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Complexity matching in side-by-side walking
Zainy M.H. Almurad’?, Clément Roume! & Didier Deligniéres?!
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2. Faculty of Physical Education, University of Mossul, Irak

Abstract:

Interpersonal coordination represents a very common phenomenon in daily-life activities.
Three theoretical frameworks have been proposed to account for synchronization processes in
such situations: the information processing approach, the coordination dynamics perspective,
and the complexity matching effect. On the basis of a theoretical analysis of these frameworks,
we propose three statistical tests that could allow to distinguish between these theoretical
hypotheses: the first one is based on multifractal analyses, the second and the third ones on
cross-correlation analyses. We applied these tests on series collected in an experiment where
participants were instructed to walk in synchrony. We contrasted three conditions:
independent walking, side-by-side walking, and arm-in-arm walking. The results are consistent
with the complexity matching hypothesis.

Key-words: synchronized walking, complexity matching, multifractals, cross-correlation.

Introduction

Interpersonal synchronization represents a very common phenomenon in daily life
activities, for example when people walk together, dance, play music, etc. However, the
processes that sustain this kind of coordination are still poorly understood, and several
theoretical frameworks are in competition for explaining how interpersonal synchronization
occurs.

In the present paper we focus on a very usual activity, side-by-side walking. The final goal of
this line of research is concerned by rehabilitation purposes, and this point will be developed in
the concluding section. The main aim of the current paper is to enrich the theoretical approach
of the alternative frameworks that compete in this domain, and to propose a statistical strategy
for disentangling these different points of view. We then apply this theoretical and statistical
background in an experimental study on side-by-side walking. In a first step it seems necessary
to shortly introduce the theoretical paradigms that have been proposed in the study of
interpersonal synchronization.
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The information-processing approach

The first framework suggests that interpersonal synchronization is based on cognitive,
representational processes of anticipation. This information-processing paradigm originates in
the analysis of sensorimotor synchronization (SMS), focusing at the experimental level on the
synchronization of simple movements (e.g., finger tapping) with a regular metronome (Repp,
2005; Repp & Su, 2013). A number of studies suggested that in such tasks synchronization is
achieved by a systematic correction of the current inter-tap interval, on the basis of the last
asynchronies (Pressing & Jolley-Rogers, 1997; Torre & Delignieres, 2008; Vorberg & Wing,
1996). This corrective process can be expressed as follows:

ITI, = ITIth, — tASYN,_, +J€, (1)

where ITI, represents the inter-tap interval produced by the participant at the nth tap, and
ASYN, the asynchrony between the nth tap and the nth onset of the metronome. ITIth,
represents the inter-tap interval that should be intrinsically produced. ITIth, is supposedly
produced by an internal timekeeper, and is corrected by a fraction of the preceding asynchrony.
Finally €, is a white noise process.

In order to account for synchronization with more realistic environments, this paradigm
has been extended to the study of synchronization with non-isochronous metronomes. The first
studies focused on metronomes with regularly modulated deviations around the basic tempo
(Madison & Merker, 2005; Thaut, Tian, & Azimi-Sadjadi, 1998). More recently a number of
studies analyzed synchronization with metronomes presenting fractal variabilities, which are
supposed to represent more closely the kind of fluctuations one encounters with natural
situations, and especially with human partners (Delignieres & Marmelat, 2014; Hunt, McGrath,
& Stergiou, 2014; Kaipust, McGrath, Mukherjee, & Stergiou, 2013; Marmelat, Torre, Beek, &
Daffertshofer, 2014; Rankin & Limb, 2014; Torre, Varlet, & Marmelat, 2013). These
experiments generally showed that individuals tracked the timing variations of the sequence at
a lag of one event (Delignieres & Marmelat, 2014; Thaut et al,, 1998; Torre et al., 2013). This
tracking behavior is essentially similar to that supposed by the basic model proposed in Eq. (1).

This information processing approach to sensorimotor synchronization has been extended to
interpersonal synchronization, especially in the study of dyadic finger tapping tasks
(Konvalinka, Vuust, Roepstorff, & Frith, 2010; Nowicki, Prinz, Grosjean, Repp, & Keller, 2013;
Pecenka & Keller, 2011). These experiments and their results will be presented and discussed
latter in this paper.

The coordination dynamics perspective

A second theoretical framework has been proposed by the coordination dynamics
perspective (Schmidt, Carello, & Turvey, 1990). This approach was initially developed in the
analysis of bimanual coordination, and promoted a phenomenological model based on a
continuous coupling between oscillators (Haken, Kelso, & Bunz, 1985; Schoner, Haken, & Kelso,
1986):

{ X+ 0%, + A%} +yx % + @0’x, = (x, — ,)[a+b(x, — x,)*] -

¥, + 6%, + A%, +yx,’ %, + 0’x, = (X, — %)a+b(x, — x,)°]

where x; is the position of oscillator i, and the dot notation represents derivation with respect
to time. The left side of the equations represents the limit cycle dynamics of each oscillator
determined by a linear stiffness parameter (w) and damping parameters (6, A, and y), and the
right side represents the coupling function determined by parameters a and b. This model has
been proven to adequately account for most empirical features in bimanual coordination tasks,
such as the differential stability of in-phase and anti-phase coordination modes, and the



transition from anti-phase to in-phase coordination with the increase of oscillation frequency
(Haken et al., 1985; Schoner et al., 1986).

Schmidt et al. (1990), in a series of experiments in which two seated participants were
asked to visually coordinate their lower legs, showed that interpersonal coordination presents
strong similarities with bimanual coordination: anti-phase and in-phase coordination patterns
also emerged as intrinsically stable behaviors, with anti-phase being less stable than in-phase
coordination, and spontaneous transitions from anti-phase to in-phase coordination were also
observed with increasing frequency. Similar results were obtained in diverse interpersonal
tasks, such as rocking side-by-side in rocking chairs (Richardson, Marsh, Isenhower, Goodman,
& Schmidt, 2007), or swinging pendulums together (Schmidt, Bienvenu, Fitzpatrick, & Amazeen,
1998). Some important predictions of the original model, such as the effect of a difference
between the uncoupled eigenfrequencies of the two oscillators, were also evidenced in
interpersonal coordination tasks (Schmidt et al., 1998).

Complexity matching

Complexity matching represents a third, alternative framework that has been recently
proposed for accounting for interpersonal coordination processes (Abney, Paxton, Dale, & Kello,
2014; Delignieres & Marmelat, 2014; Marmelat & Delignieres, 2012). The concept of complexity
matching, introduced by West et al. (2008), states that the exchange of information between
two complex networks is maximized when their complexities are similar. The response of a
complex network to the stimulation of another network is a function of the matching of their
complexities. This property requires that both networks generate 1/f fluctuations, and has
been interpreted as a kind of “1/fresonance” (Aquino, Bologna, West, & Grigolini, 2011)

An interesting conjecture exploiting the complexity matching effect supposes that two
coupled complex systems tend to attune their complexities in order to optimize information
exchange. This conjecture suggests a close matching between the scaling exponents
characterizing the series produced by the coupled systems. Such results have been evidenced
by Marmelat and Delignieres (2012) in an inter-personal coordination task where participants
oscillated pendulums in synchrony, and by Abney, Paxton, Dale, and Kello (2014), in the
analysis of speech signals during dyadic conversations.

The processes that underlain this tailoring of fluctuations remain not fully understood.
Stephen and Dixon (2011) propose an interesting hypothesis, which explains this attunement
as a case of multifractal cascade dynamics in which perceptual-motor fluctuations are
coordinated across multiple time scales. This coordination among multiple time scales could
support the apparently predictive aspects of behavior without requiring an internal model.

These three theoretical frameworks have been jointly considered in a series of papers
dedicated to the analysis of anticipation processes, and distinguishing several forms of
anticipation (Dubois, 2003; Stephen & Dixon, 2011; Stepp & Turvey, 2010). Dubois (2003)
considered that synchronization with fluctuating environments was based on a kind of
“prediction” of its upcoming behavior (Deligniéres & Marmelat, 2014; Marmelat & Delignieres,
2012; Stephen & Dixon, 2011; Stephen, Stepp, Dixon, & Turvey, 2008). Dubois suggested that a
first form of anticipation was based on representational processes, allowing to predict the
future of the environment with which the systems has to coordinate. The information-
processing approach we previously presented corresponds to this kind of processes. Dubois
(2003) proposed to refer this form of anticipation to as “weak” anticipation.

The author proposed a “strong” alternative that does not rely on internal models. Strong
anticipation suggests that the organism is embedded within its environment. This embedding
asserts lawful constraints upon both the actions of the organism and the environmental effects
on those actions, and anticipation emerges as a lawful regularity of the organism-environment
system.



Stephen and Dixon (2011) argued that two approaches to strong anticipation have to be
distinguished. The first one suggests that strong anticipation results from an appropriate
coupling between the organism and its environment. An interesting example was presented by
Voss (2000), who showed that during the synchronization between a slave and a master
systems, the presence of time delays in the master system yields the slave system to
synchronize with future states of the master. The models of coupled oscillators proposed by the
coordination dynamics perspective clearly refer to this kind of local strong anticipation
processes. This conception supposes that anticipation is based on local time scales, and the
quality of anticipation is supposed to be closely related to the strength of coupling between the
two systems (Stepp & Turvey, 2010).

A second approach supposes that strong anticipation is based on a more global coordination
between the organism and its environment. Stephen et al. (2008) were the first to evidence this
kind of strong anticipation in an experiment which analyzed synchronization with a chaotic
metronome. In such a situation, local predictions seem difficultly conceivable, because of the
intrinsically unpredictable nature of the external pacing signal. Despite this unpredictability,
the authors reported a quite acceptable synchronization with the metronome. They also
observed a close matching between the fractal exponents of the chaotic signals and those of the
corresponding inter-tap interval series. Such global strong anticipation corresponds to the
previously presented complexity matching effect.

These three theoretical frameworks have received considerable supports in their respective
fields of emergence, including interpersonal coordination tasks. We are not sure, however, that
these frameworks represent alternative hypotheses for accounting for similar phenomena.
Depending on the nature and the constraints of the situation, different synchronization
processes could be at work, and each framework could offer satisfying accounts in specific
tasks. The information processing approach seems particularly relevant for accounting for
situations where one has to synchronize discrete movements (e.g., tapping) with series of
discrete signals (Konvalinka et al., 2010; Repp, 2005). The coordination dynamics perspective
was essentially developed for accounting for the coordination of continuous, oscillatory
movements (Schmidt et al., 1990). The scope of complexity matching remains to define, but it
has been previously applied to very diverse situations, including non periodic interactions
between complex systems (e.g., Abney et al., 2014).

In order to test the relevance of these frameworks in specific situations, we need statistical
signatures that could be able to unambiguously identify the processes at work in interpersonal
coordination. In the following parts we present three possible tests: the first one is based on
multifractal analyses, and has been proposed by Delignieres et al (2016), the second and the
third exploit cross-correlation analyses.

Multifractal signatures

Most experiments seeking to evidence a complexity matching effect tried to reveal a close
attunement of the (mono)fractal properties of the series produced by the coordinated systems.
Typically, the authors showed close correlations between scaling exponents (Delignieres &
Marmelat, 2014; Marmelat & Deligniéres, 2012; Marmelat, Delignieres, Torre, Beek, &
Daffertshofer, 2014; Stephen et al., 2008).

However, Delignieres, Almurad, Roume and Marmelat (2016) claimed that the matching of
scaling exponents could not be considered an unambiguous signature of complexity matching.
They proposed to distinguish between statistical matching (i.e., the convergence of scaling
exponents) and genuine complexity matching effect (i.e., the attunement of complexities). Some
recent papers showed that the matching of scaling exponents could result from local, short-
term adjustments or corrections (Delignieres & Marmelat, 2014; Fine et al., 2015; Torre et al ,
2013). For example, Delignieres and Marmelat (2014) analyzed series of stride durations
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produced by participants attempting to walk in synchrony with a fractal metronome. They
evidenced a close correlation between the scaling exponents of the series of stride durations
produced by the participants and those of the series of inter-onset intervals of the
corresponding metronomes. The authors tried to simulate their empirical results by means of a
model based on local corrections of asynchronies, and showed that this model was able to
adequately reproduce the statistical matching observed in experimental series. The authors
concluded that walking in synchrony with a fractal metronome could essentially involve short-
term correction processes, and that the close correlation observed between scaling exponents
could in such a case just represent the consequence of these local corrections.

Delignieres et al. (2016) proposed a more binding method for distinguishing genuine
complexity matching from local corrective processes. They first suggested to base the analysis
of statistical matching on a multifractal approach, rather than the monofractal analyses
previously employed. This choice was motivated by the point developed by Stephen and Dixon
(2011), arguing the tailoring of fluctuations that is typical of complexity matching could be
considered as the product of multifractality, and also by the fact that multifractals allow for a
more detailed picture of the complexity of time series.

Multifractal processes present more complex fluctuations than monofractal series, and
cannot be characterized by a single scaling exponent. In multifractal series subsets with small
and large fluctuations scale differently, and their description requires a hierarchy of scaling
exponents (Podobnik & Stanley, 2008). Delignieres et al. (2016) proposed to assess the
statistical matching through the point-by-point correlation function between the sets of scaling
exponents that characterize the coordinated series.

The authors used the Multifractal Detrended Fluctuation Analysis (MFDFA, see Method
section), which is based in its first steps on the analysis of the evolution of average statistical
moments with the length of the intervals over which these moments are computed. This
method allows to choose the range of interval lengths that is taken into account. The authors
proposed to estimate the set of multifractal exponents in first over the entire range of available
intervals (i.e., from 8 to N/2, N representing the length of the series), and then over more
restricted ranges, progressively excluding the shortest intervals (i.e., from 16 to N/2, from 32 to
N/2, and then from 64 to N/2). They then computed the point-by-point correlation functions
characterizing the four ranges of interval lengths considered.

The authors supposed that if synchronization is just based on local corrections, the
statistical matching in long intervals is just the consequence of the short-term, local coupling
between the two systems. As local corrections between unpredictable systems remains
approximate, correlations should dramatically decrease when intervals of shorter durations
are taken into consideration. In contrast, in the case of genuine complexity matching, the
synchronization between systems is supposed to emerge from interactions across multiple
scales. The authors hypothesized to find in this case close correlations, even when considering
the entire range of intervals, from the shortest to the longest.

We present in Figure 1 the results obtained by the authors in three experiments. The first
one analyzed the series of periods produced by the two hands of participants performing in-
phase bimanual coordination. The correlation functions obtained remained close to one,
whatever the range of intervals considered (Figure 1, left panel). The second one was an
interpersonal coordination task in which participants were instructed to oscillate pendulums in
phase (Figure 1, central panel). In this experiment the correlation functions remained
significant, while a little bit lesser than in the first example. In the third experiment participants
had to walk in synchrony with a fractal metronome (Figure 1, right panel). In that case a close-
to-one correlation function was only obtained when the longest intervals were considered (i.e.,
from 64 to N/2). When widest ranges of intervals were considered, correlation functions lose
statistical significance.
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Figure 1: Correlation functions, for the four ranges of intervals considered (8 to N/2,16to N/2,
32 to N/2, 64 to N/2), for bimanual coordination (left), interpersonal coordination (middle),
and walking in synchrony with a fractal metronome (right). From Delignieres et al. (2016).

The authors concluded that in bimanual coordination and in interpersonal coordination, the
statistical matching resulted from a genuine complexity matching between systems. In contrast
during walking in synchrony with a fractal metronome, the apparent statistical matching was
just the result of local adjustments.

This multifractal approach allows to clearly distinguishing between weak anticipation
processes (i.e. local discrete correction) and strong anticipation processes. However, it seems
unable to distinguish between the local and global forms of strong anticipation (Delignieres et
al.,, 2016).

Cross-correlation peaks

A second kind of signatures can be obtained from cross-correlation analyses. As previously
evoked, a number of recent studies analyzed synchronization with non-isochronous
metronomes, and especially metronomes presenting fractal fluctuations. These studies showed
that synchronization in such situations was sustained by local corrections of the recent
asynchronies, as expected from Eq. (1). Such behavior is typically revealed by a positive peak of
cross-correlation at lag -1, between the series of asynchronies and the series of periods
produced by the participant, or between the series of periods produced by the participant and
that produced by the metronome. Note that some more complicated models have been
proposed, involving corrective processes taking into account more previous asynchronies
(Pressing & Jolley-Rogers, 1997). For example Deligniéres and Marmelat (2014), in an
experiment where participants had to walk in synchrony with a fractal metronome, evidenced
positive peaks of cross-correlations at lag -2 and lag -1 between the series of asynchronies and
the series of step durations.

The principle of phase correction can also be applied to interpersonal synchronization.
When two individuals perform a rhythmic task in synchrony (e.g., tapping), phase correction
suggests that participant A adapts his/her current inter-tap interval on the basis on the last
asynchrony he/she perceived with his/her partner, and conversely for participant B. This
mutual phase correction process could be modeled as follows:



ITl, , =ITlth, , — € ASYN ,_,, | +7E,,

3
ITl,, = ITlth, , — € ASYN,_, ,  + Ve, @

where ITI4, represents the inter-tap interval produced by participant A at the nth tap, ASYNa.p,
the asynchrony between the nth tap of participant A and the nth tap of participant B (hence,
ASYNa.gn = - ASYNp.4, ). As in the previous model (Eq. (1)), ITItha, is a long-range correlated
series with Hurst exponent H, mean M and variance o2, representing the series of taps that
should be intrinsically produced by participant A, and &4, is a white noise process with zero
mean and unit variance. We generated 12 sets of coupled series with this simple model, with
the following parameters: H= 0.9, a = 0.3, M = 1000, 02 = 400, and y = 300. We then computed
the cross-correlation function, from lag -10 to lag +10, between the obtained ITI series (ITIan
and ITIgn). We present in Figure 2 the averaged cross-correlation function. This model typically
produces positive lag -1 and lag +1 cross-correlations, and a negative lag 0 cross-correlation.
The positive lag -1 and lag +1 cross-correlations reflect the correction of asynchronies, and the
negative correlation at lag 0 results from this mutual tendency of each participant to adapt
towards the previous ITI of the other. This typical pattern of cross-correlation was evidenced
by Konvalinka et al. (2010), in an experiment where participants had to synchronize their taps,
and by Deligniéres and Marmelat (2014) in an experiment where each participant in a dyad
swung a hand-held pendulum, and were instructed to swing in synchrony.
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Figure 2: Averaged cross-correlation function obtained from series simulated with Eq. (3).

In contrast, both coupled oscillators models and complexity matching are likely to result in
a unique, positive peak of cross-correlation, located at lag 0. Indeed, coupled oscillators models
suggest a local, continuous coupling within the limit cycle, and the oscillators are clearly
expected to synchronize their frequencies. Generally the authors working on coordination
dynamics focus on the stability of relative phase, and ignore the possible serial dependencies
between the series produced by the two oscillators. However, Delignieres and Marmelat (2014)
and Coey et al (2016) clearly evidenced a peak of cross-correlation at lag 0 between the two
limbs in bimanual coordination. Complexity matching does not suggest such local coupling, but,
rather, a global and multiscale coordination between systems (Stephen & Dixon, 2011). This
should induce a close tailoring of fluctuations, which should also be expected to result in a peak
at lag 0 in the cross-correlation function.

Then the location of the peak(s) of cross-correlation between the series produced by the
two members of the dyad, could allow to distinguish between weak and strong anticipation
processes, but not between the local and global forms of strong anticipation. We suggest,
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however, that the magnitude of the lag 0 cross-correlation peak could represent an interesting
test for the respective relevancy of the two last competing models.

Lag 0 windowed cross-correlation

Cross-correlations are strongly affected by trends, which could spuriously increase the
obtained values. In order to control these biases and to focus on local processes, one could
compute the Windowed Detrended Cross-Correlation function (WDCC). In this method the
series are divided into non-overlapping intervals of short length (e.g., 15 data points), and
detrended within each interval. The local cross-correlation function is then computed within
each interval, and averaged over all intervals (Coey et al., 2016; Delignieres & Marmelat, 2014;
Konvalinka et al., 2010).

Fine et al. (2015) suggested that the local and continuous coupling involved in coordination
dynamics models could be at the origin of the strong statistical matching observed in
interpersonal synchronization experiments. However, several recent studies showed that in
such situations, statistical matching occurs despite a lack of substantial short-term cross-
correlation, considered as evidence against the local coupling hypothesis (Abney et al., 2014;
Marmelat & Deligniéres, 2012; Rhea, Kiefer, D’Andrea, Warren, & Aaron, 2014; Washburn,
Kallen, Coey, Shockley, & Richardson, 2015).

Delignieres et al. (2016) performed a simulation study based on the HKB model (Eq. (2)). In
order to account for the presence of 1/f fluctuations in limb oscillations, they provided the
stiffness parameters (w?) of both equations with independent fractal properties. They showed
that this model required very high coupling parameters (i.e., a and b in Eq. (2)) for maintaining
the stability of coordination patterns. As a consequence, the local coupling between oscillators
was strong and the mean lag 0 WDCC, computed from these simulated series, was of about 0.84.
In contrast, Coey et al (2016) and Delignieres and Marmelat (2014) obtained lag 0 WDCCs of
about 0.4 in bimanual coordination tasks, and Coey et al (2016) observed a value of about 0.2 in
an interpersonal synchronization tapping task. On the basis of these results, one can consider
that the lag 0 WDCC value could allow distinguishing between the alternative models of strong
anticipation: Coupled oscillators dynamics should be revealed by a significant peak of WDCC at
lag 0, but in the case of complexity matching this peak should remain non-significant.

The aim of the present work was to clarify the nature of synchronization in side-by-side
walking. We applied the three previously presented statistical tests to empirical series, and we
hypothesized to evidence the typical signatures of complexity matching in this situation.

2. Methods
2.1. Participants

26 participants (16 male and 10 female, mean age: 28.07 yrs + 8.88, mean weight: 68.65 kg
+ 10.5, mean height: 172.92 cm + 9.67) were involved in the experiment. Participants were
paired into 13 dyads. The pairing procedure was performed in order to preserve the
homogeneity of weights and heights within each dyad. Participants signed an informed consent
approved by the local ethic committee and were not paid for their participation. All work was
conducted in accordance with the 1964 Declaration of Helsinki.

2.2. Experimental procedure

The experiment was performed around an indoor running track (circumference 200m), and
comprised three experimental conditions:

- Condition 1: Independent walking. Each participant walked individually at his/her preferred
velocity

- Condition 2: Side-by-side walking. The two members of the dyad walked together, side-by-
side. They were explicitly instructed to synchronize their steps during the whole trial.



- Condition 3: Arm-in-arm walking. The two members of the dyad walked together, arm-in-arm.
They were explicitly instructed to synchronize their steps during the whole trial.

Each trial, in the three conditions, lasted 16 minutes. Participants had a resting period of at
least 10 minutes between two successive trials. Independent walking was performed at first.
The order of the two last conditions was counterbalanced within dyads.

2.3. Data collection

Data were recorded with two Mobility Lab systems (APDM, Inc), one for each member of
the dyads. Two body-worn inertial sensors were attached on the shanks of each participant.
Data were then wirelessly streamed to a laptop. The device performed automated analyses
providing a set of raw series (stride duration, stride length, etc., for both limbs). In the present
paper we focused on the series of right stride durations.

2.4. Statistical analyses
Multifractal Detrended Fluctuation analysis (MF-DFA)

We performed multifractal analyses with the MF-DFA method, initially introduced by
Kantelhardt et al (2002). Consider the series x(i), i = 1, 2, ..., N. In a first step the series is
centered and integrated:

k N

X(k):Z[x(i)—%Zx(i)} )

i=1 i=1

Next, the integrated series X(k) is divided into N, non-overlapping segments of length n, and
in each segment s = 1, .., N,. Within each segment the local trend X,s(k) is estimated and
subtracted from X(k). The variance is calculated for each detrended segment:

N

Fns)=~ Y [X(k)-X,, (k)] 5)

M j(s—1yn+1

and then averaged over all segments to obtain gth order fluctuation function

F,(n)= {NLZ"[FZ(n,s)] } (6)

n s=l1

where g can take any real value except zero. In the present work we used integer values for g,
from -15 to +15. Note that Eq. (6) cannot hold for g = 0. A logarithmic averaging procedure is
used for this special case:

Fy(n)= exp(ﬁiln[ﬁ(n,s)]) (7

n s=l1

This calculation is repeated for all lengths n (practically, one considers intervals from 8 or
10 data points, in order to allow a proper assessment of statistical moments, up to N/4 or N/2).
If long-term correlations are present, Fy(n) should increase with n according to a power law:

E; (l’l) oc nh(fI) (8)

The scaling exponent h(q) is obtained as the slope of the linear regression of log Fy(n)
versus log n. h(q) is called the generalized Hurst exponent.

These results are then converted into the more classical multifractal formalism by simple
transformations (Kantelhardt et al, 2002): first, generalized Hurst exponents h(g) are
converted into Renyi exponents 7(q) b