
gered the development of conservation planning which, for 
the last two decades, has provided criteria and tools for PA 
network design and for guiding policy decisions (Margules 
and Pressey 2000, Pressey et al. 2007).
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Protected areas (PAs) are recognized as the flagship tool to offset biodiversity loss on Earth. Spatial conservation planning 
seeks optimal designs of PAs that meet multiple targets such as biodiversity representation and population persistence. 
Since connectivity between PAs is a fundamental requirement for population persistence, several methods have been devel-
oped to include connectivity into PA design algorithms. Among these, the eigenvalue decomposition of the connectivity 
matrix allows for identifying clusters of strongly connected sites and selecting the sites contributing the most to population 
persistence. So far, this method was only suited to optimize an entire network of PAs without considering existing PAs in 
the new design. However, a more cost-effective and realistic approach is to optimize the design of an extended network 
to improve its connectivity and thus population persistence. Here, we develop a flexible algorithm based on eigenvalue 
decomposition of connectivity matrices to extend existing networks of PAs while optimizing connectivity and population 
growth rate. We also include a splitting algorithm to improve cluster identification. The new algorithm accounts for the 
change in connectivity due to the increased biological productivity often observed in existing PAs. We illustrate the poten-
tial of our algorithm by proposing an extension of the network of ∼100 Mediterranean marine PAs to reach the targeted 
10% surface area protection from the current 1.8%. We identify differences between the clean slate scenario, where all sites 
are available for protection, irrespective of their current protection status, and the scenario where existing PAs are forced 
to be included into the optimized solution. By integrating this algorithm to existing multi-objective and multi-specific 
algorithms of PA selection, the demographic effects of connectivity can be explicitly included into conservation planning.
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of population persistence, which is still largely missing in 
the PA selection process.

This is even more surprising, because metapopulation 
theory offers a valid framework to include the population 
persistence target into PA selection methods (Nicholson and 
Ovaskainen 2009) through the development of metrics such 
as the probability of population persistence (Moilanen and 
Cabeza 2002), the mean time to extinction (Nicholson et al. 
2006, Kininmonth et  al. 2011), the number of occupied 
habitat patches (Ovaskainen 2002) or the metapopulation 
capacity (Hanski and Ovaskainen 2000, Nilsson Jacobi and 
Jonsson 2011). All these metrics depend on dispersal, which 
in turn depends on the structure of the landscape. PA selec-
tion algorithms would thus need to optimize at least one of 
these metrics to allow population persistence becoming an 
operational target of conservation planning (Moilanen and 
Cabeza 2002, Nicholson et al. 2006).

The development of PA selection algorithms including 
connectivity as a driver of population persistence has been 
paralleled by the continuous improvement of methods for 
assessing organism movement, dispersal and functional 
connectivity through the use of satellite tags, genetic parent-
age analyses and biophysical models (Baguette et al. 2013, 
Kool et al. 2013). Taking advantage of this increasing quan-
tification of connectivity and the availability connectivity 
matrices among habitat patches, Nilsson Jacobi and Jonsson 
(2011) developed an algorithm based on the metapopula-
tion theory to rank sites according to their contribution to 
population growth rate. The population growth rate is cal-
culated as the largest eigenvalue of the connectivity matrix 
(Hanski and Ovaskainen 2000) while the contributions  
of individual sites are calculated using eigenvector analy-
sis. The eigenvalue perturbation theory (EPT) algorithm 
was specifically designed to use the whole information 
contained in the connectivity matrix (Nilsson Jacobi and 
Jonsson 2011). The main distinctiveness of the EPT algo-
rithm from the other PA selection methods is the use of the 
full eigenvalue spectrum, instead of the largest eigenvalue 
only, as a metric of population viability. This methodologi-
cal improvement produces spatially balanced configurations 
of PAs when the metapopulation is weakly connected and 
composed of subpopulations or clusters.

However, the EPT algorithm was only designed for the 
clean slate scenario (no pre-existing PAs), whereas in most 
real-world cases PAs are already present in the region where 
more conservation effort is needed. PAs are still classically 
established on the basis of local socio-political considerations 
instead of a regional strategy. However, removing some PAs 
to select new ones is rarely implemented even if it can be cost-
effective (Fuller et al. 2010, Alagador et al. 2014). Instead, 
a more realistic and appropriate objective of conservation 
planning is to optimize the future network by adding new 
PAs to the existing ones. The optimal extended network may 
substantially deviate from the clean slate scenario (Malcolm 
et  al. 2012). The aim of our study is therefore to develop 
a flexible algorithm, based on EPT, to extend existing net-
works of PAs while optimizing connectivity and population 
growth rate. We then illustrate the applicability of the algo-
rithm with the network of Mediterranean marine PAs which 
is currently extending but still lagging behind CBD targets 
(Gabrié et al. 2012).

Methods

Eigenvalue perturbation theory (EPT)

We first explain how the eigenvalue perturbation theory 
(EPT) can be used to optimize a network of PAs based on 
the importance of local sites for population growth rate and 
persistence. Protecting a site has positive effects on popu-
lation dynamics enhancing survival, growth and fecundity 
rates (Claudet et al. 2008). Higher vital rates promote higher 
production of propagules and biomass in this given site but 
the effect on the global population persistence, i.e. across 
sites, is largely modulated by the ability of sites to exchange 
propagules (e.g. seeds or larvae) (Hastings and Botsford 
2006, Artzy-Randrup and Stone 2010). For instance, if a 
given site is isolated and cannot supply propagules to any 
other site but itself, increasing its productivity would not 
benefit the metapopulation. Conversely, the protection of 
a site that is highly connected to many others by dispersal 
would enhance population persistence beyond its boundar-
ies. We can thus rank sites according to their contribution to 
population growth rate by analyzing connectivity patterns.

To this aim, the EPT considers a geographically struc-
tured population made up by n local sites connected by 
propagule dispersal. Generations are discrete and the pro-
duction of propagules is set equal among sites. The square 
connectivity matrix C of size n contains probabilities of 
propagule dispersal between sites. We focus on propagule 
dispersal (larvae or seeds for example) but the demographic 
model could be formulated to describe adult dispersal with-
out loss of generality.

The C matrix has eigenvalues [l1, l2, …ln] with the 
largest, lmax, termed metapopulation capacity (Hanski and 
Ovaskainen 2000), corresponding to population growth 
rate. The contributions of sites to lmax can be obtained by 
multiplying C by a diagonal matrix E whose elements, Eii, 
represent the productivity of site i relative to the unprotected 
case, i.e. Eii  1 means an unprotected site while Eii  1.1 
means a 10% productivity increase and thus can be used to 
represent a protected site. Increasing a diagonal element of 
E mimics a productivity increase at a single site i: the effect 
of such an increase on lmax can be found by calculating the 
new eigenvalues of the product of the two matrices C and 
E. The contribution of site i to lmax is defined as the result-
ing increase in lmax due to the increase in site productivity. 
Numerical methods can be used to calculate the eigenvalues 
of CE but a linear approximation was proposed by Nilsson 
Jacobi and Jonsson (2011). It offers a fast, efficient and  
precise approximation for the computationally intensive 
calculations of eigenvalues and eigenvectors. A productiv-
ity increase d in a site is considered as a perturbation of the  
C matrix. Simultaneous perturbations of multiple elements 
of E can be considered independently and their effects  
calculated separately.

When connectivity is low, the largest eigenvalue lmax  
cannot solely describe accurately the whole population 
dynamic since clusters of connected sites have their own 
dynamics. In such case, detecting clusters of sites before 
calculating the site contribution to population growth is 
required to avoid spatially unbalanced site prioritization 
(Supplementary material Appendix 1).
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There are various methods to define clusters of connected 
sites. We used sequentially two of them to improve our algo-
rithm efficiency. The first method is an iterative splitting of 
the connectivity matrix aiming at minimizing connectivity 
among clusters and maximizing connectivity within clusters 
(Nilsson Jacobi et  al. 2012). The iterative split can how-
ever lead to the trivial solution where the entire population 
belongs to a single cluster because this maximizes connectiv-
ity within a large cluster. To avoid this, Nilsson Jacobi et al. 
(2012) penalize splits that assign pairs of sites with weak 
connectivity to the same cluster. They define a threshold 1/b 
(where b  0 is defined by the user) to penalize solutions 
that assign to the same cluster pairs of sites i, j with Cij  1/b. 
The optimal clustering thus depends on b. Since there is no 
objective method to set the value of b, we recommend using 
different values and merging the different final configura-
tions. The second method is based on the spectral decompo-
sition of the connectivity matrix (Nilsson Jacobi and Jonsson 
2011). Different clusters can be associated to different eigen-
values of the spectrum even if sites are not assigned explicitly 
and univocally to a single cluster. We can thus calculate the 
contribution of site productivity increase to each eigenvalue. 
It represents the contribution to population growth rate in 
the cluster associated to that eigenvalue.

Here, we propose to use the two methods sequentially 
(Fig. 1a). In the first step, we split the connectivity matrix 
into clusters by minimizing connectivity among clusters. 
This produces a set of connectivity submatrices, one for each 
cluster. Then, in a second step, we calculate, for each sub-
matrix, the contributions of each site to all the dominating 
eigenvalues of the submatrix, i.e. the eigenvalues whose cor-
responding eigenvectors have only positive (or only negative) 
elements. This produces a number of ranks equal to the num-
ber of dominating eigenvalues of the submatrix. After calcu-
lating site contributions for all dominating eigenvalues and 
clusters (submatrices), a ranking of sites is created accord-
ing to their highest contributions across all eigenvalues and 
clusters. The final rank of each site is obtained by taking its 
highest contribution across eigenvalues, clusters and values 
of b. In the clean slate scenario, the final configuration of 
PAs corresponds to the first nt sites (total number of sites to 
be protected) of the final ranking. The splitting of the popu-
lation in the first step may seem redundant but our calcula-
tions showed that using the eigenvalue decomposition alone 
led to many degenerate eigenvalues. Eigenvalues are degen-
erate when their values are too similar to be unequivocally 
associated to a single cluster; more formally, an eigenvalue 
is degenerate when it is associated to two or more linearly 
independent eigenvectors. Especially, if a subpopulation has 
a low growth rate, its dominating eigenvalues can become 
mixed within a set of subdominant eigenvalues of subpop-
ulations with higher growth rates. Using the two methods 
sequentially reduces the probability of having degenerate 
eigenvalues and therefore produces more reliable results.

Extending networks of PAs

The original EPT method was not designed to include 
already protected sites, and existing PAs may modify  
total population growth thanks to their higher productiv-

ity compared to unprotected sites. Higher productivity in  
protected vs. unprotected sites has been widely documented 
for marine species (Halpern 2003, Sala et al. 2012) and is  
beneficial for exploited species for which PAs can act as sources 
of larvae and adults for fished areas (Christie et  al. 2010, 
Pelc et al. 2010, Harrison et al. 2012). Productivity increase 
in terrestrial PA is less documented but examples show that  
dispersal from PAs allows the recolonization of areas where 
the species was eradicated (Ahlering et al. 2012).

Including existing PAs in the final configuration is there-
fore a crucial step forward for the ETP algorithm. For doing 
so, we estimated a new connectivity matrix C¢ that takes into 
account higher productivity in protected sites. C¢ is obtained 
by multiplying the connectivity matrix C by a productivity 
matrix P: C¢  CP. P is a diagonal matrix whose elements are 
the site-specific productivities. The elements of C, c(i,j), are 
the probabilities that a propagule produced in site j will reach 
site i. Matrix P scales these probabilities by site productivity, 
i.e. by the number of offspring produced by an individual 
during its lifetime. The elements of C¢, c ¢(i,j), can be seen 
as the probabilities that offspring from an individual in site 
j will reach site i. P mimics that existing PAs have higher 
productivity than unprotected sites. For example, by setting 
p(i,i)i ∈PAs  1.1*p(j,j)j ∉PAs, we assume that existing PAs have 
a 10% higher propagule productivity than unprotected sites. 
The ranking of the remaining unprotected sites is then calcu-
lated by applying the EPT algorithm to the C¢ matrix. The 
new approach thus accounts for productivity increase in PAs 
and its effect on connectivity is similar to that of Berglund 
et  al. (2012) accounting for varying habitat quality among 
sites. The whole framework for extending networks of PAs to 
maximize connectivity is summarized in Fig. 1b.

If the number of existing PAs is ne, the final configuration 
is found by taking the ne existing PAs and the first (nt – ne) 
sites in the ranking of unprotected sites calculated with the 
EPT algorithm. Such final configuration including existing 
PAs will likely be suboptimal relative to the configuration 
of the clean slate scenario, except in the very unlikely case 
where all ne PAs are in the top ranking of the clean slate 
scenario (i.e. the existing PAs network was indeed selected to 
optimize connectivity).

Evaluation of optimality

A final configuration of sites is optimal if population growth 
rate is maximized relative to other solutions. Since the objec-
tive is to increase population growth rate at low population 
size, one criterion to evaluate the final configuration is to cal-
culate population size after disturbance using a simple model 
of population dynamics (Nilsson Jacobi and Jonsson 2011). 
For the clean slate scenario, the model is:
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where xi,t is population size in site i at time t. Cij is the ij-th 
element of the connectivity matrix. Eii is the ii-th element 
of the diagonal matrix defining which areas are protected: 
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configuration is measured as the mean population size for 
the years with the smallest total population sizes.

For the extension of an existing network, the popula-
tion dynamic model is similar as in Eq. (1), except that Cij  
is replaced by C ¢ij. In addition, Eii  1  d only for sites  
chosen for protection that are not already protected since the 
increase in productivity in existing PAs is already accounted 
for in the C¢ matrix.

Eii  1  d if i is protected and 1 otherwise. c(t) is a sto-
chastic variable that is set to e  1, where e is typically a 
small number, with probability 1/t in every time-step, and 1 
otherwise. c(t) simulates a random reduction by e of recruit-
ment that happens on average every t years. The quantity in 
parentheses is a Beverton–Holt recruitment function with 
parameters a and Rmax. Equation (1) is iterated for a large 
number of years and the demographic performance, d, of the 

Figure 1. Workflow of the algorithm for selecting sites in the clean slate scenario (a) and in the extending network scenario (b). Clusters  
are found through iterative splitting of the connectivity matrix using different values for the parameter b. L denotes the number of clusters 
and ki the number of dominating eigenvalues of cluster i. The final ranking is obtained by merging sites across clusters, eigenvalues  
and b values.
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the 142 protected sites and the first 628 sites in the final 
ranking of unprotected sites obtained with the algorithm to 
obtain a total of 770 sites for protection.

To evaluate the final configuration using equation (1), 
we used e  0.1, t  10 (i.e. a decimation of population size 
every ten years on average), a  10 and Rmax  6. Equation 
(1) was iterated for 250 yr and performance was measured as 
the mean population size for the five years with the smallest 
total population sizes. We also evaluated how incremental 
extension of the network from the current 142 sites to the 
targeted 770 sites improves the demographic performance. 
We tested whether adding sites at random results in lower  
performance than adding sites according to the final  

The demographic performance of the final configura-
tion can be compared with that of alternative configurations 
obtained by choosing sites at random. If the final configu-
ration has consistently a higher performance than random 
configurations, it can be considered close to optimal.

Application: the Mediterranean Sea

To illustrate the method, we applied the EPT algorithm 
to the case of marine PAs (MPAs) in the Mediterranean  
Sea. The Mediterranean Sea harbors more than 600 fish 
species with a high fraction of endemism (Coll et al. 2010) 
and experiences unprecedented levels of human pres-
sure from fishing, exotic species, and pollution (Coll et al. 
2012). The Mediterranean Sea benefits from the presence 
of approximately a hundred of MPAs, mainly concentrated 
in its northern coast (Abdulla et al. 2009, Coll et al. 2012). 
Overall, the protected surface covers around 1% of the sea 
(Garcia-Charton et al. 2008, Gabrié et al. 2012). Therefore, 
more effort is required to reach the 10% target set by the 
Convention on the Biological Diversity by 2020 (COP10; 
www.cbd.int/cop10; Micheli et  al. (2013)). Moreover, 
the Mediterranean Sea is the archetypal situation where the 
persistence criterion needs to be included in the conserva-
tion planning since 1) the network of MPAs already covers 
most of fish biodiversity fulfilling the representation criteria 
(Mouillot et al. 2011); and 2) many fish species are overex-
ploited and are conservation-dependent to maintain viable 
populations.

All marine areas shallower than 200 m (continental shelf ) 
were considered. This area was subdivided into sites on a 
latitude–longitude grid with a 1/10th degree resolution. 
The boundaries of the sites followed this grid and the coast 
trait. The coast trait was smooth because polygons were used. 
Therefore, some sites were square while others had more 
complex shapes. This produced a set of 7703 sites covering 
the continental shelf (Lasram et  al. 2010, Mouillot et  al. 
2011, Albouy et  al. 2012). Sites that overlap with a MPA 
for at least 50% of their surface were considered protected, 
otherwise they were classified as unprotected. According to 
this criterion, we classified 142 sites out of 7703 as protected 
(1.8%; Fig. 2a).

The connectivity matrix was calculated using a biophysi-
cal model to simulate dispersal of fish larvae by sea currents 
among all sites. Further details on the parameterization of 
larval simulations can be found in Andrello et al. (2013) and 
in Supplementary material Appendix 2. The connectivity 
matrix C was then analyzed using our algorithm for both 
the clean slate scenario and the extension of existing network 
case. We used a productivity increase d  0.1 (10% increase 
in protected vs unprotected areas), i.e. Eii  1.1 for sites cho-
sen for protection and 1 otherwise. To split the matrix, we 
set b to values ranging from n/5 (1540.6) to 2n (15406).

For extending the existing network, we built the produc-
tivity matrix P by setting its diagonal elements to 1  d in 
the 142 sites classified as existing MPAs and 1 otherwise. The 
value of d was set equal to the one used to build the E matrix 
and constant across sites but various d values could be used 
with more information on site productivity and protection 
effectiveness. The final configuration was created by taking 

Figure 2. (a) The current system of MPAs in the Mediterranean  
Sea. Coastal areas are colored in gray and existing MPAs in blue.  
(b) Final configuration of selected sites (in red) for the clean slate 
scenario. The original connectivity matrix C was analyzed, without 
accounting for the increased productivity in existing MPAs.  
(c) Final configuration for the extension of existing network sce-
nario. The matrix C¢  CP corrected for increased productivity in 
MPAs was analyzed and existing MPAs (blue) are plotted with new 
proposed sites (red). The total protected area is 10% of sites in both 
cases and corresponds to the sum of red sites in (b) and of red and 
blue sites in (c).
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Fig. 4b). We then applied the EPT algorithm within each 
cluster to rank sites according to their contribution to 
eigenvalues, and merged the rankings across eigenvalues, 
clusters and values of b to create the final configuration 
(Fig. 2b). Selected sites were often located along curvilinear 
coasts, gulfs, bays and small sea inlets. Greece and Tunisia 
hosted many selected sites (the Gulf of Corinth, the Saronic 
Gulf and the Thermaic Gulf in Greece; the Gulf of Gabès  
and the Gulf of Hammamet in Tunisia). Due to their high 
connectivity, these sites contributed more than others to 
population growth. Altogether, selected sites were quite 
evenly distributed all over the region and were not concen-
trated in a single place: the final configuration was spatially 
balanced. The final configuration contained only 18 sites 
out of 770 that are already protected (2.3% of the final  
configuration and 12.7% of existing PAs).

We compared the performance of this final configuration 
to those obtained with networks where sites were randomly 
selected (Fig. 5a). The final configuration found with the 
EPT algorithm was always superior to random networks.

Extending the existing network

We ran our algorithm on the corrected C¢ matrix to account 
for the effects of existing PAs on connectivity with a produc-
tivity increase of d  10%. The final configuration was set by 
taking the 142 existing PAs and the top 628 sites in the final 
ranking of unprotected sites. Comparison between this final 
configuration and that of the clean slate scenario showed that 
most sites (79.2%) were common to both scenarios (Fig. 2c).

We compared the demographic performance of the  
final configurations between the clean slate scenario and 

configuration. More precisely, the network was extended 
from the current 142 sites (1.8% surface protection) to the 
targeted 770 sites (10% protection) by sequentially add-
ing unprotected sites following the ranking calculated with 
the EPT algorithm, starting from the site with the highest 
contribution. The performance of this extended network 
was compared to an interval of performances (minimum 
and maximum over 30 replicates) obtained from a network 
extended with sites chosen randomly.

The linear approximation at the basis of the EPT  
algorithm is appropriate even for rather large values of d  
(up to 5 in Nilsson Jacobi and Jonsson 2011). As a matter 
of fact, MPAs have positive effects on fish density, biomass, 
fecundity and egg production according to empirical evalua-
tion showing that productivity in Mediterranean MPAs can 
reach levels up to 20-fold the productivity of unprotected 
areas (Garcia-Charton et al. 2008, Afonso et al. 2011). We 
then checked the accuracy of the linear approximation when 
the increase in productivity in MPAs was very high (20-fold 
increase, d  19).

Results

The biophysical model simulates low connectivity among 
sites, except for neighboring sites that are connected by  
high larval dispersal probabilities (Fig. 3). The number of 
realized connections was 2 341 730 out of 59 336 209 poten-
tial connections, giving a connectance of 3.9%. The median 
number of connections was 275 per site (interquartile range 
183–394.5); for protected sites, the median number of  
connections was 249 (interquartile range 171–398) and 
was not significantly different from that of unprotected sites 
(median: 275; interquartile range 184–394; Wilcoxon rank 
sum test: W  514387.5, p-value  0.3926).

Clean slate scenario

We applied the splitting algorithm to find clusters. 
Depending on the value of b, the number of identified 
clusters ranged from 9 (b  n/5, Fig. 4a) to 33 (b  2n, 

Figure 3. Connectivity matrix for the Mediterranean Sea. Colors 
represent probability of larval dispersal between the 7703 sites.

Figure 4. Clusters identified with the splitting algorithm.  
(a) b  n/5, 9 clusters; (b) b  2n, 33 clusters.
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considerably poorer performances than adding sites  
according to their ranking in the final configuration (Fig. 6).

Robustness to the small perturbation assumption

We then checked the accuracy of the linear approximation 
when the increase of productivity in MPAs was very high 
(20-fold increase). The final list consistently showed a higher 
performance than random networks (Fig. 5b), confirming 
that the linear approximation was accurate enough to obtain 
a solution close to optimal.

Discussion

Planning for conservation aims at preserving not only  
the extant patterns of biodiversity but also the processes 
maintaining them and the persistence of species (Pressey 
et al. 2007). Landscape connectivity is affecting species per-
sistence through a variety of processes, e.g. migration, gene 
flow, source-sink dynamics and transfer of matter and energy 
among habitats (Baguette et al. 2013, Kool et al. 2013). More 
specifically, migration of individuals between habitat patches 
is an essential component of the metapopulation dynam-
ics for species distributed in fragmented landscapes. Many 
PA design algorithms were grounded into the metapopula-
tion theory to optimize species persistence with networks 
(Nicholson and Ovaskainen 2009). We have extended one 
of these methods, the EPT algorithm (Nilsson Jacobi and 
Jonsson 2011) which optimizes the connectivity within net-
works of PAs, by spatially balancing the choice of sites to be 
protected and allowing its application to regions where PAs 
are already in place. These two properties appear essential to 
make the EPT framework applicable on realistic scenarios 
where PA networks are already set but need to be reinforced. 
The Mediterranean network represents such an archetypal 

the network extension scenario. We iterated Eq. (1) using  
the C¢ matrix in both cases to assess whether the solutions 
differ when increased productivity is considered in the popu-
lation dynamics: the clean slate scenario performed slightly 
better (d  956.99) than the extending network scenario 
(d  951.96).

We evaluated the demographic performance of networks 
obtained by sequentially adding sites to the existing net-
work made of 142 PAs. Adding sites at random resulted in  

Figure 5. Comparison of the final configuration of sites selected  
by the EPT algorithm with random networks. The demographic 
performance is calculated as the mean total population size at  
low abundance and is normalized against the demographic perfor-
mance of the final configuration, i.e. the region below 1 means 
that changing the sites in the configuration leads to a decreased 
overall population size. Demographic performance is plotted as a 
function of the number of sites that are changed in the final con-
figuration obtained with the EPT algorithm (the 0 on the horizon-
tal axis corresponds to the final configuration obtained with the 
EPT). (a) Final configuration obtained in the clean slate scenario, 
for productivity in protected areas being 1.1  that in unprotected 
areas (d  0.1). (b) Final configuration obtained in the extending 
network scenario, for productivity in protected areas being 
20  that of unprotected areas (d  19).

Figure 6. Demographic performance of the protected areas network 
as a function of the number of sites added to the existing network. 
The demographic performance is calculated as the mean total pop-
ulation size at low abundance. The network is extended from the 
current 142 sites (1.8% surface protection) to the targeted 770 sites 
(10% protection) by sequentially adding sites. The solid line repre-
sents the performance when sites are chosen on the basis of the final 
configuration calculated with the EPT algorithm in the extending 
network scenario, starting from the site with highest contribution 
in decreasing order. Dotted lines represent the interval of perfor-
mance (minimum and maximum over 30 replicates) when sites are 
chosen randomly .
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qualities, can result in different prioritization solutions 
(Berglund et  al. 2012). Since protection from human dis-
turbance often leads to higher fecundity and productivity 
(Claudet et al. 2008, Afonso et al. 2011), the protection sta-
tus of some sites may modify the final selection of sites via 
changes in site productivity. We took into account this effect 
in the productivity matrix P that modifies the probabilities 
of successful propagule dispersal. The formulation is equiva-
lent to the one used by Berglund et al. (2012) to represent 
variation in habitat quality among sites and could be used to 
weight sites according to habitat suitability and patch size.

The second key feature is the forced inclusion of existing 
PAs in the final configuration. This alters the demographic 
performance of the final configuration relative to solutions 
that are not constrained by the inclusion of existing PAs. 
Existing PAs may not be in the top contributors to connec-
tivity and therefore may lower the demographic performance 
of the network when included. Malcolm et al. (2012) show 
that extending a network of existing PAs results in lower 
effectiveness in terms of biodiversity representation relative 
to the clean slate scenario. In our case, including existing 
PAs in the final configuration lowered the demographic per-
formance of the network, albeit weakly since current MPAs 
represent only a small subset of MPAs required to meet the 
10% surface requirement. Forcing the inclusion of existing 
PAs in the final configuration is expected to have higher 
impacts when there are more existing PAs, when the con-
servation target is almost reached with few new PAs being 
created, or when these existing PAs make low contributions 
to eigenvalues.

The main assumption of the EPT algorithm is that pro-
ductivity increases in PAs relative to unprotected areas is 
small, so that it can be considered as a small perturbation 
of the connectivity matrix and the first-order approximation 
is justified. However, productivity in PAs can increase up to 
20-fold compared to unprotected areas (Afonso et al. 2011). 
However, the algorithm proves to be robust to this assump-
tion and the final configuration is still close to optimal when 
such large increases are considered. This was a surprising 
result and the reason underlying the robustness is unknown. 
Possibly, the sparseness of the connectivity matrix (many 
connections are not realized) may explain this robustness 
and deserves further theoretical investigations.

The main limitations of our approach are the applicabi
lity to only one species and the focus on a single objective, 
namely population growth rate. Standard practices in conser-
vation planning are multi-specific and multi-objective, often 
achieved through optimization of biodiversity representation. 
The ultimate goal would be to integrate, into a single ben-
efit function, both the representation of species and habitats 
and the persistence of population by using an explicit model 
of persistence accounting for dispersal between sites. To our 
knowledge, such a model has not yet been developed, but 
some attempts towards multi-specific and multi-objective 
optimization have been made. For instance, Nicholson et al. 
(2006) developed a model for multi-species persistence that 
accounts for dispersal between sites that could be parameter-
ized using species-specific connectivity matrices. However, 
for highly fragmented populations with a modular structure, 
such an approach may favor the maximization of growth  
rate for the largest cluster, disregarding smaller clusters and 

case where an urgent extension is needed to counteract ever 
increasing pressures (Coll et  al. 2012). We show that the 
final optimized configuration to place future MPAs has a 
considerably higher demographic performance than other 
solutions based on a random choice of sites. This demon-
strates that, beyond covering most of biodiversity, including 
connectivity into conservation planning is essential to ensure 
population persistence and to decrease the risk of extinction 
of exploited or vulnerable species (van Teeffelen et al. 2006, 
Berglund et al. 2012, Blowes and Connolly 2012).

Various approaches have been developed to integrate con-
nectivity in PA selection. Popular planning software products 
such as Marxan and Zonation implement habitat continuity 
as a measure of landscape connectivity using distribution 
smoothing and boundary quality penalty (Ball et al. 2009, 
Lehtomäki and Moilanen 2013). Graph-theory has also been 
used to calculate the importance of single habitat patches as 
a function of their connectivity within the network of sites 
(Rothley and Rae 2005, Fuller and Sarkar 2006, Minor and 
Urban 2008). Network metrics such as betweenness central-
ity have been used to rank sites in a network (Treml and 
Halpin 2012). Node removal approaches, where single sites 
are sequentially removed from the network, can inform on 
the value of single habitat patches for network connectiv-
ity (Watson et al. 2011). However, these approaches can be 
limited if they consider connectivity as a stand-alone entity 
without accounting for population dynamics (Moilanen 
2011). The persistence objective requires translating the 
effects of connectivity into a target metric of population via-
bility. Metapopulation theory thus offers a valid framework 
to integrate connectivity into conservation planning via 
the specific objective of population persistence (Nicholson  
and Ovaskainen 2009). Several studies have improved PA 
selection algorithms to include population persistence of 
single (Moilanen and Cabeza 2002) or multiple species 
(Moilanen et al. 2005, Nicholson et al. 2006) using a variety 
of viability metrics (Nicholson and Ovaskainen 2009). Our 
method aims at increasing metapopulation growth rate for 
a single species through an analytical approach that allows 
considering multiple population clusters. In doing so, the 
algorithm maximizes not only the global metapopulation 
growth rate but also the cluster-specific population growth 
rates. This is achieved by considering the full eigenvalue 
spectrum and not only the highest eigenvalue, thus avoiding 
the trivial solution where only the sites of the most productive  
cluster are protected (Supplementary material Appendix 1). In 
addition, the identification of clusters is improved by apply-
ing a splitting algorithm that maximizes intra cluster con-
nectivity while minimizing between clusters connectivity 
before performing the eigenvalue analysis and running the 
EPT algorithm.

Beyond combining the original EPT algorithm (Nilsson 
Jacobi and Jonsson 2011) with the population splitting algo-
rithm (Nilsson Jacobi et  al. 2012), we developed a frame-
work for realistic scenarios where existing network of PAs are 
extended. This requires modifying the original algorithm to 
account for two key features: the increased site productivity 
of existing PAs and their forced inclusion in the final con-
figuration. The assumption of the original EPT method is  
that sites are equally productive. However, variation in site 
productivity caused, for example, by differential habitat  
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